Interface Engineering of Fe7S8/FeS2 Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
Corresponding Author: Jiabao Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 118
Abstract
Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics, improving electronic conductivity, and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage. Herein, the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes (Fe7S8/FeS2/NCNT) have been prepared through a successive pyrolysis and sulfidation approach. The Fe7S8/FeS2/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g−1 up to 100 cycles at 1.0 A g−1 and superior rate capability (273.4 mAh g−1 at 20.0 A g−1) in ester-based electrolyte. Meanwhile, the electrodes also demonstrated long-term cycling stability (466.7 mAh g−1 after 1,000 cycles at 5.0 A g−1) and outstanding rate capability (536.5 mAh g−1 at 20.0 A g−1) in ether-based electrolyte. This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics, high capacitive contribution, and convenient interfacial dynamics in ether-based electrolyte.
Highlights:
1 Iron sulfide-based heterostructure in situ hybridized with nitrogen-doped carbon nanotubes was prepared through a successive pyrolysis and sulfidation approach.
2 The as-prepared Fe7S8/FeS2/NCNT electrode exhibits superior sodium storage performance in both ester and ether-based electrolytes.
3 The structure advantages of the electrode contribute to high electrochemical performance in the ester-based electrolyte, while fast ionic diffusion and favorable capacitive behavior result in the robust sodium storage performance in the ether-based electrolyte.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
- X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
- Y. Li, Q. Zhou, S. Weng, F. Ding, X. Qi et al., Interfacial engineering to achieve an energy density of over 200 wh kg−1 in sodium batteries. Nat. Energy 7(1), 2076 (2022). https://doi.org/10.1038/s41560-022-01033-6
- T.P. Nguyen, A.D. Easley, N. Kang, S. Khan, S.M. Lim et al., Polypeptide organic radical batteries. Nature 593(7857), 61–66 (2021). https://doi.org/10.1038/s41586-021-03399-1
- G. Zhu, X. Tian, H.C. Tai, Y.Y. Li, J. Li et al., Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596(7873), 525–530 (2021). https://doi.org/10.1038/s41586-021-03757-z
- P. Chen, T. Wang, F. Tang, G. Chen, C. Wang, Elaborate interface design of CoS2/Fe7S8/NG heterojunctions modified on a polypropylene separator for efficient lithium-sulfur batteries. Chem. Eng. J. 446(1), 136990 (2022). https://doi.org/10.1016/j.cej.2022.136990
- J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11(1), 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- H. Li, Y. Ma, H. Zhang, T. Diemant, R.J. Behm et al., Metal-organic framework derived Fe7S8 nanops embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 4(12), 2000637 (2020). https://doi.org/10.1002/smtd.202000637
- J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 34(15), e2108384 (2022). https://doi.org/10.1002/adma.202108384
- L. Yue, Y. Qi, Y. Niu, S. Bao, M. Xu, Low-barrier, dendrite-free, and stable Na plating/stripping enabled by gradient sodiophilic carbon skeleton. Adv. Energy Mater. 11(48), 2102497 (2021). https://doi.org/10.1002/aenm.202102497
- B. Yan, L. Lin, C. Sun, L. Gao, H. Tao et al., Rational design of double-shelled Cu2MoS4@N-doped carbon hierarchical nanoboxes toward fast and stable sodium-ion batteries. J. Mater. Chem. A 10(33), 17185–17198 (2022). https://doi.org/10.1039/d2ta05119b
- J. Yang, J. Li, T. Wang, P.H.L. Notten, H. Ma et al., Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem. Eng. J. 407(1), 127169 (2021). https://doi.org/10.1016/j.cej.2020.127169
- J. Li, S. Tang, Z. Li, C. Wang, J. Li et al., Crosslinking nanoarchitectonics of nitrogen-doped carbon/MoS2 nanosheets/Ti3C2Tx Mxene hybrids for highly reversible sodium storage. Chemsuschem 14(23), 5293–5303 (2021). https://doi.org/10.1002/cssc.202101902
- J. Li, J. Li, Z. Ding, X. Zhang, Y. Li et al., In-situ encapsulation of Ni3S2 nanops into N-doped interconnected carbon networks for efficient lithium storage. Chem. Eng. J. 378(1), 122108 (2019). https://doi.org/10.1016/j.cej.2019.122108
- A. Jin, M.-J. Kim, K.-S. Lee, S.-H. Yu, Y.-E. Sung, Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 12(3), 695–700 (2019). https://doi.org/10.1007/s12274-019-2278-y
- X. Chen, D. Wang, J. Chen, Facile synthesis of uniform yolk–shell structured FeS@mesoporous carbon spheres for high-performance sodium-ion batteries. New J. Chem. 43(26), 10291–10296 (2019). https://doi.org/10.1039/c9nj01510h
- J. Zhang, Z. Meng, D. Yang, K. Song, L. Mi et al., Enhanced interfacial compatibility of FeS@N, S–C anode with ester-based electrolyte enables stable sodium-ion full cells. J. Energy Chem. 68(1), 27–34 (2022). https://doi.org/10.1016/j.jechem.2021.11.033
- C. Zhang, D. Wei, F. Wang, G. Zhang, J. Duan et al., Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 53(1), 26–35 (2021). https://doi.org/10.1016/j.jechem.2020.05.011
- S. Kandula, B. Sik Youn, J. Cho, H.-K. Lim, J. Gon Son, FeS2@N–C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 439(1), 135678 (2022). https://doi.org/10.1016/j.cej.2022.135678
- Q. Li, Y. Liu, S. Wei, L. Xu, X. Wu et al., Box-like FeS@nitrogen-sulfur dual-doped carbon as high-performance anode materials for lithium ion and sodium ion batteries. J. Electroanalytical. Chem. 903(1), 115848 (2021). https://doi.org/10.1016/j.jelechem.2021.115848
- H. Wu, N. Xu, Z. Jiang, A. Zheng, Q. Shi et al., Space and interface confinement effect of necklace-box structural FeS2/WS2 carbon nanofibers to enhance Na+ storage performance and electrochemical kinetics. Chem. Eng. J. 427(1), 131002 (2022). https://doi.org/10.1016/j.cej.2021.131002
- S. Wang, P. Ning, S. Huang, W. Wang, S. Fei et al., Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries. J. Power Sources 436(1), 226857 (2019). https://doi.org/10.1016/j.jpowsour.2019.226857
- Q. Peng, Y. Lu, S. Qi, M. Liang, D. Xu et al., Pomegranate-inspired nitrogen-doped carbon-coated bimetallic sulfides as a high-performance anode of sodium-ion batteries and their structural evolution analysis. ACS Appl. Energy Mater. 5(3), 3199–3207 (2022). https://doi.org/10.1021/acsaem.1c03810
- J. Li, S. Tang, Z. Li, C. Wang, L. Pan, Boosting the lithium storage performance by synergistically coupling ultrafine heazlewoodite nanop with N, S co-doped carbon. J. Colloid Interface Sci. 604(1), 368–377 (2021). https://doi.org/10.1016/j.jcis.2021.07.031
- J. Yang, Z. Liu, X. Sheng, J. Li, T. Wang et al., Tin nanop in situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. J. Colloid Interface Sci. 624(1), 40–50 (2022). https://doi.org/10.1016/j.jcis.2022.05.090
- Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(1), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
- J. Li, Z. Ding, J. Li, C. Wang, L. Pan et al., Synergistic coupling of NiS10.3 nanop with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem. Eng. J. 407(1), 127199 (2021). https://doi.org/10.1016/j.cej.2020.127199
- Y. Liu, L. Zhang, D. Liu, W. Hu, X. Yan et al., Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale 11(33), 15497–15507 (2019). https://doi.org/10.1039/c9nr05594k
- S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang et al., Boosting sodium storage of Fe1−xS/MoS2 composite via heterointerface engineering. Nano Micro Lett. 11(1), 80 (2019). https://doi.org/10.1007/s40820-019-0311-z
- M. Zhou, H. Tao, K. Wang, S. Cheng, K. Jiang, Nano-embedded microstructured FeS2@C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte. J. Mater. Chem. A 6(47), 24425–24432 (2018). https://doi.org/10.1039/c8ta07571a
- L. Song, H. Fan, X. Fan, H. Gong, T. Wang et al., A simultaneous phosphorization and carbonization strategy to synthesize a defective Co2P/doped-CNTs composite for bifunctional oxygen electrocatalysis. Chem. Eng. J. 435(1), 134612 (2022). https://doi.org/10.1016/j.cej.2022.134612
- F. Yang, S. Wang, J. Guan, L. Shao, X. Shi et al., Hierarchical MoS2-NiS nanosheet-based nanotubes@N-doped carbon coupled with ether-based electrolytes towards high-performance Na-ion batteries. J. Mater. Chem. A 9(47), 27072–27083 (2021). https://doi.org/10.1039/d1ta08719c
- H. Li, Y. He, Y. Dai, Y. Ren, T. Gao et al., Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem. Eng. J. 427(1), 131784 (2022). https://doi.org/10.1016/j.cej.2021.131784
- B. Chen, J. Ding, X. Bai, H. Zhang, M. Liang et al., Engineering pocket-like graphene–shell encapsulated FeS2: inhibiting polysulfides shuttle effect in potassium-ion batteries. Adv. Funct. Mater. 32(14), 2109899 (2021). https://doi.org/10.1002/adfm.202109899
- Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries. Small 17(39), e2102710 (2021). https://doi.org/10.1002/smll.202102710
- X. Wu, H. Zhao, J. Xu, Z. Zhang, W. Sheng et al., Facile synthesis of MOFs derived Fe7S8/C composites for high capacity and long-life rechargeable lithium/sodium batteries. Appl. Surf. Sci. 492(1), 504–512 (2019). https://doi.org/10.1016/j.apsusc.2019.06.217
- L. Shao, J. Hong, S. Wang, F. Wu, F. Yang et al., Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries. J. Power Sources 491(1), 229627 (2021). https://doi.org/10.1016/j.jpowsour.2021.229627
- X. Liu, P. Mei, Y. Dou, R. Luo, Y. Yamauchi et al., Heteroarchitecturing a novel three-dimensional hierarchical MoO2/MoS2/carbon electrode material for high-energy and long-life lithium storage. J. Mater. Chem. A 9(22), 13001–13007 (2021). https://doi.org/10.1039/d1ta01706c
- Z. Hu, H. Cui, Y. Zhu, G. Lei, Z. Li, Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries. J. Power Sources 536(1), 231438 (2022). https://doi.org/10.1016/j.jpowsour.2022.231438
- Q. Zhang, Y. Zeng, C. Ling, L. Wang, Z. Wang et al., Boosting fast sodium ion storage by synergistic effect of heterointerface engineering and nitrogen doping porous carbon nanofibers. Small 18(13), e2107514 (2022). https://doi.org/10.1002/smll.202107514
- Y. Xu, J. Li, J. Sun, L. Duan, J. Xu et al., Implantation of Fe7S8 nanocrystals into hollow carbon nanospheres for efficient potassium storage. J. Colloid Interface Sci. 615(1), 840–848 (2022). https://doi.org/10.1016/j.jcis.2022.02.041
- Y. Huang, X. Hu, J. Li, J. Zhang, D. Cai et al., Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow ps toward high-performance Li- and Na-ion storage. Energy Storage Mater. 29(1), 121–130 (2020). https://doi.org/10.1016/j.ensm.2020.04.004
- Y. Zhou, M. Zhang, Q. Han, Y. Liu, Y. Wang et al., Hierarchical 1 T-MoS2/Mox@NC microspheres as advanced anode materials for potassium/sodium-ion batteries. Chem. Eng. J. 428(1), 131113 (2022). https://doi.org/10.1016/j.cej.2021.131113
- X. Xie, X. Ma, Z. Yin, H. Tong, H. Jiang et al., Bimetallic heterojunction of CuSe/ZnSe@nitrogen-doped carbon with modified band structures for fast sodium-ion storage. Chem. Eng. J. 446(1), 137366 (2022). https://doi.org/10.1016/j.cej.2022.137366
- T. Ruan, B. Wang, Y. Yang, X. Zhang, R. Song et al., Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv. Mater. 32(17), e2000151 (2020). https://doi.org/10.1002/adma.202000151
- Y. Rao, J. Wang, P. Liang, H. Zheng, M. Wu et al., Heterostructured WS2/MoS2 @carbon hollow microspheres anchored on graphene for high-performance Li/Na storage. Chem. Eng. J. 443(1), 136080 (2022). https://doi.org/10.1016/j.cej.2022.136080
- C. Jiang, X. Meng, Y. Zheng, J. Yan, Z. Zhou et al., High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 3(1), 85–94 (2021). https://doi.org/10.31635/ccschem.021.202000463
- C. Jiang, Y. Fang, W. Zhang, X. Song, J. Lang et al., A multi-ion strategy towards rechargeable sodium-ion full batteries with high working voltage and rate capability. Angew. Chem. Int. Ed. 57(50), 16370–16374 (2018). https://doi.org/10.1002/anie.201810575
- D. Yan, Y.V. Lim, G. Wang, Y. Shang, X.L. Li et al., Unlocking rapid and robust sodium storage performance of zinc-based sulfide via indium incorporation. ACS Nano 15(5), 8507–8516 (2021). https://doi.org/10.1021/acsnano.1c00131
- W. Xiao, Q. Sun, J. Liu, B. Xiao, Y. Liu et al., Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure. Nano Energy 66(1), 104177 (2019). https://doi.org/10.1016/j.nanoen.2019.104177
- S.A. He, Z. Cui, Q. Liu, G. He, D.J.L. Brett et al., Enhancing the electrochemical performance of sodium-ion batteries by building optimized NiS2/NiSe2 heterostructures. Small 17(45), e2104186 (2021). https://doi.org/10.1002/smll.202104186
- R. Dong, L. Zheng, Y. Bai, Q. Ni, Y. Li et al., Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 33(36), e2008810 (2021). https://doi.org/10.1002/adma.202008810
- C. Zhang, F. Wang, F. Han, H. Wu, F. Zhang et al., Improved electrochemical performance of sodium/potassium-ion batteries in ether-based electrolyte: cases study of MoS2@C and Fe7S8@C anodes. Adv. Mater. Interfaces 7(13), 200486 (2020). https://doi.org/10.1002/admi.202000486
- Z. Lv, T. Li, X. Hou, C. Wang, H. Zhang et al., Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes. Chem. Eng. J. 430(1), 133143 (2022). https://doi.org/10.1016/j.cej.2021.133143
- H. Yuan, F. Ma, X. Wei, J.L. Lan, Y. Liu et al., Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 10(37), 2001418 (2020). https://doi.org/10.1002/aenm.202001418
- H. Zheng, J. Wang, H. Li, S. Deng, Y. Zuo et al., Constructing a novel heterostructure of NiSe2/CoSe2 nanops with boosted sodium storage properties for sodium-ion batteries. J. Mater. Chem. A 10(30), 16268–16279 (2022). https://doi.org/10.1039/d2ta04237a
- Y. Xia, L. Que, F. Yu, L. Deng, Z. Liang et al., Tailoring nitrogen terminals on Mxene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano Micro. Lett. 14(1), 143 (2022). https://doi.org/10.1007/s40820-022-00885-7
- H. Wu, X. Chen, X. Zhang, Z. Jiang, Y. Dong et al., Multidimensional nanobox structural carbon nanofibers with dual confined effect for boosting storage performance and electrochemical kinetics of alkali metal ion batteries. Chem. Eng. J. 428(1), 131207 (2022). https://doi.org/10.1016/j.cej.2021.131207
- C. Ma, Z. Xu, J. Jiang, Z. Ma, T. Olsen et al., Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2–C electrode toward high performance sodium ion storage. J. Mater. Chem. A 8(21), 11011–11018 (2020). https://doi.org/10.1039/d0ta03390a
- Y. Wang, W. Kang, X. Pu, Y. Liang, B. Xu et al., Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy 93(1), 106897 (2022). https://doi.org/10.1016/j.nanoen.2021.106897
References
D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13(1), 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
X. Chi, M. Li, J. Di, P. Bai, L. Song et al., A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 592(7855), 551–557 (2021). https://doi.org/10.1038/s41586-021-03410-9
Y. Li, Q. Zhou, S. Weng, F. Ding, X. Qi et al., Interfacial engineering to achieve an energy density of over 200 wh kg−1 in sodium batteries. Nat. Energy 7(1), 2076 (2022). https://doi.org/10.1038/s41560-022-01033-6
T.P. Nguyen, A.D. Easley, N. Kang, S. Khan, S.M. Lim et al., Polypeptide organic radical batteries. Nature 593(7857), 61–66 (2021). https://doi.org/10.1038/s41586-021-03399-1
G. Zhu, X. Tian, H.C. Tai, Y.Y. Li, J. Li et al., Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 596(7873), 525–530 (2021). https://doi.org/10.1038/s41586-021-03757-z
P. Chen, T. Wang, F. Tang, G. Chen, C. Wang, Elaborate interface design of CoS2/Fe7S8/NG heterojunctions modified on a polypropylene separator for efficient lithium-sulfur batteries. Chem. Eng. J. 446(1), 136990 (2022). https://doi.org/10.1016/j.cej.2022.136990
J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11(1), 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
H. Li, Y. Ma, H. Zhang, T. Diemant, R.J. Behm et al., Metal-organic framework derived Fe7S8 nanops embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 4(12), 2000637 (2020). https://doi.org/10.1002/smtd.202000637
J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou et al., Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 34(15), e2108384 (2022). https://doi.org/10.1002/adma.202108384
L. Yue, Y. Qi, Y. Niu, S. Bao, M. Xu, Low-barrier, dendrite-free, and stable Na plating/stripping enabled by gradient sodiophilic carbon skeleton. Adv. Energy Mater. 11(48), 2102497 (2021). https://doi.org/10.1002/aenm.202102497
B. Yan, L. Lin, C. Sun, L. Gao, H. Tao et al., Rational design of double-shelled Cu2MoS4@N-doped carbon hierarchical nanoboxes toward fast and stable sodium-ion batteries. J. Mater. Chem. A 10(33), 17185–17198 (2022). https://doi.org/10.1039/d2ta05119b
J. Yang, J. Li, T. Wang, P.H.L. Notten, H. Ma et al., Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem. Eng. J. 407(1), 127169 (2021). https://doi.org/10.1016/j.cej.2020.127169
J. Li, S. Tang, Z. Li, C. Wang, J. Li et al., Crosslinking nanoarchitectonics of nitrogen-doped carbon/MoS2 nanosheets/Ti3C2Tx Mxene hybrids for highly reversible sodium storage. Chemsuschem 14(23), 5293–5303 (2021). https://doi.org/10.1002/cssc.202101902
J. Li, J. Li, Z. Ding, X. Zhang, Y. Li et al., In-situ encapsulation of Ni3S2 nanops into N-doped interconnected carbon networks for efficient lithium storage. Chem. Eng. J. 378(1), 122108 (2019). https://doi.org/10.1016/j.cej.2019.122108
A. Jin, M.-J. Kim, K.-S. Lee, S.-H. Yu, Y.-E. Sung, Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 12(3), 695–700 (2019). https://doi.org/10.1007/s12274-019-2278-y
X. Chen, D. Wang, J. Chen, Facile synthesis of uniform yolk–shell structured FeS@mesoporous carbon spheres for high-performance sodium-ion batteries. New J. Chem. 43(26), 10291–10296 (2019). https://doi.org/10.1039/c9nj01510h
J. Zhang, Z. Meng, D. Yang, K. Song, L. Mi et al., Enhanced interfacial compatibility of FeS@N, S–C anode with ester-based electrolyte enables stable sodium-ion full cells. J. Energy Chem. 68(1), 27–34 (2022). https://doi.org/10.1016/j.jechem.2021.11.033
C. Zhang, D. Wei, F. Wang, G. Zhang, J. Duan et al., Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 53(1), 26–35 (2021). https://doi.org/10.1016/j.jechem.2020.05.011
S. Kandula, B. Sik Youn, J. Cho, H.-K. Lim, J. Gon Son, FeS2@N–C nanorattles encapsulated in N/S dual-doped graphene/carbon nanotube network composites for high performance and high rate capability anodes of sodium-ion batteries. Chem. Eng. J. 439(1), 135678 (2022). https://doi.org/10.1016/j.cej.2022.135678
Q. Li, Y. Liu, S. Wei, L. Xu, X. Wu et al., Box-like FeS@nitrogen-sulfur dual-doped carbon as high-performance anode materials for lithium ion and sodium ion batteries. J. Electroanalytical. Chem. 903(1), 115848 (2021). https://doi.org/10.1016/j.jelechem.2021.115848
H. Wu, N. Xu, Z. Jiang, A. Zheng, Q. Shi et al., Space and interface confinement effect of necklace-box structural FeS2/WS2 carbon nanofibers to enhance Na+ storage performance and electrochemical kinetics. Chem. Eng. J. 427(1), 131002 (2022). https://doi.org/10.1016/j.cej.2021.131002
S. Wang, P. Ning, S. Huang, W. Wang, S. Fei et al., Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries. J. Power Sources 436(1), 226857 (2019). https://doi.org/10.1016/j.jpowsour.2019.226857
Q. Peng, Y. Lu, S. Qi, M. Liang, D. Xu et al., Pomegranate-inspired nitrogen-doped carbon-coated bimetallic sulfides as a high-performance anode of sodium-ion batteries and their structural evolution analysis. ACS Appl. Energy Mater. 5(3), 3199–3207 (2022). https://doi.org/10.1021/acsaem.1c03810
J. Li, S. Tang, Z. Li, C. Wang, L. Pan, Boosting the lithium storage performance by synergistically coupling ultrafine heazlewoodite nanop with N, S co-doped carbon. J. Colloid Interface Sci. 604(1), 368–377 (2021). https://doi.org/10.1016/j.jcis.2021.07.031
J. Yang, Z. Liu, X. Sheng, J. Li, T. Wang et al., Tin nanop in situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. J. Colloid Interface Sci. 624(1), 40–50 (2022). https://doi.org/10.1016/j.jcis.2022.05.090
Y. Li, F. Wu, Y. Li, M. Liu, X. Feng et al., Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 51(1), 4484–4536 (2022). https://doi.org/10.1039/d1cs00948f
J. Li, Z. Ding, J. Li, C. Wang, L. Pan et al., Synergistic coupling of NiS10.3 nanop with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem. Eng. J. 407(1), 127199 (2021). https://doi.org/10.1016/j.cej.2020.127199
Y. Liu, L. Zhang, D. Liu, W. Hu, X. Yan et al., Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. Nanoscale 11(33), 15497–15507 (2019). https://doi.org/10.1039/c9nr05594k
S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang et al., Boosting sodium storage of Fe1−xS/MoS2 composite via heterointerface engineering. Nano Micro Lett. 11(1), 80 (2019). https://doi.org/10.1007/s40820-019-0311-z
M. Zhou, H. Tao, K. Wang, S. Cheng, K. Jiang, Nano-embedded microstructured FeS2@C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte. J. Mater. Chem. A 6(47), 24425–24432 (2018). https://doi.org/10.1039/c8ta07571a
L. Song, H. Fan, X. Fan, H. Gong, T. Wang et al., A simultaneous phosphorization and carbonization strategy to synthesize a defective Co2P/doped-CNTs composite for bifunctional oxygen electrocatalysis. Chem. Eng. J. 435(1), 134612 (2022). https://doi.org/10.1016/j.cej.2022.134612
F. Yang, S. Wang, J. Guan, L. Shao, X. Shi et al., Hierarchical MoS2-NiS nanosheet-based nanotubes@N-doped carbon coupled with ether-based electrolytes towards high-performance Na-ion batteries. J. Mater. Chem. A 9(47), 27072–27083 (2021). https://doi.org/10.1039/d1ta08719c
H. Li, Y. He, Y. Dai, Y. Ren, T. Gao et al., Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem. Eng. J. 427(1), 131784 (2022). https://doi.org/10.1016/j.cej.2021.131784
B. Chen, J. Ding, X. Bai, H. Zhang, M. Liang et al., Engineering pocket-like graphene–shell encapsulated FeS2: inhibiting polysulfides shuttle effect in potassium-ion batteries. Adv. Funct. Mater. 32(14), 2109899 (2021). https://doi.org/10.1002/adfm.202109899
Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries. Small 17(39), e2102710 (2021). https://doi.org/10.1002/smll.202102710
X. Wu, H. Zhao, J. Xu, Z. Zhang, W. Sheng et al., Facile synthesis of MOFs derived Fe7S8/C composites for high capacity and long-life rechargeable lithium/sodium batteries. Appl. Surf. Sci. 492(1), 504–512 (2019). https://doi.org/10.1016/j.apsusc.2019.06.217
L. Shao, J. Hong, S. Wang, F. Wu, F. Yang et al., Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries. J. Power Sources 491(1), 229627 (2021). https://doi.org/10.1016/j.jpowsour.2021.229627
X. Liu, P. Mei, Y. Dou, R. Luo, Y. Yamauchi et al., Heteroarchitecturing a novel three-dimensional hierarchical MoO2/MoS2/carbon electrode material for high-energy and long-life lithium storage. J. Mater. Chem. A 9(22), 13001–13007 (2021). https://doi.org/10.1039/d1ta01706c
Z. Hu, H. Cui, Y. Zhu, G. Lei, Z. Li, Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries. J. Power Sources 536(1), 231438 (2022). https://doi.org/10.1016/j.jpowsour.2022.231438
Q. Zhang, Y. Zeng, C. Ling, L. Wang, Z. Wang et al., Boosting fast sodium ion storage by synergistic effect of heterointerface engineering and nitrogen doping porous carbon nanofibers. Small 18(13), e2107514 (2022). https://doi.org/10.1002/smll.202107514
Y. Xu, J. Li, J. Sun, L. Duan, J. Xu et al., Implantation of Fe7S8 nanocrystals into hollow carbon nanospheres for efficient potassium storage. J. Colloid Interface Sci. 615(1), 840–848 (2022). https://doi.org/10.1016/j.jcis.2022.02.041
Y. Huang, X. Hu, J. Li, J. Zhang, D. Cai et al., Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow ps toward high-performance Li- and Na-ion storage. Energy Storage Mater. 29(1), 121–130 (2020). https://doi.org/10.1016/j.ensm.2020.04.004
Y. Zhou, M. Zhang, Q. Han, Y. Liu, Y. Wang et al., Hierarchical 1 T-MoS2/Mox@NC microspheres as advanced anode materials for potassium/sodium-ion batteries. Chem. Eng. J. 428(1), 131113 (2022). https://doi.org/10.1016/j.cej.2021.131113
X. Xie, X. Ma, Z. Yin, H. Tong, H. Jiang et al., Bimetallic heterojunction of CuSe/ZnSe@nitrogen-doped carbon with modified band structures for fast sodium-ion storage. Chem. Eng. J. 446(1), 137366 (2022). https://doi.org/10.1016/j.cej.2022.137366
T. Ruan, B. Wang, Y. Yang, X. Zhang, R. Song et al., Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv. Mater. 32(17), e2000151 (2020). https://doi.org/10.1002/adma.202000151
Y. Rao, J. Wang, P. Liang, H. Zheng, M. Wu et al., Heterostructured WS2/MoS2 @carbon hollow microspheres anchored on graphene for high-performance Li/Na storage. Chem. Eng. J. 443(1), 136080 (2022). https://doi.org/10.1016/j.cej.2022.136080
C. Jiang, X. Meng, Y. Zheng, J. Yan, Z. Zhou et al., High-performance potassium-ion-based full battery enabled by an ionic-drill strategy. CCS Chem. 3(1), 85–94 (2021). https://doi.org/10.31635/ccschem.021.202000463
C. Jiang, Y. Fang, W. Zhang, X. Song, J. Lang et al., A multi-ion strategy towards rechargeable sodium-ion full batteries with high working voltage and rate capability. Angew. Chem. Int. Ed. 57(50), 16370–16374 (2018). https://doi.org/10.1002/anie.201810575
D. Yan, Y.V. Lim, G. Wang, Y. Shang, X.L. Li et al., Unlocking rapid and robust sodium storage performance of zinc-based sulfide via indium incorporation. ACS Nano 15(5), 8507–8516 (2021). https://doi.org/10.1021/acsnano.1c00131
W. Xiao, Q. Sun, J. Liu, B. Xiao, Y. Liu et al., Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure. Nano Energy 66(1), 104177 (2019). https://doi.org/10.1016/j.nanoen.2019.104177
S.A. He, Z. Cui, Q. Liu, G. He, D.J.L. Brett et al., Enhancing the electrochemical performance of sodium-ion batteries by building optimized NiS2/NiSe2 heterostructures. Small 17(45), e2104186 (2021). https://doi.org/10.1002/smll.202104186
R. Dong, L. Zheng, Y. Bai, Q. Ni, Y. Li et al., Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 33(36), e2008810 (2021). https://doi.org/10.1002/adma.202008810
C. Zhang, F. Wang, F. Han, H. Wu, F. Zhang et al., Improved electrochemical performance of sodium/potassium-ion batteries in ether-based electrolyte: cases study of MoS2@C and Fe7S8@C anodes. Adv. Mater. Interfaces 7(13), 200486 (2020). https://doi.org/10.1002/admi.202000486
Z. Lv, T. Li, X. Hou, C. Wang, H. Zhang et al., Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes. Chem. Eng. J. 430(1), 133143 (2022). https://doi.org/10.1016/j.cej.2021.133143
H. Yuan, F. Ma, X. Wei, J.L. Lan, Y. Liu et al., Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 10(37), 2001418 (2020). https://doi.org/10.1002/aenm.202001418
H. Zheng, J. Wang, H. Li, S. Deng, Y. Zuo et al., Constructing a novel heterostructure of NiSe2/CoSe2 nanops with boosted sodium storage properties for sodium-ion batteries. J. Mater. Chem. A 10(30), 16268–16279 (2022). https://doi.org/10.1039/d2ta04237a
Y. Xia, L. Que, F. Yu, L. Deng, Z. Liang et al., Tailoring nitrogen terminals on Mxene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano Micro. Lett. 14(1), 143 (2022). https://doi.org/10.1007/s40820-022-00885-7
H. Wu, X. Chen, X. Zhang, Z. Jiang, Y. Dong et al., Multidimensional nanobox structural carbon nanofibers with dual confined effect for boosting storage performance and electrochemical kinetics of alkali metal ion batteries. Chem. Eng. J. 428(1), 131207 (2022). https://doi.org/10.1016/j.cej.2021.131207
C. Ma, Z. Xu, J. Jiang, Z. Ma, T. Olsen et al., Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2–C electrode toward high performance sodium ion storage. J. Mater. Chem. A 8(21), 11011–11018 (2020). https://doi.org/10.1039/d0ta03390a
Y. Wang, W. Kang, X. Pu, Y. Liang, B. Xu et al., Template-directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy 93(1), 106897 (2022). https://doi.org/10.1016/j.nanoen.2021.106897