Nanoparticle–Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy
Corresponding Author: Ling Qin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 149
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of “smart” bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Highlights:
1 Nanoparticles hold considerable promise for controlling the local pharmacokinetics of therapeutic agents during osteoarthritis therapy.
2 The advantages of nanoparticles, the bioactive design, the transports and interactions within cartilage, and therapeutic mechanisms are discussed.
3 This review proposes future strategies to design more intelligent and multi-functional nanomaterials as delivery systems for cartilage therapy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.D. Woolf, B. Pfleger, Burden of major musculoskeletal conditions. Bull. World Health Organ. 81(9), 646–656 (2003)
- D.J. Hunter, D. Schofield, E. Callander, The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 10(7), 437–441 (2014). https://doi.org/10.1038/nrrheum.2014.44
- I.A. Jones, R. Togashi, M.L. Wilson, N. Heckmann, C.T. Vangsness Jr., Intra-articular treatment options for knee osteoarthritis. Nat. Rev. Rheumatol. 15(2), 77–90 (2019). https://doi.org/10.1038/s41584-018-0123-4
- K. Masuda, R.L. Sah, M.J. Hejna, E.J. Thonar, A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (arc) method. J. Orthop. Res. 21(1), 139–148 (2003). https://doi.org/10.1016/s0736-0266(02)00109-2
- N. Verzijl, J. DeGroot, S.R. Thorpe, R.A. Bank, J.N. Shaw et al., Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275(50), 39027–39031 (2000). https://doi.org/10.1074/jbc.M006700200
- A. Mobasheri, M.P. Rayman, O. Gualillo, J. Sellam, P. van der Kraan et al., The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13(5), 302–311 (2017). https://doi.org/10.1038/nrrheum.2017.50
- D.R. Eyre, M.A. Weis, J.J. Wu, Articular cartilage collagen: an irreplaceable framework? Eur. Cells Mater. 12, 57–63 (2006). https://doi.org/10.22203/ecm.v012a07
- S. Glyn-Jones, A.J. Palmer, R. Agricola, A.J. Price, T.L. Vincent et al., Osteoarthritis. Lancet 386(9991), 376–387 (2015). https://doi.org/10.1016/s0140-6736(14)60802-3
- Y. Deng, J. Lu, W. Li, A. Wu, X. Zhang et al., Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat. Commun. 9(1), 4564 (2018). https://doi.org/10.1038/s41467-018-07022-2
- W. Tong, Y. Zeng, D.H.K. Chow, W. Yeung, J. Xu et al., Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade. Ann. Rheum.. Dis. 78(4), 551–561 (2019). https://doi.org/10.1136/annrheumdis-2018-214200
- W. Tong, Y. Geng, Y. Huang, Y. Shi, S. Xiang et al., In vivo identification and induction of articular cartilage stem cells by inhibiting NF-κB signaling in osteoarthritis. Stem Cells 33(10), 3125–3137 (2015). https://doi.org/10.1002/stem.2124
- J. Martel-Pelletier, C. Boileau, J.P. Pelletier, P.J. Roughley, Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22(2), 351–384 (2008). https://doi.org/10.1016/j.berh.2008.02.001
- C.R. Flannery, C.B. Little, C.E. Hughes, B. Caterson, Expression of adamts homologues in articular cartilage. Biochem. Biophys. Res. Commun. 260(2), 318–322 (1999). https://doi.org/10.1006/bbrc.1999.0909
- C.D. DiDomenico, M. Lintz, L.J. Bonassar, Molecular transport in articular cartilage—what have we learned from the past 50 years? Nat. Rev. Rheumatol. 14(7), 393–403 (2018). https://doi.org/10.1038/s41584-018-0033-5
- D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis. Lancet 393(10182), 1745–1759 (2019). https://doi.org/10.1016/s0140-6736(19)30417-9
- L. Chen, F. Yao, T. Wang, G. Li, P. Chen et al., Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann. Rheum. Dis. 79(6), 811–818 (2020). https://doi.org/10.1136/annrheumdis-2020-216942
- E.M. Bouta, R.D. Bell, H. Rahimi, L. Xing, R.W. Wood et al., Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat. Rev. Rheumatol. 14(2), 94–106 (2018). https://doi.org/10.1038/nrrheum.2017.205
- J.A. Block, Osteoarthritis: Oa guidelines: improving care or merely codifying practice? Nat. Rev. Rheumatol. 10(6), 324–326 (2014). https://doi.org/10.1038/nrrheum.2014.61
- T.E. McAlindon, R.R. Bannuru, M.C. Sullivan, N.K. Arden, F. Berenbaum et al., Oarsi guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartil. 22(3), 363–388 (2014). https://doi.org/10.1016/j.joca.2014.01.003
- B.R. da Costa, S. Reichenbach, N. Keller, L. Nartey, S. Wandel et al., Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 390(10090), e21–e33 (2017). https://doi.org/10.1016/s0140-6736(17)31744-0
- A.E. Nelson, K.D. Allen, Y.M. Golightly, A.P. Goode, J.M. Jordan, A systematic review of recommendations and guidelines for the management of osteoarthritis: the chronic osteoarthritis management initiative of the U.S. Bone and joint initiative. Semin. Arthritis Rheum. 43(6), 701–712 (2014). https://doi.org/10.1016/j.semarthrit.2013.11.012
- J. Martel-Pelletier, A.J. Barr, F.M. Cicuttini, P.G. Conaghan, C. Cooper et al., Osteoarthritis. Nat. Rev. Dis. Primers 2, 16072 (2016). https://doi.org/10.1038/nrdp.2016.72
- K. Zhao, Y.-S. Liu, L.-Y. Nie, L.-N. Qian, N.-F. Nie et al., The influence of sample size and gender composition on the meta-analysis conclusion of platelet-rich plasma treatment for osteoarthritis. J. Orthop. Transl. 22, 34–42 (2020). https://doi.org/10.1016/j.jot.2019.10.002
- N. Gerwin, C. Hops, A. Lucke, Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 58(2), 226–242 (2006). https://doi.org/10.1016/j.addr.2006.01.018
- C. Larsen, J. Ostergaard, S.W. Larsen, H. Jensen, S. Jacobsen et al., Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 97(11), 4622–4654 (2008). https://doi.org/10.1002/jps.21346
- A. Ghadi, S. Mahjoub, F. Tabandeh, F. Talebnia, Synthesis and optimization of chitosan nanops: potential applications in nanomedicine and biomedical engineering. Caspian J. Int. Med. 5(3), 156–161 (2014)
- S. Gelperina, K. Kisich, M.D. Iseman, L. Heifets, The potential advantages of nanop drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172(12), 1487–1490 (2005). https://doi.org/10.1164/rccm.200504-613PP
- H. Thakkar, R.K. Sharma, R.S. Murthy, Enhanced retention of celecoxib-loaded solid lipid nanops after intra-articular administration. Drugs R&D 8(5), 275–285 (2007). https://doi.org/10.2165/00126839-200708050-00002
- M. Higaki, T. Ishihara, N. Izumo, M. Takatsu, Y. Mizushima, Treatment of experimental arthritis with poly(d, l-lactic/glycolic acid) nanops encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 64(8), 1132–1136 (2005). https://doi.org/10.1136/ard.2004.030759
- C.H. Evans, V.B. Kraus, L.A. Setton, Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10(1), 11–22 (2014). https://doi.org/10.1038/nrrheum.2013.159
- J. Pradal, P. Maudens, C. Gabay, C.A. Seemayer, O. Jordan et al., Effect of p size on the biodistribution of nano- and microps following intra-articular injection in mice. Int. J. Pharm. 498(1–2), 119–129 (2016). https://doi.org/10.1016/j.ijpharm.2015.12.015
- A.G. Bajpayee, A.J. Grodzinsky, Cartilage-targeting drug delivery: can electrostatic interactions help? Nat. Rev. Rheumatol. 13(3), 183–193 (2017). https://doi.org/10.1038/nrrheum.2016.210
- B.D. Partain, M. Unni, C. Rinaldi, K.D. Allen, The clearance and biodistribution of magnetic composite nanops in healthy and osteoarthritic rat knees. J. Control. Release 321, 259–271 (2020). https://doi.org/10.1016/j.jconrel.2020.01.052
- Y. Wei, L. Luo, T. Gui, F. Yu, L. Yan et al., Targeting cartilage egfr pathway for osteoarthritis treatment. Sci. Transl. Med. 13(576), eabb3946 (2021). https://doi.org/10.1126/scitranslmed.abb3946
- A.J.S. Fox, A. Bedi, S.A. Rodeo, The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6), 461–468 (2009). https://doi.org/10.1177/1941738109350438
- B.K. Hall, S.A. Newman, Cartilage Molecular Aspects (CRC Press, 1991)
- D.A. Rothenfluh, H. Bermudez, C.P. O’Neil, J.A. Hubbell, Biofunctional polymer nanops for intra-articular targeting and retention in cartilage. Nat. Mater. 7(3), 248–254 (2008). https://doi.org/10.1038/nmat2116
- P.A. Torzilli, J.M. Arduino, J.D. Gregory, M. Bansal, Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30(9), 895–902 (1997). https://doi.org/10.1016/s0021-9290(97)00059-6
- K.A. Elsaid, L. Ferreira, T. Truong, A. Liang, J. Machan et al., Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion. Osteoarthritis Cartil. 21(2), 377–384 (2013). https://doi.org/10.1016/j.joca.2012.11.011
- B.C. Geiger, S. Wang, R.F. Padera Jr., A.J. Grodzinsky, P.T. Hammond, Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10(469), eaat8800 (2018). https://doi.org/10.1126/scitranslmed.aat8800
- A.G. Bajpayee, C.R. Wong, M.G. Bawendi, E.H. Frank, A.J. Grodzinsky, Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35(1), 538–549 (2014). https://doi.org/10.1016/j.biomaterials.2013.09.091
- J. Malda, J.C. de Grauw, K.E. Benders, M.J. Kik, C.H. van de Lest et al., Of mice, men and elephants: the relation between articular cartilage thickness and body mass. PLoS ONE 8(2), e57683 (2013). https://doi.org/10.1371/journal.pone.0057683
- N. Kamisan, S.V. Naveen, R.E. Ahmad, T. Kamarul, Chondrocyte density, proteoglycan content and gene expressions from native cartilage are species specific and not dependent on cartilage thickness: a comparative analysis between rat, rabbit and goat. BMC Vet. Res. 9, 62 (2013). https://doi.org/10.1186/1746-6148-9-62
- M. Morgen, D. Tung, B. Boras, W. Miller, A.M. Malfait et al., Nanops for improved local retention after intra-articular injection into the knee joint. Pharm. Res. 30(1), 257–268 (2013). https://doi.org/10.1007/s11095-012-0870-x
- S. Brown, J. Pistiner, I.M. Adjei, B. Sharma, Nanop properties for delivery to cartilage: the implications of disease state, synovial fluid, and off-target uptake. Mol. Pharm. 16(2), 469–479 (2019). https://doi.org/10.1021/acs.molpharmaceut.7b00484
- J. Schlessinger, A.N. Plotnikov, O.A. Ibrahimi, A.V. Eliseenkova, B.K. Yeh et al., Crystal structure of a ternary fgf-fgfr-heparin complex reveals a dual role for heparin in fgfr binding and dimerization. Mol. Cell 6(3), 743–750 (2000). https://doi.org/10.1016/s1097-2765(00)00073-3
- L. Haglund, V. Tillgren, P. Onnerfjord, D. Heinegard, The c-terminal peptide of chondroadherin modulates cellular activity by selectively binding to heparan sulfate chains. J. Biol. Chem. 288(2), 995–1008 (2013). https://doi.org/10.1074/jbc.M112.430512
- T. Tokunou, R. Miller, P. Patwari, M.E. Davis, V.F. Segers et al., Engineering insulin-like growth factor-1 for local delivery. FASEB J. 22(6), 1886–1893 (2008). https://doi.org/10.1096/fj.07-100925
- R.E. Miller, A.J. Grodzinsky, K. Cummings, A.H.K. Plaas, A.A. Cole et al., Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 62(12), 3686–3694 (2010). https://doi.org/10.1002/art.27709
- F.S. Loffredo, J.R. Pancoast, L. Cai, T. Vannelli, J.Z. Dong et al., Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheum. 66(5), 1247–1255 (2014). https://doi.org/10.1002/art.38357
- H. Cho, J.M. Stuart, R. Magid, D.C. Danila, T. Hunsaker et al., Theranostic immunoliposomes for osteoarthritis. Nanomed.-Nanotechnol. Biol. Med. 10(3), 619–627 (2014). https://doi.org/10.1016/j.nano.2013.09.004
- J. Hwang, Y. Huang, T.J. Burwell, N.C. Peterson, J. Connor, S.J. Weiss, S.M. Yu, Y. Li, In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 11(10), 9825–9835 (2017). https://doi.org/10.1021/acsnano.7b03150
- H. Chen, Z. Qin, J. Zhao, Y. He, E. Ren et al., Cartilage-targeting and dual mmp-13/ph responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 225, 119520 (2019). https://doi.org/10.1016/j.biomaterials.2019.119520
- S.B. Brown, L. Wang, R.R. Jungels, B. Sharma, Effects of cartilage-targeting moieties on nanop biodistribution in healthy and osteoarthritic joints. Acta Biomater. 101, 469–483 (2020). https://doi.org/10.1016/j.actbio.2019.10.003
- T.M. Quinn, A.A. Maung, A.J. Grodzinsky, E.B. Hunziker, J.D. Sandy, Physical and biological regulation of proteoglycan turnover around chondrocytes in cartilage explants. Implications for tissue degradation and repair. Ann. N. Y. Acad. Sci. 878, 420–441 (1999). https://doi.org/10.1111/j.1749-6632.1999.tb07700.x
- C.A. Poole, A. Matsuoka, J.R. Schofield, Chondrons from articular cartilage. Iii. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum. 34(1), 22–35 (1991). https://doi.org/10.1002/art.1780340105
- H. Laroui, L. Grossin, M. Léonard, J.F. Stoltz, P. Gillet et al., Hyaluronate-covered nanops for the therapeutic targeting of cartilage. Biomacromol 8(12), 3879–3885 (2007). https://doi.org/10.1021/bm700836y
- C.B. Knudson, W. Knudson, Hyaluronan and cd44: modulators of chondrocyte metabolism. Clin. Orthop. Relat. Res. 427(Suppl), S152-162 (2004)
- Z. Chen, J. Chen, L. Wu, W. Li, J. Chen et al., Hyaluronic acid-coated bovine serum albumin nanops loaded with brucine as selective nanovectors for intra-articular injection. Int. J. Nanomed. 8, 3843–3853 (2013). https://doi.org/10.2147/IJN.S50721
- N.D. Donahue, H. Acar, S. Wilhelm, Concepts of nanop cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019). https://doi.org/10.1016/j.addr.2019.04.008
- W. He, X. Xing, X. Wang, D. Wu, W. Wu et al., Nanocarrier-mediated cytosolic delivery of biopharmaceuticals. Adv. Funct. Mater. 30, 1910566 (2020). https://doi.org/10.1002/adfm.201910566
- A.K. Gaharwar, I. Singh, A. Khademhosseini, Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 5, 686–705 (2020). https://doi.org/10.1038/s41578-020-0209-x
- B.C. te Boekhorst, L.B. Jensen, S. Colombo, A.K. Varkouhi, R.M. Schiffelers et al., Mri-assessed therapeutic effects of locally administered plga nanops loaded with anti-inflammatory sirna in a murine arthritis model. J. Control. Release 161(3), 772–780 (2012). https://doi.org/10.1016/j.jconrel.2012.05.004
- J.S. Park, H.N. Yang, S.Y. Jeon, D.G. Woo, M.S. Kim et al., The use of anti-COX2 sirna coated onto plga nanops loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 33(33), 8600–8612 (2012). https://doi.org/10.1016/j.biomaterials.2012.08.008
- Y. Wang, P. Li, L. Kong, Chitosan-modified plga nanops with versatile surface for improved drug delivery. AAPS PharmSciTech 14(2), 585–592 (2013). https://doi.org/10.1208/s12249-013-9943-3
- N. Nafee, S. Taetz, M. Schneider, U.F. Schaefer, C.M. Lehr, Chitosan-coated plga nanops for DNA/rna delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine 3(3), 173–183 (2007). https://doi.org/10.1016/j.nano.2007.03.006
- F. Esmaeili, M.H. Ghahremani, S.N. Ostad, F. Atyabi, M. Seyedabadi et al., Folate-receptor-targeted delivery of docetaxel nanops prepared by plga-peg-folate conjugate. J. Drug Target. 16(5), 415–423 (2008). https://doi.org/10.1080/10611860802088630
- K. Zhang, X. Tang, J. Zhang, W. Lu, X. Lin et al., Peg-plga copolymers: their structure and structure-influenced drug delivery applications. J. Control. Release 183, 77–86 (2014). https://doi.org/10.1016/j.jconrel.2014.03.026
- J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
- M. Fathi-Achachelouei, D. Keskin, E. Bat, N.E. Vrana, A. Tezcaner, Dual growth factor delivery using plga nanops in silk fibroin/pegdma hydrogels for articular cartilage tissue engineering. J. Biomed. Mater. Res. Part B 108(5), 2041–2062 (2020). https://doi.org/10.1002/jbm.b.34544
- J.H. Kim, J.S. Park, H.N. Yang, D.G. Woo, S.Y. Jeon et al., The use of biodegradable PLGA nanops to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 32(1), 268–278 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.086
- Y.N. Tan, P.P. Lee, W.N. Chen, Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express 10(1), 17–17 (2020). https://doi.org/10.1186/s13568-020-0954-7
- R. Jayakumar, K.P. Chennazhi, S. Srinivasan, S.V. Nair, T. Furuike et al., Chitin scaffolds in tissue engineering. Int. J. Mol. Sci. 12(3), 1876–1887 (2011). https://doi.org/10.3390/ijms12031876
- R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13(8), 5156–5186 (2015). https://doi.org/10.3390/md13085156
- H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13), 2499–2506 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.080
- C. Manferdini, E. Gabusi, L. Sartore, K. Dey, S. Agnelli et al., Chitosan-based scaffold counteracts hypertrophic and fibrotic markers in chondrogenic differentiated mesenchymal stromal cells. J. Tissue Eng. Regen. Med. 13(10), 1896–1911 (2019). https://doi.org/10.1002/term.2941
- J.K. Suh, H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24), 2589–2598 (2000). https://doi.org/10.1016/s0142-9612(00)00126-5
- M.M. Islam, M. Shahruzzaman, S. Biswas, M.N. Sakib, T.U. Rashid, Chitosan based bioactive materials in tissue engineering applications-a review. Bioact. Mater. 5(1), 164–183 (2020). https://doi.org/10.1016/j.bioactmat.2020.01.012
- K.Y. Lee, W.S. Ha, W.H. Park, Blood compatibility and biodegradability of partially n-acylated chitosan derivatives. Biomaterials 16(16), 1211–1216 (1995). https://doi.org/10.1016/0142-9612(95)98126-y
- H. Katas, M.A.G. Raja, K.L. Lam, Development of chitosan nanops as a stable drug delivery system for protein/siRNA. Int. J. Biomater. 2013, 146320–146320 (2013). https://doi.org/10.1155/2013/146320
- S. Mao, W. Sun, T. Kissel, Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 62(1), 12–27 (2010). https://doi.org/10.1016/j.addr.2009.08.004
- Y. Zhou, S.Q. Liu, H. Peng, L. Yu, B. He et al., In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanops effectively ameliorates osteoarthritis. Int. Immunopharmacol. 28(1), 34–43 (2015). https://doi.org/10.1016/j.intimp.2015.05.014
- Q. Shi, E.P. Rondon-Cavanzo, I.P.D. Picola, M.J. Tiera, X. Zhang et al., In vivo therapeutic efficacy of tnfα silencing by folate-peg-chitosan-deae/siRNA nanops in arthritic mice. Int. J. Nanomed. 13, 387–402 (2018). https://doi.org/10.2147/ijn.S146942
- H. Lu, L. Lv, Y. Dai, G. Wu, H. Zhao et al., Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanops encoding TGF-β1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS ONE 8(7), e69950 (2013). https://doi.org/10.1371/journal.pone.0069950
- S.J. Lee, A. Lee, S.R. Hwang, J.S. Park, J. Jang et al., TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanops for rheumatoid arthritis. Mol. Ther. 22(2), 397–408 (2014). https://doi.org/10.1038/mt.2013.245
- E. Lallana, J.M. Rios de la Rosa, A. Tirella, M. Pelliccia, A. Gennari et al., Chitosan/hyaluronic acid nanops: rational design revisited for rna delivery. Mol. Pharm. 14(7), 2422–2436 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00320
- P.H. Zhou, B. Qiu, R.H. Deng, H.J. Li, X.F. Xu et al., Chondroprotective effects of hyaluronic acid-chitosan nanops containing plasmid DNA encoding cytokine response modifier a in a rat knee osteoarthritis model. Cell. Physiol. Biochem. 47(3), 1207–1216 (2018). https://doi.org/10.1159/000490217
- Y. Cao, Y.F. Tan, Y.S. Wong, M.W.J. Liew, S. Venkatraman, Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs 17(6), 381 (2019). https://doi.org/10.3390/md17060381
- X. Ji, Y. Yan, T. Sun, Q. Zhang, Y. Wang et al., Glucosamine sulphate-loaded distearoyl phosphocholine liposomes for osteoarthritis treatment: combination of sustained drug release and improved lubrication. Biomater. Sci. 7(7), 2716–2728 (2019). https://doi.org/10.1039/c9bm00201d
- J.M. van den Hoven, S.R. Van Tomme, J.M. Metselaar, B. Nuijen, J.H. Beijnen et al., Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm. 8(4), 1002–1015 (2011). https://doi.org/10.1021/mp2000742
- S. Sivan, A. Schroeder, G. Verberne, Y. Merkher, D. Diminsky et al., Liposomes act as effective biolubricants for friction reduction in human synovial joints. Langmuir 26(2), 1107–1116 (2010). https://doi.org/10.1021/la9024712
- J. Dong, D. Jiang, Z. Wang, G. Wu, L. Miao et al., Intra-articular delivery of liposomal celecoxib-hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int. J. Pharm. 441(1–2), 285–290 (2013). https://doi.org/10.1016/j.ijpharm.2012.11.031
- I. Elron-Gross, Y. Glucksam, R. Margalit, Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int. J. Pharm. 376(1–2), 84–91 (2009). https://doi.org/10.1016/j.ijpharm.2009.04.025
- F.H. Chen, K.T. Rousche, R.S. Tuan, Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2(7), 373–382 (2006). https://doi.org/10.1038/ncprheum0216
- H. Watanabe, Y. Yamada, K. Kimata, Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J. Biochem. 124(4), 687–693 (1998). https://doi.org/10.1093/oxfordjournals.jbchem.a022166
- T.M. Tamer, Hyaluronan and synovial joint: function, distribution and healing. Interdiscip. Toxicol. 6(3), 111–125 (2013). https://doi.org/10.2478/intox-2013-0019
- R.C. Gupta, R. Lall, A. Srivastava, A. Sinha, Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 6, 192 (2019). https://doi.org/10.3389/fvets.2019.00192
- E. George, Intra-articular hyaluronan treatment for osteoarthritis. Ann. Rheum. Dis. 57(11), 637–640 (1998). https://doi.org/10.1136/ard.57.11.637
- P.A. Band, J. Heeter, H.G. Wisniewski, V. Liublinska, C.W. Pattanayak et al., Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthritis Cartil. 23(1), 70–76 (2015). https://doi.org/10.1016/j.joca.2014.09.017
- E.A. Balazs, J.L. Denlinger, Viscosupplementation: a new concept in the treatment of osteoarthritis. J. Rheumatol. Suppl. 39, 3–9 (1993)
- H.D. Lu, H.Q. Zhao, K. Wang, L.L. Lv, Novel hyaluronic acid-chitosan nanops as non-viral gene delivery vectors targeting osteoarthritis. Int. J. Pharm. 420(2), 358–365 (2011). https://doi.org/10.1016/j.ijpharm.2011.08.046
- M. Zhou, J. Hou, Z. Zhong, N. Hao, Y. Lin et al., Targeted delivery of hyaluronic acid-coated solid lipid nanops for rheumatoid arthritis therapy. Drug Deliv. 25(1), 716–722 (2018). https://doi.org/10.1080/10717544.2018.1447050
- H. Lu, Y. Dai, L. Lv, H. Zhao, Chitosan-graft-polyethylenimine/DNA nanops as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE 9(1), e84703 (2014). https://doi.org/10.1371/journal.pone.0084703
- S. Nedvetzki, M. Walmsley, E. Alpert, R.O. Williams, M. Feldmann et al., Cd44 involvement in experimental collagen-induced arthritis (CIA). J. Autoimmun. 13(1), 39–47 (1999). https://doi.org/10.1006/jaut.1999.0294
- G.M. Campo, A. Avenoso, S. Campo, A. D’Ascola, G. Nastasi et al., Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem. Pharmacol. 80(4), 480–490 (2010). https://doi.org/10.1016/j.bcp.2010.04.024
- F.J. Zhang, S.G. Gao, L. Cheng, J. Tian, W.S. Xu et al., The effect of hyaluronic acid on osteopontin and CD44 mrna of fibroblast-like synoviocytes in patients with osteoarthritis of the knee. Rheumatol. Int. 33(1), 79–83 (2013). https://doi.org/10.1007/s00296-011-2339-3
- P. Maudens, S. Meyer, C.A. Seemayer, O. Jordan, E. Allémann, Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale 10(4), 1845–1854 (2018). https://doi.org/10.1039/c7nr07614b
- J.E. Rowley, F. Amargant, L.T. Zhou, A. Galligos, L.E. Simon et al., Low molecular weight hyaluronan induces an inflammatory response in ovarian stromal cells and impairs gamete development in vitro. Int. J. Mol. Sci. 21(3), 1036 (2020). https://doi.org/10.3390/ijms21031036
- J. Monfort, J.P. Pelletier, N. Garcia-Giralt, J. Martel-Pelletier, Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann. Rheum. Dis. 67(6), 735–740 (2008). https://doi.org/10.1136/ard.2006.068882
- R.M. Lauder, Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement. Ther. Med. 17(1), 56–62 (2009). https://doi.org/10.1016/j.ctim.2008.08.004
- P.J. Roughley, The structure and function of cartilage proteoglycans. Eur. Cells Mater. 12, 92–101 (2006). https://doi.org/10.22203/ecm.v012a11
- U.P. Palukuru, C.M. McGoverin, N. Pleshko, Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 38, 3–11 (2014). https://doi.org/10.1016/j.matbio.2014.07.007
- L. Bian, M. Kaplun, D.Y. Williams, D. Xu, G.A. Ateshian et al., Influence of chondroitin sulfate on the biochemical, mechanical and frictional properties of cartilage explants in long-term culture. J. Biomech. 42(3), 286–290 (2009). https://doi.org/10.1016/j.jbiomech.2008.10.032
- A.I. Maroudas, Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554), 808–809 (1976). https://doi.org/10.1038/260808a0
- M. David-Raoudi, B. Deschrevel, S. Leclercq, P. Galera, K. Boumediene et al., Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and akt. Arthritis Rheum. 60(3), 760–770 (2009). https://doi.org/10.1002/art.24302
- Q.G. Wang, A.J. El. Haj, N.J. Kuiper, Glycosaminoglycans in the pericellular matrix of chondrons and chondrocytes. J. Anat. 213(3), 266–273 (2008). https://doi.org/10.1111/j.1469-7580.2008.00942.x
- M. Bishnoi, A. Jain, P. Hurkat, S.K. Jain, Chondroitin sulphate: a focus on osteoarthritis. Glycoconjugate J. 33(5), 693–705 (2016). https://doi.org/10.1007/s10719-016-9665-3
- V. Calamia, L. Lourido, P. Fernandez-Puente, J. Mateos, B. Rocha et al., Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res. Ther. 14(5), R202 (2012). https://doi.org/10.1186/ar4040
- D. Ishimaru, N. Sugiura, H. Akiyama, H. Watanabe, K. Matsumoto, Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. Osteoarthritis Cartil. 22(2), 250–258 (2014). https://doi.org/10.1016/j.joca.2013.11.010
- Y.K. Jung, H.R. Park, H.J. Cho, J.A. Jang, E.J. Lee et al., Degrading products of chondroitin sulfate can induce hypertrophy-like changes and MMP-13/ADAMTS5 production in chondrocytes. Sci. Rep. 9(1), 15846 (2019). https://doi.org/10.1038/s41598-019-52358-4
- K.M. Jordan, N.K. Arden, M. Doherty, B. Bannwarth, J.W. Bijlsma et al., Eular recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a task force of the standing committee for international clinical studies including therapeutic trials (escisit). Ann. Rheum. Dis. 62(12), 1145–1155 (2003). https://doi.org/10.1136/ard.2003.011742
- A. Jain, S.K. Mishra, P.R. Vuddanda, S.K. Singh, R. Singh et al., Targeting of diacerein loaded lipid nanops to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomed.-Nanotechnol. Biol. Med. 10(5), 1031–1040 (2014). https://doi.org/10.1016/j.nano.2014.01.008
- X.F. Yin, L.L. Wang, X.C. Chu, A novel chondroitin sulfate decorated nano platinum for the treatment of osteoarthritis. Mater. Sci. Eng. C-Mater. Biol. Appl. 78, 452–456 (2017). https://doi.org/10.1016/j.msec.2017.04.028
- F. Bakilan, O. Armagan, M. Ozgen, F. Tascioglu, O. Bolluk et al., Effects of native type ii collagen treatment on knee osteoarthritis: a randomized controlled trial. Eurasian J. Med. 48(2), 95–101 (2016). https://doi.org/10.5152/eurasianjmed.2015.15030
- C. Lian, X. Wang, X. Qiu, Z. Wu, B. Gao et al., Collagen type ii suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-smad1 interaction. Bone Res. (2019). https://doi.org/10.1038/s41413-019-0046-y
- G.S. Hussey, J.L. Dziki, S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3(7), 159–173 (2018). https://doi.org/10.1038/s41578-018-0023-x
- K.E. Benders, P.R. van Weeren, S.F. Badylak, D.B. Saris, W.J. Dhert et al., Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31(3), 169–176 (2013). https://doi.org/10.1016/j.tibtech.2012.12.004
- X. Li, W. Guo, K. Zha, X. Jing, M. Wang et al., Enrichment of CD146(+) adipose-derived stem cells in combination with articular cartilage extracellular matrix scaffold promotes cartilage regeneration. Theranostics 9(17), 5105–5121 (2019). https://doi.org/10.7150/thno.33904
- Y. Zhang, S. Liu, W. Guo, M. Wang, C. Hao et al., Human umbilical cord wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis Cartil. 26(7), 954–965 (2018). https://doi.org/10.1016/j.joca.2018.01.019
- S. Zahiri, E. Masaeli, E. Poorazizi, M.H. Nasr-Esfahani, Chondrogenic response in presence of cartilage extracellular matrix nanops. J. Biomed. Mater. Res. Part A 106(9), 2463–2471 (2018). https://doi.org/10.1002/jbm.a.36440
- D. Shi, X. Xu, Y. Ye, K. Song, Y. Cheng et al., Photo-cross-linked scaffold with kartogenin-encapsulated nanops for cartilage regeneration. ACS Nano 10(1), 1292–1299 (2016). https://doi.org/10.1021/acsnano.5b06663
- W. Zhang, C. Ling, A. Zhang, H. Liu, Y. Jiang et al., An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioact. Mater. 5(4), 832–843 (2020). https://doi.org/10.1016/j.bioactmat.2020.05.003
- J. Shi, X. Zhang, J. Zhu, Y. Pi, X. Hu et al., Nanop delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthrosc.: J. Arthrosc. Relat. Surg.: Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 29(12), 2001-2011.e2002 (2013). https://doi.org/10.1016/j.arthro.2013.09.076
- J. Li, Z. Li, D. Chu, L. Jin, X. Zhang, Fabrication and biocompatibility of core-shell structured magnetic fibrous scaffold. J. Biomed. Nanotechnol. 15(3), 500–506 (2019). https://doi.org/10.1166/jbn.2019.2701
- Z. Li, D. Chu, G. Chen, L. Shi, L. Jin et al., Biocompatible and biodegradable 3d double-network fibrous scaffold for excellent cell growth. J. Biomed. Nanotechnol. 15(11), 2209–2215 (2019). https://doi.org/10.1166/jbn.2019.2846
- R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., Mxene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio. Mater. 3(4), 2125–2131 (2020). https://doi.org/10.1021/acsabm.0c00007
- C. Boyer, L. Figueiredo, R. Pace, J. Lesoeur, T. Rouillon et al., Laponite nanop-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.027
- H. Meng, Q. Quan, X. Yuan, Y. Zheng, J. Peng et al., Diffusion of neutral solutes within human osteoarthritic cartilage: effect of loading patterns. J. Orthop. Transl. 22, 58–66 (2020). https://doi.org/10.1016/j.jot.2019.10.013
- Z. Sun, E. Feeney, Y. Guan, S.G. Cook, D. Gourdon et al., Boundary mode lubrication of articular cartilage with a biomimetic diblock copolymer. Proc. Natl. Acad. Sci. U. S. A. 116(25), 12437–12441 (2019). https://doi.org/10.1073/pnas.1900716116
- Y. Yan, T. Sun, H. Zhang, X. Ji, Y. Sun et al., Euryale ferox seed-inspired superlubricated nanops for treatment of osteoarthritis. Adv. Funct. Mater. 29(4), 1807559 (2019). https://doi.org/10.1002/adfm.201807559
- P.M. van der Kraan, W.B. van den Berg, Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartil. 20(3), 223–232 (2012). https://doi.org/10.1016/j.joca.2011.12.003
- S. Chen, P. Fu, R. Cong, H. Wu, M. Pei, Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2(1), 76–95 (2015). https://doi.org/10.1016/j.gendis.2014.12.003
- H. Sasaki, K. Takayama, T. Matsushita, K. Ishida, S. Kubo et al., Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum. 64(6), 1920–1928 (2012). https://doi.org/10.1002/art.34323
- R.F. Loeser, J.A. Collins, B.O. Diekman, Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12(7), 412–420 (2016). https://doi.org/10.1038/nrrheum.2016.65
- G. Zhong, X. Yang, X. Jiang, A. Kumar, H. Long et al., Dopamine-melanin nanops scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. Nanoscale 11(24), 11605–11616 (2019). https://doi.org/10.1039/c9nr03060c
- H. Yan, X. Duan, H. Pan, N. Holguin, M.F. Rai et al., Suppression of NF-κB activity via nanop-based sirna delivery alters early cartilage responses to injury. Proc. Natl. Acad. Sci. U. S. A. 113(41), E6199-e6208 (2016). https://doi.org/10.1073/pnas.1608245113
- P.G. Conaghan, A.D. Cook, J.A. Hamilton, P.P. Tak, Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15(6), 355–363 (2019). https://doi.org/10.1038/s41584-019-0221-y
- H.-F. Zhou, H. Yan, A. Senpan, S.A. Wickline, D. Pan et al., Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanops. Biomaterials 33(33), 8632–8640 (2012). https://doi.org/10.1016/j.biomaterials.2012.08.005
- M. Kapoor, J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, H. Fahmi, Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7(1), 33–42 (2011). https://doi.org/10.1038/nrrheum.2010.196
- R.E. Whitmire, D.S. Wilson, A. Singh, M.E. Levenston, N. Murthy et al., Self-assembling nanops for intra-articular delivery of anti-inflammatory proteins. Biomaterials 33(30), 7665–7675 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.101
- H. Lee, M.Y. Lee, S.H. Bhang, B.S. Kim, Y.S. Kim et al., Hyaluronate-gold nanop/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 8(5), 4790–4798 (2014). https://doi.org/10.1021/nn500685h
- M.R. Bhalekar, P.G. Upadhaya, A.R. Madgulkar, Fabrication and efficacy evaluation of chloroquine nanops in cfa-induced arthritic rats using TNF-α elisa. Eur. J. Pharm. Sci. 84, 1–8 (2016). https://doi.org/10.1016/j.ejps.2016.01.009
- J.B. Lin, S. Poh, A. Panitch, Controlled release of anti-inflammatory peptides from reducible thermosensitive nanops suppresses cartilage inflammation. Nanomed. Nanotechnol. Biol. Med. 12(7), 2095–2100 (2016). https://doi.org/10.1016/j.nano.2016.05.010
- R.L. Bartlett 2nd., S. Sharma, A. Panitch, Cell-penetrating peptides released from thermosensitive nanops suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine 9(3), 419–427 (2013). https://doi.org/10.1016/j.nano.2012.09.003
- J. McMasters, S. Poh, J.B. Lin, A. Panitch, Delivery of anti-inflammatory peptides from hollow PEGylated poly(NIPAM) nanops reduces inflammation in an ex vivo osteoarthritis model. J. Control. Release 258, 161–170 (2017). https://doi.org/10.1016/j.jconrel.2017.05.008
- L. Yuan, R.-X. Liao, Y.-Y. Lin, Y. Jiang, O. Wang et al., Safety and efficacy of cyclooxygenase-2 inhibition for treatment of primary hypertrophic osteoarthropathy: a single-arm intervention trial. J. Orthop. Transl. 18, 109–118 (2018). https://doi.org/10.1016/j.jot.2018.10.001
- M.J. Kim, J.S. Park, S.J. Lee, J. Jang, J.S. Park et al., Notch1 targeting siRNA delivery nanops for rheumatoid arthritis therapy. J. Control. Release 216, 140–148 (2015). https://doi.org/10.1016/j.jconrel.2015.08.025
- P. Lepetsos, A.G. Papavassiliou, Ros/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta 1862(4), 576–591 (2016). https://doi.org/10.1016/j.bbadis.2016.01.003
- Y.C. Cheuk, S.C. Fu, S.W. Mok, K.K. Ho, L.K. Hung et al., Intra-articular injection of an antioxidant formulation did not improve structural degeneration in a rat model of post-traumatic osteoarthritis. J. Orthop. Transl. 8, 25–31 (2017). https://doi.org/10.1016/j.jot.2016.08.001
- W. Li, L. Cai, Y. Zhang, L. Cui, G. Shen, Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J. Orthop. Res. 33(7), 1061–1070 (2015). https://doi.org/10.1002/jor.22859
- S. Kumar, I.M. Adjei, S.B. Brown, O. Liseth, B. Sharma, Manganese dioxide nanops protect cartilage from inflammation-induced oxidative stress. Biomaterials 224, 119467 (2019). https://doi.org/10.1016/j.biomaterials.2019.119467
- L. Zhang, J. Hu, K.A. Athanasiou, The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37(1–2), 1–57 (2009). https://doi.org/10.1615/critrevbiomedeng.v37.i1-2.10
- S. Zhang, B. Hu, W. Liu, P. Wang, X. Lv et al., Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin. Arthritis Rheum. 50(2), 198–208 (2020). https://doi.org/10.1016/j.semarthrit.2019.11.001
- N. Dunker, K. Krieglstein, Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur. J. Biochem. 267(24), 6982–6988 (2000). https://doi.org/10.1046/j.1432-1327.2000.01825.x
- J. Shen, J. Li, B. Wang, H. Jin, M. Wang et al., Deletion of the transforming growth factor beta receptor type ii gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum. 65(12), 3107–3119 (2013). https://doi.org/10.1002/art.38122
- T. Li, S. Chubinskaya, A. Esposito, X. Jin, L. Tagliafierro et al., Tgf-beta type 2 receptor-mediated modulation of the il-36 family can be therapeutically targeted in osteoarthritis. Sci. Transl. Med. (2019). https://doi.org/10.1126/scitranslmed.aan2585
- L.M. Cross, J.K. Carrow, X. Ding, K.A. Singh, A.K. Gaharwar, Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS Appl. Mater. Interfaces 11(7), 6741–6750 (2019). https://doi.org/10.1021/acsami.8b17733
- X. Sun, J. Wang, Y. Wang, C. Huang, C. Yang et al., Scaffold with orientated microtubule structure containing polylysine-heparin sodium nanops for the controlled release of tgf-β1 in cartilage tissue engineering. ACS Appl. Bio Mater. 1(6), 2030–2040 (2018). https://doi.org/10.1021/acsabm.8b00523
- F.Y. Wei, J.K. Lee, L. Wei, F. Qu, J.Z. Zhang, Correlation of insulin-like growth factor 1 and osteoarthritic cartilage degradation: a spontaneous osteoarthritis in guinea-pig. Eur. Rev. Med. Pharmacol. Sci. 21(20), 4493–4500 (2017)
- K.J. Ekenstedt, W.E. Sonntag, R.F. Loeser, B.R. Lindgren, C.S. Carlson, Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on osteoarthritis severity in rat knee joints. Arthritis Rheum. 54(12), 3850–3858 (2006). https://doi.org/10.1002/art.22254
- J. Pasold, K. Zander, B. Heskamp, C. Grüttner, F. Lüthen et al., Positive impact of IGF-1-coupled nanops on the differentiation potential of human chondrocytes cultured on collagen scaffolds. Int. J. Nanomed. 10, 1131–1143 (2015). https://doi.org/10.2147/ijn.S72872
- L. Longobardi, L. O’Rear, S. Aakula, B. Johnstone, K. Shimer et al., Effect of IGF-i in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Miner. Res. 21(4), 626–636 (2006). https://doi.org/10.1359/jbmr.051213
- J. Frisch, A. Rey-Rico, J.K. Venkatesan, G. Schmitt, H. Madry et al., Chondrogenic differentiation processes in human bone marrow aspirates upon raav-mediated gene transfer and overexpression of the insulin-like growth factor i. Tissue Eng. Part A 21(17–18), 2460–2471 (2015). https://doi.org/10.1089/ten.TEA.2014.0679
- M. Zhang, Q. Zhou, Q.Q. Liang, C.G. Li, J.D. Holz et al., IGF-1 regulation of type ii collagen and mmp-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis Cartil. 17(1), 100–106 (2009). https://doi.org/10.1016/j.joca.2008.05.007
- J.A. Tyler, Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem. J. 260(2), 543–548 (1989). https://doi.org/10.1042/bj2600543
- J.L. Ellsworth, J. Berry, T. Bukowski, J. Claus, A. Feldhaus et al., Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartil. 10(4), 308–320 (2002). https://doi.org/10.1053/joca.2002.0514
- E.E. Moore, A.M. Bendele, D.L. Thompson, A. Littau, K.S. Waggie et al., Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartil. 13(7), 623–631 (2005). https://doi.org/10.1016/j.joca.2005.03.003
- S.L. Chia, Y. Sawaji, A. Burleigh, C. McLean, J. Inglis et al., Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses adamts-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheum. 60(7), 2019–2027 (2009). https://doi.org/10.1002/art.24654
- X. Wang, P.A. Manner, A. Horner, L. Shum, R.S. Tuan et al., Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartil. 12(12), 963–973 (2004). https://doi.org/10.1016/j.joca.2004.08.008
- H.J. Im, X. Li, P. Muddasani, G.H. Kim, F. Davis et al., Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J. Cell. Physiol. 215(2), 452–463 (2008). https://doi.org/10.1002/jcp.21317
- D. Yan, D. Chen, S.M. Cool, A.J. van Wijnen, K. Mikecz et al., Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res. Ther. 13(4), R130 (2011). https://doi.org/10.1186/ar3441
- N.D. Miljkovic, G.M. Cooper, K.G. Marra, Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartil. 16(10), 1121–1130 (2008). https://doi.org/10.1016/j.joca.2008.03.003
- C. Wang, R.M. Silverman, J. Shen, R.J. O’Keefe, Distinct metabolic programs induced by TGF-β1 and bmp2 in human articular chondrocytes with osteoarthritis. J. Orthop. Transl. 12, 66–73 (2018). https://doi.org/10.1016/j.jot.2017.12.004
- B.S. Yoon, K.M. Lyons, Multiple functions of BMPS in chondrogenesis. J. Cell. Biochem. 93(1), 93–103 (2004). https://doi.org/10.1002/jcb.20211
- K. Johnson, S. Zhu, M.S. Tremblay, J.N. Payette, J. Wang et al., A stem cell-based approach to cartilage repair. Science 336(6082), 717–721 (2012). https://doi.org/10.1126/science.1215157
- Y. Hong, Y. Han, J. Wu, X. Zhao, J. Cheng et al., Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics 10(12), 5565–5577 (2020). https://doi.org/10.7150/thno.43569
- S.P. Henry, S. Liang, K.C. Akdemir, B. de Crombrugghe, The postnatal role of SOX9 in cartilage. J. Bone Miner. Res. 27(12), 2511–2525 (2012). https://doi.org/10.1002/jbmr.1696
- W. Li, J. Lin, Z. Wang, S. Ren, X. Wu et al., Bevacizumab tested for treatment of knee osteoarthritis via inhibition of synovial vascular hyperplasia in rabbits. J. Orthop. Transl. 19, 38–46 (2019). https://doi.org/10.1016/j.jot.2019.04.002
- C.L. Wu, N.S. Harasymowicz, M.A. Klimak, K.H. Collins, F. Guilak, The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartil. (2020). https://doi.org/10.1016/j.joca.2019.12.007
- S. Li, W. Cong, A. Hakamivala, Y. Huang, J. Borrelli et al., Hyaluronic acid-based optical probe for the diagnosis of human osteoarthritic cartilage. Nanotheranostics 2(4), 347–359 (2018). https://doi.org/10.7150/ntno.26119
- Y. Yang, L. Guo, Z. Wang, P. Liu, X. Liu et al., Targeted silver nanops for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials 264, 120390 (2021). https://doi.org/10.1016/j.biomaterials.2020.120390
- L. Ma, T.W. Liu, M.A. Wallig, I.T. Dobrucki, L.W. Dobrucki et al., Efficient targeting of adipose tissue macrophages in obesity with polysaccharide nanocarriers. ACS Nano 10(7), 6952–6962 (2016). https://doi.org/10.1021/acsnano.6b02878
- G. Hu, M. Guo, J. Xu, F. Wu, J. Fan et al., Nanops targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front. Immunol. 10, 1998–1998 (2019). https://doi.org/10.3389/fimmu.2019.01998
- M. Ovais, M. Guo, C. Chen, Tailoring nanomaterials for targeting tumor-associated macrophages. Adv. Mater. 31(19), e1808303 (2019). https://doi.org/10.1002/adma.201808303
- J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng, C. Feng, W. Tao, X. Xu, W. Cui, Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
- R. Li, Y. He, Y. Zhu, L. Jiang, S. Zhang et al., Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanops. Nano Lett. 19(1), 124–134 (2019). https://doi.org/10.1021/acs.nanolett.8b03439
- Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanops inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13(12), 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
- D.M. Findlay, J.S. Kuliwaba, Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 4, 16028 (2016). https://doi.org/10.1038/boneres.2016.28
- R.J. Lories, F.P. Luyten, The bone-cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 7(1), 43–49 (2011). https://doi.org/10.1038/nrrheum.2010.197
- L. Chu, Z. He, X. Qu, X. Liu, W. Zhang et al., Different subchondral trabecular bone microstructure and biomechanical properties between developmental dysplasia of the hip and primary osteoarthritis. J. Orthop. Transl. 22, 50–57 (2020). https://doi.org/10.1016/j.jot.2019.09.001
- G. Li, L. Chen, Q. Zheng, Y. Ma, C. Zhang et al., Subchondral bone deterioration in femoral heads in patients with osteoarthritis secondary to hip dysplasia: a case–control study. J. Orthop. Transl. 24, 190–197 (2019). https://doi.org/10.1016/j.jot.2019.10.014
- S. Zhu, J. Zhu, G. Zhen, Y. Hu, S. An et al., Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129(3), 1076–1093 (2019). https://doi.org/10.1172/JCI121561
- R. Kc, X. Li, J.S. Kroin, Z. Liu, D. Chen et al., PKCδ null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TRKA-induced axonal outgrowth. Ann. Rheum. Dis. 75(12), 2133–2141 (2016). https://doi.org/10.1136/annrheumdis-2015-208444
- M. Ikeuchi, Q. Wang, M. Izumi, T. Tani, Nociceptive sensory innervation of the posterior cruciate ligament in osteoarthritic knees. Arch. Orthop. Trauma Surg. 132(6), 891–895 (2012). https://doi.org/10.1007/s00402-012-1478-7
- A.M. Malfait, T.J. Schnitzer, Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9(11), 654–664 (2013). https://doi.org/10.1038/nrrheum.2013.138
- M.P. Kashyap, C. Roberts, M. Waseem, P. Tyagi, Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol. Neurobiol. 55(8), 6939–6955 (2018). https://doi.org/10.1007/s12035-018-0885-3
- S. Takano, K. Uchida, G. Inoue, M. Miyagi, J. Aikawa et al., Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin. Exp. Immunol. 190(2), 235–243 (2017). https://doi.org/10.1111/cei.13007
- P. Jayabalan, T.J. Schnitzer, Tanezumab in the treatment of chronic musculoskeletal conditions. Expert Opin. Biol. Ther. 17(2), 245–254 (2017). https://doi.org/10.1080/14712598.2017.1271873
- L.N. Nwosu, P.I. Mapp, V. Chapman, D.A. Walsh, Blocking the tropomyosin receptor kinase a (TRKA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann. Rheum. Dis. 75(6), 1246–1254 (2016). https://doi.org/10.1136/annrheumdis-2014-207203
- M.S.M. Persson, J. Stocks, D.A. Walsh, M. Doherty, W. Zhang, The relative efficacy of topical non-steroidal anti-inflammatory drugs and capsaicin in osteoarthritis: a network meta-analysis of randomised controlled trials. Osteoarthritis Cartil. 26(12), 1575–1582 (2018). https://doi.org/10.1016/j.joca.2018.08.008
- P.I. Mapp, D.A. Walsh, Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 8(7), 390–398 (2012). https://doi.org/10.1038/nrrheum.2012.80
- S. Ashraf, D.A. Walsh, Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 20(5), 573–580 (2008). https://doi.org/10.1097/BOR.0b013e3283103d12
- M.P. Murphy, L.S. Koepke, M.T. Lopez, X. Tong, T.H. Ambrosi et al., Articular cartilage regeneration by activated skeletal stem cells. Nat. Med. 26(10), 1583–1592 (2020). https://doi.org/10.1038/s41591-020-1013-2
- C.J. Avraamides, B. Garmy-Susini, J.A. Varner, Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8(8), 604–617 (2008). https://doi.org/10.1038/nrc2353
- P. Mukherjee, R. Bhattacharya, P. Wang, L. Wang, S. Basu et al., Antiangiogenic properties of gold nanops. Clin. Cancer Res. 11(9), 3530–3534 (2005). https://doi.org/10.1158/1078-0432.Ccr-04-2482
- T. Yang, Q. Yao, F. Cao, Q. Liu, B. Liu et al., Silver nanops inhibit the function of hypoxia-inducible factor-1 and target genes: Insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomed. 11, 6679–6692 (2016). https://doi.org/10.2147/ijn.S109695
- S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan et al., Antiangiogenic properties of silver nanops. Biomaterials 30(31), 6341–6350 (2009). https://doi.org/10.1016/j.biomaterials.2009.08.008
- J. Kim, A.C. Mirando, A.S. Popel, J.J. Green, Gene delivery nanops to modulate angiogenesis. Adv. Drug Deliv. Rev. 119, 20–43 (2017). https://doi.org/10.1016/j.addr.2016.11.003
- M.A. Greene, R.F. Loeser, Aging-related inflammation in osteoarthritis. Osteoarthritis Cartil. 23(11), 1966–1971 (2015). https://doi.org/10.1016/j.joca.2015.01.008
- J. Lieberthal, N. Sambamurthy, C.R. Scanzello, Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartil. 23(11), 1825–1834 (2015). https://doi.org/10.1016/j.joca.2015.08.015
- C.C. Wu, W.H. Chen, B. Zao, P.L. Lai, T.C. Lin et al., Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials 32(25), 5847–5854 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.002
- C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma et al., Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater. 33(6), e2000512 (2021). https://doi.org/10.1002/adma.202000512
- P. Mi, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 10(10), 4557–4588 (2020). https://doi.org/10.7150/thno.38069
- S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
- S. Jafari, L.O. Mair, S. Chowdhury, A. Nacev, R. Hilaman et al., Magnetically targeted delivery through cartilage. AIP Adv. 8(5), 056717 (2018). https://doi.org/10.1063/1.5006156
- J.-Y. Su, S.-H. Chen, Y.-P. Chen, W.-C. Chen, Evaluation of magnetic nanop-labeled chondrocytes cultivated on a type ii collagen-chitosan/poly(lactic-co-glycolic) acid biphasic scaffold. Int. J. Mol. Sci. 18(1), 87 (2017). https://doi.org/10.3390/ijms18010087
- B. Son, H.D. Kim, M. Kim, J.A. Kim, J. Lee et al., Physical stimuli-induced chondrogenic differentiation of mesenchymal stem cells using magnetic nanops. Adv. Healthc. Mater. 4(9), 1339–1347 (2015). https://doi.org/10.1002/adhm.201400835
- X.-Y. Zhou, X.-X. Zhang, G.-Y. Yu, Z.-C. Zhang, F. Wang et al., Effects of low-intensity pulsed ultrasound on knee osteoarthritis: A meta-analysis of randomized clinical trials. Biomed Res. Int. 2018, 7469197–7469197 (2018). https://doi.org/10.1155/2018/7469197
- T. Nishida, S. Kubota, E. Aoyama, N. Yamanaka, K.M. Lyons et al., Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of ccn family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: Mechanism underlying this stimulation. Osteoarthritis Cartil. 25(5), 759–769 (2017). https://doi.org/10.1016/j.joca.2016.10.003
- D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13(1), 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
- Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14(12), 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
- D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang et al., Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio 5, 100035 (2020). https://doi.org/10.1016/j.mtbio.2019.100035
- J. You, R. Zhang, C. Xiong, M. Zhong, M. Melancon et al., Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EPHB4 receptors in tumors. Cancer Res. 72(18), 4777–4786 (2012). https://doi.org/10.1158/0008-5472.Can-12-1003
- A.W. Visser, R. de Mutsert, S. le Cessie, M. den Heijer, F.R. Rosendaal et al., The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the neo study. Ann. Rheum. Dis. 74(10), 1842–1847 (2015). https://doi.org/10.1136/annrheumdis-2013-205012
- M.N. Holme, I.A. Fedotenko, D. Abegg, J. Althaus, L. Babel et al., Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7(8), 536–543 (2012). https://doi.org/10.1038/nnano.2012.84
- R. Rajamanickam, S. Baek, K. Gwon, Y. Hwang, K. Shin et al., Mechanical stimuli responsive and highly elastic biopolymer/nanop hybrid microcapsules for controlled release. J. Mater. Chem. B 4(24), 4278–4286 (2016). https://doi.org/10.1039/c6tb00410e
- M. Deloney, K. Smart, B.A. Christiansen, A. Panitch, Thermoresponsive, hollow, degradable core-shell nanops for intra-articular delivery of anti-inflammatory peptide. J. Control. Release 323, 47–58 (2020). https://doi.org/10.1016/j.jconrel.2020.04.007
- Y. Wang, D. Gao, Y. Liu, X. Guo, S. Chen et al., Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact. Mater. 6(6), 1513–1527 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.016
- S.M. Horvath, J.L. Hollander, Intra-articular temperature as a measure of joint reaction. J. Clin. Invest. 28(3), 469–473 (1949). https://doi.org/10.1172/jci102092
- N.A. Cummings, G.L. Nordby, Measurement of synovial fluid pH in normal and arthritic knees. Arthritis Rheum. 9(1), 47–56 (1966). https://doi.org/10.1002/art.1780090106
- S. Khanal, U. Adhikari, N.P. Rijal, S.R. Bhattarai, J. Sankar et al., pH-responsive plga nanop for controlled payload delivery of diclofenac sodium. J. Funct. Biol. 7(3), 21 (2016). https://doi.org/10.3390/jfb7030021
- M.F. Chung, W.T. Chia, W.L. Wan, Y.J. Lin, H.W. Sung, Controlled release of an anti-inflammatory drug using an ultrasensitive ros-responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 137(39), 12462–12465 (2015). https://doi.org/10.1021/jacs.5b08057
- D. Olszewska-Slonina, S. Jung, D. Matewski, K.J. Olszewski, E. Krzyzynska-Malinowska et al., Lysosomal enzymes in serum and synovial fluid in patients with osteoarthritis. Scand. J. Clin. Lab. Invest. 75(2), 145–151 (2015). https://doi.org/10.3109/00365513.2014.992946
- Z. Jia, L. Song, F. Zang, J. Song, W. Zhang et al., Active-target t1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes. Theranostics 6(11), 1780–1791 (2016). https://doi.org/10.7150/thno.14280
- Y.M. Soshnikova, S.G. Roman, N.A. Chebotareva, O.I. Baum, M.V. Obrezkova et al., Starch-modified magnetite nanops for impregnation into cartilage. J. Nanopart. Res. 15(11), 2092 (2013). https://doi.org/10.1007/s11051-013-2092-5
- C. Bai, Z. Jia, L. Song, W. Zhang, Y. Chen et al., Time-dependent t1–t2 switchable magnetic resonance imaging realized by c (RGDYK) modified ultrasmall Fe3O4 nanoprobes. Adv. Funct. Mater. 28(32), 1802281 (2018). https://doi.org/10.1002/adfm.201802281
- A.J. Mieszawska, W.J.M. Mulder, Z.A. Fayad, D.P. Cormode, Multifunctional gold nanops for diagnosis and therapy of disease. Mol. Pharm. 10(3), 831–847 (2013). https://doi.org/10.1021/mp3005885
- S. Peng, Q. Zheng, X. Zhang, L. Dai, J. Zhu et al., Detection of adamts-4 activity using a fluorogenic peptide-conjugated au nanop probe in human knee synovial fluid. ACS Appl. Mater. Interfaces 5(13), 6089–6096 (2013). https://doi.org/10.1021/am400854z
- V.C. Pierre, M. Botta, S. Aime, K.N. Raymond, Substituent effects on Gd(iii)-based MRI contrast agents: optimizing the stability and selectivity of the complex and the number of coordinated water molecules. Inorg. Chem. 45(20), 8355–8364 (2006). https://doi.org/10.1021/ic061262q
- T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi et al., Mesoporous silica-coated hollow manganese oxide nanops as positive t1 contrast agents for labeling and mri tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 133(9), 2955–2961 (2011). https://doi.org/10.1021/ja1084095
- P.H. Kuo, E. Kanal, A.K. Abu-Alfa, S.E. Cowper, Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242(3), 647–649 (2007). https://doi.org/10.1148/radiol.2423061640
- J. Chen, J. Qi, C. Chen, J. Chen, L. Liu et al., Tocilizumab-conjugated polymer nanops for NIR-ii photoacoustic-imaging-guided therapy of rheumatoid arthritis. Adv. Mater. (2020). https://doi.org/10.1002/adma.202003399
- J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. U. S. A. 117(46), 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
- L. Jin, X. Guo, D. Gao, C. Wu, B. Hu et al., Nir-responsive mxene nanobelts for wound healing. NPG Asia Mater. 13(1), 24 (2021). https://doi.org/10.1038/s41427-021-00289-w
- P. Jin, C. Wiraja, J. Zhao, J. Zhang, L. Zheng et al., Nitric oxide nanosensors for predicting the development of osteoarthritis in rat model. ACS Appl. Mater. Interfaces 9(30), 25128–25137 (2017). https://doi.org/10.1021/acsami.7b06404
- L. Zhou, V.O. Gjvm, J. Malda, M.J. Stoddart, Y. Lai et al., Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: Current progress and challenges. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.202001008
- S.T. Grady, L. Britton, K. Hinrichs, A.J. Nixon, A.E. Watts, Persistence of fluorescent nanop-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection. J. Tissue Eng. Regen. Med. 13(2), 191–202 (2019). https://doi.org/10.1002/term.2781
- J.M. Lee, B.S. Kim, H. Lee, G.I. Im, In vivo tracking of mesechymal stem cells using fluorescent nanops in an osteochondral repair model. Mol. Ther. 20(7), 1434–1442 (2012). https://doi.org/10.1038/mt.2012.60
- H. Markides, O. Kehoe, R.H. Morris, A.J. El. Haj, Whole body tracking of superparamagnetic iron oxide nanop-labelled cells–a rheumatoid arthritis mouse model. Stem Cell Res. Ther. 4(5), 126–126 (2013). https://doi.org/10.1186/scrt337
- J. Chen, F. Wang, Y. Zhang, X. Jin, L. Zhang et al., In vivo tracking of superparamagnetic iron oxide nanop labeled chondrocytes in large animal model. Ann. Biomed. Eng. 40(12), 2568–2578 (2012). https://doi.org/10.1007/s10439-012-0621-5
- G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9(6), 451–468 (2018). https://doi.org/10.4155/tde-2018-0013
- P. Singh, S. Pandit, V. Mokkapati, A. Garg, V. Ravikumar et al., Gold nanops in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19071979
- M. Moglianetti, E. De. Luca, D. Pedone, R. Marotta, T. Catelani et al., Platinum nanozymes recover cellular ros homeostasis in an oxidative stress-mediated disease model. Nanoscale 8(6), 3739–3752 (2016). https://doi.org/10.1039/C5NR08358C
- Y. Vlamidis, V. Voliani, Bringing again noble metal nanops to the forefront of cancer therapy. Front. Bioeng. Biotechnol. 6, 143–143 (2018). https://doi.org/10.3389/fbioe.2018.00143
- K. Memarzadeh, A.S. Sharili, J. Huang, S.C. Rawlinson, R.P. Allaker, Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J. Biomed. Mater. Res. Part A 103(3), 981–989 (2015). https://doi.org/10.1002/jbm.a.35241
- J.-L. Wang, J.-K. Xu, C. Hopkins, D.H.-K. Chow, L. Qin, Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv. Sci. 7(8), 1902443–1902443 (2020). https://doi.org/10.1002/advs.201902443
- J.H. Kim, J. Jeon, M. Shin, Y. Won, M. Lee et al., Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4), 730–743 (2014). https://doi.org/10.1016/j.cell.2014.01.007
- H. Yao, J.K. Xu, N.Y. Zheng, J.L. Wang et al., Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats. Osteoarthr. Cartil. 27(12), 1811–1821 (2019). https://doi.org/10.1016/j.joca.2019.08.007
- W.L. Wan, Y.J. Lin, P.C. Shih, Y.R. Bow, Q. Cui et al., An in situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis. Angew. Chem. Int. Ed. 57(31), 9875–9879 (2018). https://doi.org/10.1002/anie.201806159
- Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling covid-19. Nat. Rev. Mater. (2020). https://doi.org/10.1038/s41578-020-00247-y
- Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31(8), 2008020 (2021). https://doi.org/10.1002/adfm.202008020
- Z. Li, D. Chu, Y. Gao, L. Jin, X. Zhang et al., Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Mater. Today Adv. 3, 100014 (2019). https://doi.org/10.1016/j.mtadv.2019.100014
- C.L. Ventola, Progress in nanomedicine: approved and investigational nanodrugs. Pharm. Ther. 42(12), 742–755 (2017)
- W. Xinluan, L. Yuxiao, N.H. Helena, Y. Zhijun, Q. Ling, Systemic drug delivery systems for bone tissue regeneration—a mini review. Curr. Pharm. Des. 21(12), 1575–1583 (2015). https://doi.org/10.2174/1381612821666150115152841
- N. Bodick, J. Lufkin, C. Willwerth, A. Kumar, J. Bolognese et al., An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J. Bone Jt. Surg. Am. 97(11), 877–888 (2015). https://doi.org/10.2106/jbjs.N.00918
- S.G. Owen, H.W. Francis, M.S. Roberts, Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br. J. Clin. Pharmacol. 38(4), 349–355 (1994). https://doi.org/10.1111/j.1365-2125.1994.tb04365.x
- M.B. Goldring, J.-M. Dayer, S.R. Goldring, in Chapter 14—Osteoarthritis and the Immune System, eds. by J. Lorenzo, M.C. Horowitz, Y. Choi et al. (Academic Press, San Diego, 2016), pp. 257–269
References
A.D. Woolf, B. Pfleger, Burden of major musculoskeletal conditions. Bull. World Health Organ. 81(9), 646–656 (2003)
D.J. Hunter, D. Schofield, E. Callander, The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 10(7), 437–441 (2014). https://doi.org/10.1038/nrrheum.2014.44
I.A. Jones, R. Togashi, M.L. Wilson, N. Heckmann, C.T. Vangsness Jr., Intra-articular treatment options for knee osteoarthritis. Nat. Rev. Rheumatol. 15(2), 77–90 (2019). https://doi.org/10.1038/s41584-018-0123-4
K. Masuda, R.L. Sah, M.J. Hejna, E.J. Thonar, A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (arc) method. J. Orthop. Res. 21(1), 139–148 (2003). https://doi.org/10.1016/s0736-0266(02)00109-2
N. Verzijl, J. DeGroot, S.R. Thorpe, R.A. Bank, J.N. Shaw et al., Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275(50), 39027–39031 (2000). https://doi.org/10.1074/jbc.M006700200
A. Mobasheri, M.P. Rayman, O. Gualillo, J. Sellam, P. van der Kraan et al., The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13(5), 302–311 (2017). https://doi.org/10.1038/nrrheum.2017.50
D.R. Eyre, M.A. Weis, J.J. Wu, Articular cartilage collagen: an irreplaceable framework? Eur. Cells Mater. 12, 57–63 (2006). https://doi.org/10.22203/ecm.v012a07
S. Glyn-Jones, A.J. Palmer, R. Agricola, A.J. Price, T.L. Vincent et al., Osteoarthritis. Lancet 386(9991), 376–387 (2015). https://doi.org/10.1016/s0140-6736(14)60802-3
Y. Deng, J. Lu, W. Li, A. Wu, X. Zhang et al., Reciprocal inhibition of YAP/TAZ and NF-κB regulates osteoarthritic cartilage degradation. Nat. Commun. 9(1), 4564 (2018). https://doi.org/10.1038/s41467-018-07022-2
W. Tong, Y. Zeng, D.H.K. Chow, W. Yeung, J. Xu et al., Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade. Ann. Rheum.. Dis. 78(4), 551–561 (2019). https://doi.org/10.1136/annrheumdis-2018-214200
W. Tong, Y. Geng, Y. Huang, Y. Shi, S. Xiang et al., In vivo identification and induction of articular cartilage stem cells by inhibiting NF-κB signaling in osteoarthritis. Stem Cells 33(10), 3125–3137 (2015). https://doi.org/10.1002/stem.2124
J. Martel-Pelletier, C. Boileau, J.P. Pelletier, P.J. Roughley, Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22(2), 351–384 (2008). https://doi.org/10.1016/j.berh.2008.02.001
C.R. Flannery, C.B. Little, C.E. Hughes, B. Caterson, Expression of adamts homologues in articular cartilage. Biochem. Biophys. Res. Commun. 260(2), 318–322 (1999). https://doi.org/10.1006/bbrc.1999.0909
C.D. DiDomenico, M. Lintz, L.J. Bonassar, Molecular transport in articular cartilage—what have we learned from the past 50 years? Nat. Rev. Rheumatol. 14(7), 393–403 (2018). https://doi.org/10.1038/s41584-018-0033-5
D.J. Hunter, S. Bierma-Zeinstra, Osteoarthritis. Lancet 393(10182), 1745–1759 (2019). https://doi.org/10.1016/s0140-6736(19)30417-9
L. Chen, F. Yao, T. Wang, G. Li, P. Chen et al., Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann. Rheum. Dis. 79(6), 811–818 (2020). https://doi.org/10.1136/annrheumdis-2020-216942
E.M. Bouta, R.D. Bell, H. Rahimi, L. Xing, R.W. Wood et al., Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat. Rev. Rheumatol. 14(2), 94–106 (2018). https://doi.org/10.1038/nrrheum.2017.205
J.A. Block, Osteoarthritis: Oa guidelines: improving care or merely codifying practice? Nat. Rev. Rheumatol. 10(6), 324–326 (2014). https://doi.org/10.1038/nrrheum.2014.61
T.E. McAlindon, R.R. Bannuru, M.C. Sullivan, N.K. Arden, F. Berenbaum et al., Oarsi guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartil. 22(3), 363–388 (2014). https://doi.org/10.1016/j.joca.2014.01.003
B.R. da Costa, S. Reichenbach, N. Keller, L. Nartey, S. Wandel et al., Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 390(10090), e21–e33 (2017). https://doi.org/10.1016/s0140-6736(17)31744-0
A.E. Nelson, K.D. Allen, Y.M. Golightly, A.P. Goode, J.M. Jordan, A systematic review of recommendations and guidelines for the management of osteoarthritis: the chronic osteoarthritis management initiative of the U.S. Bone and joint initiative. Semin. Arthritis Rheum. 43(6), 701–712 (2014). https://doi.org/10.1016/j.semarthrit.2013.11.012
J. Martel-Pelletier, A.J. Barr, F.M. Cicuttini, P.G. Conaghan, C. Cooper et al., Osteoarthritis. Nat. Rev. Dis. Primers 2, 16072 (2016). https://doi.org/10.1038/nrdp.2016.72
K. Zhao, Y.-S. Liu, L.-Y. Nie, L.-N. Qian, N.-F. Nie et al., The influence of sample size and gender composition on the meta-analysis conclusion of platelet-rich plasma treatment for osteoarthritis. J. Orthop. Transl. 22, 34–42 (2020). https://doi.org/10.1016/j.jot.2019.10.002
N. Gerwin, C. Hops, A. Lucke, Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 58(2), 226–242 (2006). https://doi.org/10.1016/j.addr.2006.01.018
C. Larsen, J. Ostergaard, S.W. Larsen, H. Jensen, S. Jacobsen et al., Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J. Pharm. Sci. 97(11), 4622–4654 (2008). https://doi.org/10.1002/jps.21346
A. Ghadi, S. Mahjoub, F. Tabandeh, F. Talebnia, Synthesis and optimization of chitosan nanops: potential applications in nanomedicine and biomedical engineering. Caspian J. Int. Med. 5(3), 156–161 (2014)
S. Gelperina, K. Kisich, M.D. Iseman, L. Heifets, The potential advantages of nanop drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172(12), 1487–1490 (2005). https://doi.org/10.1164/rccm.200504-613PP
H. Thakkar, R.K. Sharma, R.S. Murthy, Enhanced retention of celecoxib-loaded solid lipid nanops after intra-articular administration. Drugs R&D 8(5), 275–285 (2007). https://doi.org/10.2165/00126839-200708050-00002
M. Higaki, T. Ishihara, N. Izumo, M. Takatsu, Y. Mizushima, Treatment of experimental arthritis with poly(d, l-lactic/glycolic acid) nanops encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 64(8), 1132–1136 (2005). https://doi.org/10.1136/ard.2004.030759
C.H. Evans, V.B. Kraus, L.A. Setton, Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10(1), 11–22 (2014). https://doi.org/10.1038/nrrheum.2013.159
J. Pradal, P. Maudens, C. Gabay, C.A. Seemayer, O. Jordan et al., Effect of p size on the biodistribution of nano- and microps following intra-articular injection in mice. Int. J. Pharm. 498(1–2), 119–129 (2016). https://doi.org/10.1016/j.ijpharm.2015.12.015
A.G. Bajpayee, A.J. Grodzinsky, Cartilage-targeting drug delivery: can electrostatic interactions help? Nat. Rev. Rheumatol. 13(3), 183–193 (2017). https://doi.org/10.1038/nrrheum.2016.210
B.D. Partain, M. Unni, C. Rinaldi, K.D. Allen, The clearance and biodistribution of magnetic composite nanops in healthy and osteoarthritic rat knees. J. Control. Release 321, 259–271 (2020). https://doi.org/10.1016/j.jconrel.2020.01.052
Y. Wei, L. Luo, T. Gui, F. Yu, L. Yan et al., Targeting cartilage egfr pathway for osteoarthritis treatment. Sci. Transl. Med. 13(576), eabb3946 (2021). https://doi.org/10.1126/scitranslmed.abb3946
A.J.S. Fox, A. Bedi, S.A. Rodeo, The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6), 461–468 (2009). https://doi.org/10.1177/1941738109350438
B.K. Hall, S.A. Newman, Cartilage Molecular Aspects (CRC Press, 1991)
D.A. Rothenfluh, H. Bermudez, C.P. O’Neil, J.A. Hubbell, Biofunctional polymer nanops for intra-articular targeting and retention in cartilage. Nat. Mater. 7(3), 248–254 (2008). https://doi.org/10.1038/nmat2116
P.A. Torzilli, J.M. Arduino, J.D. Gregory, M. Bansal, Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30(9), 895–902 (1997). https://doi.org/10.1016/s0021-9290(97)00059-6
K.A. Elsaid, L. Ferreira, T. Truong, A. Liang, J. Machan et al., Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion. Osteoarthritis Cartil. 21(2), 377–384 (2013). https://doi.org/10.1016/j.joca.2012.11.011
B.C. Geiger, S. Wang, R.F. Padera Jr., A.J. Grodzinsky, P.T. Hammond, Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10(469), eaat8800 (2018). https://doi.org/10.1126/scitranslmed.aat8800
A.G. Bajpayee, C.R. Wong, M.G. Bawendi, E.H. Frank, A.J. Grodzinsky, Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35(1), 538–549 (2014). https://doi.org/10.1016/j.biomaterials.2013.09.091
J. Malda, J.C. de Grauw, K.E. Benders, M.J. Kik, C.H. van de Lest et al., Of mice, men and elephants: the relation between articular cartilage thickness and body mass. PLoS ONE 8(2), e57683 (2013). https://doi.org/10.1371/journal.pone.0057683
N. Kamisan, S.V. Naveen, R.E. Ahmad, T. Kamarul, Chondrocyte density, proteoglycan content and gene expressions from native cartilage are species specific and not dependent on cartilage thickness: a comparative analysis between rat, rabbit and goat. BMC Vet. Res. 9, 62 (2013). https://doi.org/10.1186/1746-6148-9-62
M. Morgen, D. Tung, B. Boras, W. Miller, A.M. Malfait et al., Nanops for improved local retention after intra-articular injection into the knee joint. Pharm. Res. 30(1), 257–268 (2013). https://doi.org/10.1007/s11095-012-0870-x
S. Brown, J. Pistiner, I.M. Adjei, B. Sharma, Nanop properties for delivery to cartilage: the implications of disease state, synovial fluid, and off-target uptake. Mol. Pharm. 16(2), 469–479 (2019). https://doi.org/10.1021/acs.molpharmaceut.7b00484
J. Schlessinger, A.N. Plotnikov, O.A. Ibrahimi, A.V. Eliseenkova, B.K. Yeh et al., Crystal structure of a ternary fgf-fgfr-heparin complex reveals a dual role for heparin in fgfr binding and dimerization. Mol. Cell 6(3), 743–750 (2000). https://doi.org/10.1016/s1097-2765(00)00073-3
L. Haglund, V. Tillgren, P. Onnerfjord, D. Heinegard, The c-terminal peptide of chondroadherin modulates cellular activity by selectively binding to heparan sulfate chains. J. Biol. Chem. 288(2), 995–1008 (2013). https://doi.org/10.1074/jbc.M112.430512
T. Tokunou, R. Miller, P. Patwari, M.E. Davis, V.F. Segers et al., Engineering insulin-like growth factor-1 for local delivery. FASEB J. 22(6), 1886–1893 (2008). https://doi.org/10.1096/fj.07-100925
R.E. Miller, A.J. Grodzinsky, K. Cummings, A.H.K. Plaas, A.A. Cole et al., Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 62(12), 3686–3694 (2010). https://doi.org/10.1002/art.27709
F.S. Loffredo, J.R. Pancoast, L. Cai, T. Vannelli, J.Z. Dong et al., Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheum. 66(5), 1247–1255 (2014). https://doi.org/10.1002/art.38357
H. Cho, J.M. Stuart, R. Magid, D.C. Danila, T. Hunsaker et al., Theranostic immunoliposomes for osteoarthritis. Nanomed.-Nanotechnol. Biol. Med. 10(3), 619–627 (2014). https://doi.org/10.1016/j.nano.2013.09.004
J. Hwang, Y. Huang, T.J. Burwell, N.C. Peterson, J. Connor, S.J. Weiss, S.M. Yu, Y. Li, In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 11(10), 9825–9835 (2017). https://doi.org/10.1021/acsnano.7b03150
H. Chen, Z. Qin, J. Zhao, Y. He, E. Ren et al., Cartilage-targeting and dual mmp-13/ph responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials 225, 119520 (2019). https://doi.org/10.1016/j.biomaterials.2019.119520
S.B. Brown, L. Wang, R.R. Jungels, B. Sharma, Effects of cartilage-targeting moieties on nanop biodistribution in healthy and osteoarthritic joints. Acta Biomater. 101, 469–483 (2020). https://doi.org/10.1016/j.actbio.2019.10.003
T.M. Quinn, A.A. Maung, A.J. Grodzinsky, E.B. Hunziker, J.D. Sandy, Physical and biological regulation of proteoglycan turnover around chondrocytes in cartilage explants. Implications for tissue degradation and repair. Ann. N. Y. Acad. Sci. 878, 420–441 (1999). https://doi.org/10.1111/j.1749-6632.1999.tb07700.x
C.A. Poole, A. Matsuoka, J.R. Schofield, Chondrons from articular cartilage. Iii. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum. 34(1), 22–35 (1991). https://doi.org/10.1002/art.1780340105
H. Laroui, L. Grossin, M. Léonard, J.F. Stoltz, P. Gillet et al., Hyaluronate-covered nanops for the therapeutic targeting of cartilage. Biomacromol 8(12), 3879–3885 (2007). https://doi.org/10.1021/bm700836y
C.B. Knudson, W. Knudson, Hyaluronan and cd44: modulators of chondrocyte metabolism. Clin. Orthop. Relat. Res. 427(Suppl), S152-162 (2004)
Z. Chen, J. Chen, L. Wu, W. Li, J. Chen et al., Hyaluronic acid-coated bovine serum albumin nanops loaded with brucine as selective nanovectors for intra-articular injection. Int. J. Nanomed. 8, 3843–3853 (2013). https://doi.org/10.2147/IJN.S50721
N.D. Donahue, H. Acar, S. Wilhelm, Concepts of nanop cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019). https://doi.org/10.1016/j.addr.2019.04.008
W. He, X. Xing, X. Wang, D. Wu, W. Wu et al., Nanocarrier-mediated cytosolic delivery of biopharmaceuticals. Adv. Funct. Mater. 30, 1910566 (2020). https://doi.org/10.1002/adfm.201910566
A.K. Gaharwar, I. Singh, A. Khademhosseini, Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 5, 686–705 (2020). https://doi.org/10.1038/s41578-020-0209-x
B.C. te Boekhorst, L.B. Jensen, S. Colombo, A.K. Varkouhi, R.M. Schiffelers et al., Mri-assessed therapeutic effects of locally administered plga nanops loaded with anti-inflammatory sirna in a murine arthritis model. J. Control. Release 161(3), 772–780 (2012). https://doi.org/10.1016/j.jconrel.2012.05.004
J.S. Park, H.N. Yang, S.Y. Jeon, D.G. Woo, M.S. Kim et al., The use of anti-COX2 sirna coated onto plga nanops loading dexamethasone in the treatment of rheumatoid arthritis. Biomaterials 33(33), 8600–8612 (2012). https://doi.org/10.1016/j.biomaterials.2012.08.008
Y. Wang, P. Li, L. Kong, Chitosan-modified plga nanops with versatile surface for improved drug delivery. AAPS PharmSciTech 14(2), 585–592 (2013). https://doi.org/10.1208/s12249-013-9943-3
N. Nafee, S. Taetz, M. Schneider, U.F. Schaefer, C.M. Lehr, Chitosan-coated plga nanops for DNA/rna delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine 3(3), 173–183 (2007). https://doi.org/10.1016/j.nano.2007.03.006
F. Esmaeili, M.H. Ghahremani, S.N. Ostad, F. Atyabi, M. Seyedabadi et al., Folate-receptor-targeted delivery of docetaxel nanops prepared by plga-peg-folate conjugate. J. Drug Target. 16(5), 415–423 (2008). https://doi.org/10.1080/10611860802088630
K. Zhang, X. Tang, J. Zhang, W. Lu, X. Lin et al., Peg-plga copolymers: their structure and structure-influenced drug delivery applications. J. Control. Release 183, 77–86 (2014). https://doi.org/10.1016/j.jconrel.2014.03.026
J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Pegylation as a strategy for improving nanop-based drug and gene delivery. Adv. Drug Deliv. Rev. 99(Pt A), 28–51 (2016). https://doi.org/10.1016/j.addr.2015.09.012
M. Fathi-Achachelouei, D. Keskin, E. Bat, N.E. Vrana, A. Tezcaner, Dual growth factor delivery using plga nanops in silk fibroin/pegdma hydrogels for articular cartilage tissue engineering. J. Biomed. Mater. Res. Part B 108(5), 2041–2062 (2020). https://doi.org/10.1002/jbm.b.34544
J.H. Kim, J.S. Park, H.N. Yang, D.G. Woo, S.Y. Jeon et al., The use of biodegradable PLGA nanops to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 32(1), 268–278 (2011). https://doi.org/10.1016/j.biomaterials.2010.08.086
Y.N. Tan, P.P. Lee, W.N. Chen, Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express 10(1), 17–17 (2020). https://doi.org/10.1186/s13568-020-0954-7
R. Jayakumar, K.P. Chennazhi, S. Srinivasan, S.V. Nair, T. Furuike et al., Chitin scaffolds in tissue engineering. Int. J. Mol. Sci. 12(3), 1876–1887 (2011). https://doi.org/10.3390/ijms12031876
R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13(8), 5156–5186 (2015). https://doi.org/10.3390/md13085156
H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30(13), 2499–2506 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.080
C. Manferdini, E. Gabusi, L. Sartore, K. Dey, S. Agnelli et al., Chitosan-based scaffold counteracts hypertrophic and fibrotic markers in chondrogenic differentiated mesenchymal stromal cells. J. Tissue Eng. Regen. Med. 13(10), 1896–1911 (2019). https://doi.org/10.1002/term.2941
J.K. Suh, H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24), 2589–2598 (2000). https://doi.org/10.1016/s0142-9612(00)00126-5
M.M. Islam, M. Shahruzzaman, S. Biswas, M.N. Sakib, T.U. Rashid, Chitosan based bioactive materials in tissue engineering applications-a review. Bioact. Mater. 5(1), 164–183 (2020). https://doi.org/10.1016/j.bioactmat.2020.01.012
K.Y. Lee, W.S. Ha, W.H. Park, Blood compatibility and biodegradability of partially n-acylated chitosan derivatives. Biomaterials 16(16), 1211–1216 (1995). https://doi.org/10.1016/0142-9612(95)98126-y
H. Katas, M.A.G. Raja, K.L. Lam, Development of chitosan nanops as a stable drug delivery system for protein/siRNA. Int. J. Biomater. 2013, 146320–146320 (2013). https://doi.org/10.1155/2013/146320
S. Mao, W. Sun, T. Kissel, Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 62(1), 12–27 (2010). https://doi.org/10.1016/j.addr.2009.08.004
Y. Zhou, S.Q. Liu, H. Peng, L. Yu, B. He et al., In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanops effectively ameliorates osteoarthritis. Int. Immunopharmacol. 28(1), 34–43 (2015). https://doi.org/10.1016/j.intimp.2015.05.014
Q. Shi, E.P. Rondon-Cavanzo, I.P.D. Picola, M.J. Tiera, X. Zhang et al., In vivo therapeutic efficacy of tnfα silencing by folate-peg-chitosan-deae/siRNA nanops in arthritic mice. Int. J. Nanomed. 13, 387–402 (2018). https://doi.org/10.2147/ijn.S146942
H. Lu, L. Lv, Y. Dai, G. Wu, H. Zhao et al., Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanops encoding TGF-β1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS ONE 8(7), e69950 (2013). https://doi.org/10.1371/journal.pone.0069950
S.J. Lee, A. Lee, S.R. Hwang, J.S. Park, J. Jang et al., TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanops for rheumatoid arthritis. Mol. Ther. 22(2), 397–408 (2014). https://doi.org/10.1038/mt.2013.245
E. Lallana, J.M. Rios de la Rosa, A. Tirella, M. Pelliccia, A. Gennari et al., Chitosan/hyaluronic acid nanops: rational design revisited for rna delivery. Mol. Pharm. 14(7), 2422–2436 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00320
P.H. Zhou, B. Qiu, R.H. Deng, H.J. Li, X.F. Xu et al., Chondroprotective effects of hyaluronic acid-chitosan nanops containing plasmid DNA encoding cytokine response modifier a in a rat knee osteoarthritis model. Cell. Physiol. Biochem. 47(3), 1207–1216 (2018). https://doi.org/10.1159/000490217
Y. Cao, Y.F. Tan, Y.S. Wong, M.W.J. Liew, S. Venkatraman, Recent advances in chitosan-based carriers for gene delivery. Mar. Drugs 17(6), 381 (2019). https://doi.org/10.3390/md17060381
X. Ji, Y. Yan, T. Sun, Q. Zhang, Y. Wang et al., Glucosamine sulphate-loaded distearoyl phosphocholine liposomes for osteoarthritis treatment: combination of sustained drug release and improved lubrication. Biomater. Sci. 7(7), 2716–2728 (2019). https://doi.org/10.1039/c9bm00201d
J.M. van den Hoven, S.R. Van Tomme, J.M. Metselaar, B. Nuijen, J.H. Beijnen et al., Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol. Pharm. 8(4), 1002–1015 (2011). https://doi.org/10.1021/mp2000742
S. Sivan, A. Schroeder, G. Verberne, Y. Merkher, D. Diminsky et al., Liposomes act as effective biolubricants for friction reduction in human synovial joints. Langmuir 26(2), 1107–1116 (2010). https://doi.org/10.1021/la9024712
J. Dong, D. Jiang, Z. Wang, G. Wu, L. Miao et al., Intra-articular delivery of liposomal celecoxib-hyaluronate combination for the treatment of osteoarthritis in rabbit model. Int. J. Pharm. 441(1–2), 285–290 (2013). https://doi.org/10.1016/j.ijpharm.2012.11.031
I. Elron-Gross, Y. Glucksam, R. Margalit, Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int. J. Pharm. 376(1–2), 84–91 (2009). https://doi.org/10.1016/j.ijpharm.2009.04.025
F.H. Chen, K.T. Rousche, R.S. Tuan, Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2(7), 373–382 (2006). https://doi.org/10.1038/ncprheum0216
H. Watanabe, Y. Yamada, K. Kimata, Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J. Biochem. 124(4), 687–693 (1998). https://doi.org/10.1093/oxfordjournals.jbchem.a022166
T.M. Tamer, Hyaluronan and synovial joint: function, distribution and healing. Interdiscip. Toxicol. 6(3), 111–125 (2013). https://doi.org/10.2478/intox-2013-0019
R.C. Gupta, R. Lall, A. Srivastava, A. Sinha, Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 6, 192 (2019). https://doi.org/10.3389/fvets.2019.00192
E. George, Intra-articular hyaluronan treatment for osteoarthritis. Ann. Rheum. Dis. 57(11), 637–640 (1998). https://doi.org/10.1136/ard.57.11.637
P.A. Band, J. Heeter, H.G. Wisniewski, V. Liublinska, C.W. Pattanayak et al., Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthritis Cartil. 23(1), 70–76 (2015). https://doi.org/10.1016/j.joca.2014.09.017
E.A. Balazs, J.L. Denlinger, Viscosupplementation: a new concept in the treatment of osteoarthritis. J. Rheumatol. Suppl. 39, 3–9 (1993)
H.D. Lu, H.Q. Zhao, K. Wang, L.L. Lv, Novel hyaluronic acid-chitosan nanops as non-viral gene delivery vectors targeting osteoarthritis. Int. J. Pharm. 420(2), 358–365 (2011). https://doi.org/10.1016/j.ijpharm.2011.08.046
M. Zhou, J. Hou, Z. Zhong, N. Hao, Y. Lin et al., Targeted delivery of hyaluronic acid-coated solid lipid nanops for rheumatoid arthritis therapy. Drug Deliv. 25(1), 716–722 (2018). https://doi.org/10.1080/10717544.2018.1447050
H. Lu, Y. Dai, L. Lv, H. Zhao, Chitosan-graft-polyethylenimine/DNA nanops as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE 9(1), e84703 (2014). https://doi.org/10.1371/journal.pone.0084703
S. Nedvetzki, M. Walmsley, E. Alpert, R.O. Williams, M. Feldmann et al., Cd44 involvement in experimental collagen-induced arthritis (CIA). J. Autoimmun. 13(1), 39–47 (1999). https://doi.org/10.1006/jaut.1999.0294
G.M. Campo, A. Avenoso, S. Campo, A. D’Ascola, G. Nastasi et al., Small hyaluronan oligosaccharides induce inflammation by engaging both toll-like-4 and CD44 receptors in human chondrocytes. Biochem. Pharmacol. 80(4), 480–490 (2010). https://doi.org/10.1016/j.bcp.2010.04.024
F.J. Zhang, S.G. Gao, L. Cheng, J. Tian, W.S. Xu et al., The effect of hyaluronic acid on osteopontin and CD44 mrna of fibroblast-like synoviocytes in patients with osteoarthritis of the knee. Rheumatol. Int. 33(1), 79–83 (2013). https://doi.org/10.1007/s00296-011-2339-3
P. Maudens, S. Meyer, C.A. Seemayer, O. Jordan, E. Allémann, Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale 10(4), 1845–1854 (2018). https://doi.org/10.1039/c7nr07614b
J.E. Rowley, F. Amargant, L.T. Zhou, A. Galligos, L.E. Simon et al., Low molecular weight hyaluronan induces an inflammatory response in ovarian stromal cells and impairs gamete development in vitro. Int. J. Mol. Sci. 21(3), 1036 (2020). https://doi.org/10.3390/ijms21031036
J. Monfort, J.P. Pelletier, N. Garcia-Giralt, J. Martel-Pelletier, Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann. Rheum. Dis. 67(6), 735–740 (2008). https://doi.org/10.1136/ard.2006.068882
R.M. Lauder, Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement. Ther. Med. 17(1), 56–62 (2009). https://doi.org/10.1016/j.ctim.2008.08.004
P.J. Roughley, The structure and function of cartilage proteoglycans. Eur. Cells Mater. 12, 92–101 (2006). https://doi.org/10.22203/ecm.v012a11
U.P. Palukuru, C.M. McGoverin, N. Pleshko, Assessment of hyaline cartilage matrix composition using near infrared spectroscopy. Matrix Biol. 38, 3–11 (2014). https://doi.org/10.1016/j.matbio.2014.07.007
L. Bian, M. Kaplun, D.Y. Williams, D. Xu, G.A. Ateshian et al., Influence of chondroitin sulfate on the biochemical, mechanical and frictional properties of cartilage explants in long-term culture. J. Biomech. 42(3), 286–290 (2009). https://doi.org/10.1016/j.jbiomech.2008.10.032
A.I. Maroudas, Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554), 808–809 (1976). https://doi.org/10.1038/260808a0
M. David-Raoudi, B. Deschrevel, S. Leclercq, P. Galera, K. Boumediene et al., Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and akt. Arthritis Rheum. 60(3), 760–770 (2009). https://doi.org/10.1002/art.24302
Q.G. Wang, A.J. El. Haj, N.J. Kuiper, Glycosaminoglycans in the pericellular matrix of chondrons and chondrocytes. J. Anat. 213(3), 266–273 (2008). https://doi.org/10.1111/j.1469-7580.2008.00942.x
M. Bishnoi, A. Jain, P. Hurkat, S.K. Jain, Chondroitin sulphate: a focus on osteoarthritis. Glycoconjugate J. 33(5), 693–705 (2016). https://doi.org/10.1007/s10719-016-9665-3
V. Calamia, L. Lourido, P. Fernandez-Puente, J. Mateos, B. Rocha et al., Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res. Ther. 14(5), R202 (2012). https://doi.org/10.1186/ar4040
D. Ishimaru, N. Sugiura, H. Akiyama, H. Watanabe, K. Matsumoto, Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. Osteoarthritis Cartil. 22(2), 250–258 (2014). https://doi.org/10.1016/j.joca.2013.11.010
Y.K. Jung, H.R. Park, H.J. Cho, J.A. Jang, E.J. Lee et al., Degrading products of chondroitin sulfate can induce hypertrophy-like changes and MMP-13/ADAMTS5 production in chondrocytes. Sci. Rep. 9(1), 15846 (2019). https://doi.org/10.1038/s41598-019-52358-4
K.M. Jordan, N.K. Arden, M. Doherty, B. Bannwarth, J.W. Bijlsma et al., Eular recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a task force of the standing committee for international clinical studies including therapeutic trials (escisit). Ann. Rheum. Dis. 62(12), 1145–1155 (2003). https://doi.org/10.1136/ard.2003.011742
A. Jain, S.K. Mishra, P.R. Vuddanda, S.K. Singh, R. Singh et al., Targeting of diacerein loaded lipid nanops to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomed.-Nanotechnol. Biol. Med. 10(5), 1031–1040 (2014). https://doi.org/10.1016/j.nano.2014.01.008
X.F. Yin, L.L. Wang, X.C. Chu, A novel chondroitin sulfate decorated nano platinum for the treatment of osteoarthritis. Mater. Sci. Eng. C-Mater. Biol. Appl. 78, 452–456 (2017). https://doi.org/10.1016/j.msec.2017.04.028
F. Bakilan, O. Armagan, M. Ozgen, F. Tascioglu, O. Bolluk et al., Effects of native type ii collagen treatment on knee osteoarthritis: a randomized controlled trial. Eurasian J. Med. 48(2), 95–101 (2016). https://doi.org/10.5152/eurasianjmed.2015.15030
C. Lian, X. Wang, X. Qiu, Z. Wu, B. Gao et al., Collagen type ii suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-smad1 interaction. Bone Res. (2019). https://doi.org/10.1038/s41413-019-0046-y
G.S. Hussey, J.L. Dziki, S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3(7), 159–173 (2018). https://doi.org/10.1038/s41578-018-0023-x
K.E. Benders, P.R. van Weeren, S.F. Badylak, D.B. Saris, W.J. Dhert et al., Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31(3), 169–176 (2013). https://doi.org/10.1016/j.tibtech.2012.12.004
X. Li, W. Guo, K. Zha, X. Jing, M. Wang et al., Enrichment of CD146(+) adipose-derived stem cells in combination with articular cartilage extracellular matrix scaffold promotes cartilage regeneration. Theranostics 9(17), 5105–5121 (2019). https://doi.org/10.7150/thno.33904
Y. Zhang, S. Liu, W. Guo, M. Wang, C. Hao et al., Human umbilical cord wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthritis Cartil. 26(7), 954–965 (2018). https://doi.org/10.1016/j.joca.2018.01.019
S. Zahiri, E. Masaeli, E. Poorazizi, M.H. Nasr-Esfahani, Chondrogenic response in presence of cartilage extracellular matrix nanops. J. Biomed. Mater. Res. Part A 106(9), 2463–2471 (2018). https://doi.org/10.1002/jbm.a.36440
D. Shi, X. Xu, Y. Ye, K. Song, Y. Cheng et al., Photo-cross-linked scaffold with kartogenin-encapsulated nanops for cartilage regeneration. ACS Nano 10(1), 1292–1299 (2016). https://doi.org/10.1021/acsnano.5b06663
W. Zhang, C. Ling, A. Zhang, H. Liu, Y. Jiang et al., An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioact. Mater. 5(4), 832–843 (2020). https://doi.org/10.1016/j.bioactmat.2020.05.003
J. Shi, X. Zhang, J. Zhu, Y. Pi, X. Hu et al., Nanop delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthrosc.: J. Arthrosc. Relat. Surg.: Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 29(12), 2001-2011.e2002 (2013). https://doi.org/10.1016/j.arthro.2013.09.076
J. Li, Z. Li, D. Chu, L. Jin, X. Zhang, Fabrication and biocompatibility of core-shell structured magnetic fibrous scaffold. J. Biomed. Nanotechnol. 15(3), 500–506 (2019). https://doi.org/10.1166/jbn.2019.2701
Z. Li, D. Chu, G. Chen, L. Shi, L. Jin et al., Biocompatible and biodegradable 3d double-network fibrous scaffold for excellent cell growth. J. Biomed. Nanotechnol. 15(11), 2209–2215 (2019). https://doi.org/10.1166/jbn.2019.2846
R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., Mxene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio. Mater. 3(4), 2125–2131 (2020). https://doi.org/10.1021/acsabm.0c00007
C. Boyer, L. Figueiredo, R. Pace, J. Lesoeur, T. Rouillon et al., Laponite nanop-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.027
H. Meng, Q. Quan, X. Yuan, Y. Zheng, J. Peng et al., Diffusion of neutral solutes within human osteoarthritic cartilage: effect of loading patterns. J. Orthop. Transl. 22, 58–66 (2020). https://doi.org/10.1016/j.jot.2019.10.013
Z. Sun, E. Feeney, Y. Guan, S.G. Cook, D. Gourdon et al., Boundary mode lubrication of articular cartilage with a biomimetic diblock copolymer. Proc. Natl. Acad. Sci. U. S. A. 116(25), 12437–12441 (2019). https://doi.org/10.1073/pnas.1900716116
Y. Yan, T. Sun, H. Zhang, X. Ji, Y. Sun et al., Euryale ferox seed-inspired superlubricated nanops for treatment of osteoarthritis. Adv. Funct. Mater. 29(4), 1807559 (2019). https://doi.org/10.1002/adfm.201807559
P.M. van der Kraan, W.B. van den Berg, Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartil. 20(3), 223–232 (2012). https://doi.org/10.1016/j.joca.2011.12.003
S. Chen, P. Fu, R. Cong, H. Wu, M. Pei, Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2(1), 76–95 (2015). https://doi.org/10.1016/j.gendis.2014.12.003
H. Sasaki, K. Takayama, T. Matsushita, K. Ishida, S. Kubo et al., Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum. 64(6), 1920–1928 (2012). https://doi.org/10.1002/art.34323
R.F. Loeser, J.A. Collins, B.O. Diekman, Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12(7), 412–420 (2016). https://doi.org/10.1038/nrrheum.2016.65
G. Zhong, X. Yang, X. Jiang, A. Kumar, H. Long et al., Dopamine-melanin nanops scavenge reactive oxygen and nitrogen species and activate autophagy for osteoarthritis therapy. Nanoscale 11(24), 11605–11616 (2019). https://doi.org/10.1039/c9nr03060c
H. Yan, X. Duan, H. Pan, N. Holguin, M.F. Rai et al., Suppression of NF-κB activity via nanop-based sirna delivery alters early cartilage responses to injury. Proc. Natl. Acad. Sci. U. S. A. 113(41), E6199-e6208 (2016). https://doi.org/10.1073/pnas.1608245113
P.G. Conaghan, A.D. Cook, J.A. Hamilton, P.P. Tak, Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15(6), 355–363 (2019). https://doi.org/10.1038/s41584-019-0221-y
H.-F. Zhou, H. Yan, A. Senpan, S.A. Wickline, D. Pan et al., Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanops. Biomaterials 33(33), 8632–8640 (2012). https://doi.org/10.1016/j.biomaterials.2012.08.005
M. Kapoor, J. Martel-Pelletier, D. Lajeunesse, J.P. Pelletier, H. Fahmi, Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7(1), 33–42 (2011). https://doi.org/10.1038/nrrheum.2010.196
R.E. Whitmire, D.S. Wilson, A. Singh, M.E. Levenston, N. Murthy et al., Self-assembling nanops for intra-articular delivery of anti-inflammatory proteins. Biomaterials 33(30), 7665–7675 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.101
H. Lee, M.Y. Lee, S.H. Bhang, B.S. Kim, Y.S. Kim et al., Hyaluronate-gold nanop/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano 8(5), 4790–4798 (2014). https://doi.org/10.1021/nn500685h
M.R. Bhalekar, P.G. Upadhaya, A.R. Madgulkar, Fabrication and efficacy evaluation of chloroquine nanops in cfa-induced arthritic rats using TNF-α elisa. Eur. J. Pharm. Sci. 84, 1–8 (2016). https://doi.org/10.1016/j.ejps.2016.01.009
J.B. Lin, S. Poh, A. Panitch, Controlled release of anti-inflammatory peptides from reducible thermosensitive nanops suppresses cartilage inflammation. Nanomed. Nanotechnol. Biol. Med. 12(7), 2095–2100 (2016). https://doi.org/10.1016/j.nano.2016.05.010
R.L. Bartlett 2nd., S. Sharma, A. Panitch, Cell-penetrating peptides released from thermosensitive nanops suppress pro-inflammatory cytokine response by specifically targeting inflamed cartilage explants. Nanomedicine 9(3), 419–427 (2013). https://doi.org/10.1016/j.nano.2012.09.003
J. McMasters, S. Poh, J.B. Lin, A. Panitch, Delivery of anti-inflammatory peptides from hollow PEGylated poly(NIPAM) nanops reduces inflammation in an ex vivo osteoarthritis model. J. Control. Release 258, 161–170 (2017). https://doi.org/10.1016/j.jconrel.2017.05.008
L. Yuan, R.-X. Liao, Y.-Y. Lin, Y. Jiang, O. Wang et al., Safety and efficacy of cyclooxygenase-2 inhibition for treatment of primary hypertrophic osteoarthropathy: a single-arm intervention trial. J. Orthop. Transl. 18, 109–118 (2018). https://doi.org/10.1016/j.jot.2018.10.001
M.J. Kim, J.S. Park, S.J. Lee, J. Jang, J.S. Park et al., Notch1 targeting siRNA delivery nanops for rheumatoid arthritis therapy. J. Control. Release 216, 140–148 (2015). https://doi.org/10.1016/j.jconrel.2015.08.025
P. Lepetsos, A.G. Papavassiliou, Ros/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta 1862(4), 576–591 (2016). https://doi.org/10.1016/j.bbadis.2016.01.003
Y.C. Cheuk, S.C. Fu, S.W. Mok, K.K. Ho, L.K. Hung et al., Intra-articular injection of an antioxidant formulation did not improve structural degeneration in a rat model of post-traumatic osteoarthritis. J. Orthop. Transl. 8, 25–31 (2017). https://doi.org/10.1016/j.jot.2016.08.001
W. Li, L. Cai, Y. Zhang, L. Cui, G. Shen, Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J. Orthop. Res. 33(7), 1061–1070 (2015). https://doi.org/10.1002/jor.22859
S. Kumar, I.M. Adjei, S.B. Brown, O. Liseth, B. Sharma, Manganese dioxide nanops protect cartilage from inflammation-induced oxidative stress. Biomaterials 224, 119467 (2019). https://doi.org/10.1016/j.biomaterials.2019.119467
L. Zhang, J. Hu, K.A. Athanasiou, The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37(1–2), 1–57 (2009). https://doi.org/10.1615/critrevbiomedeng.v37.i1-2.10
S. Zhang, B. Hu, W. Liu, P. Wang, X. Lv et al., Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin. Arthritis Rheum. 50(2), 198–208 (2020). https://doi.org/10.1016/j.semarthrit.2019.11.001
N. Dunker, K. Krieglstein, Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur. J. Biochem. 267(24), 6982–6988 (2000). https://doi.org/10.1046/j.1432-1327.2000.01825.x
J. Shen, J. Li, B. Wang, H. Jin, M. Wang et al., Deletion of the transforming growth factor beta receptor type ii gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum. 65(12), 3107–3119 (2013). https://doi.org/10.1002/art.38122
T. Li, S. Chubinskaya, A. Esposito, X. Jin, L. Tagliafierro et al., Tgf-beta type 2 receptor-mediated modulation of the il-36 family can be therapeutically targeted in osteoarthritis. Sci. Transl. Med. (2019). https://doi.org/10.1126/scitranslmed.aan2585
L.M. Cross, J.K. Carrow, X. Ding, K.A. Singh, A.K. Gaharwar, Sustained and prolonged delivery of protein therapeutics from two-dimensional nanosilicates. ACS Appl. Mater. Interfaces 11(7), 6741–6750 (2019). https://doi.org/10.1021/acsami.8b17733
X. Sun, J. Wang, Y. Wang, C. Huang, C. Yang et al., Scaffold with orientated microtubule structure containing polylysine-heparin sodium nanops for the controlled release of tgf-β1 in cartilage tissue engineering. ACS Appl. Bio Mater. 1(6), 2030–2040 (2018). https://doi.org/10.1021/acsabm.8b00523
F.Y. Wei, J.K. Lee, L. Wei, F. Qu, J.Z. Zhang, Correlation of insulin-like growth factor 1 and osteoarthritic cartilage degradation: a spontaneous osteoarthritis in guinea-pig. Eur. Rev. Med. Pharmacol. Sci. 21(20), 4493–4500 (2017)
K.J. Ekenstedt, W.E. Sonntag, R.F. Loeser, B.R. Lindgren, C.S. Carlson, Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on osteoarthritis severity in rat knee joints. Arthritis Rheum. 54(12), 3850–3858 (2006). https://doi.org/10.1002/art.22254
J. Pasold, K. Zander, B. Heskamp, C. Grüttner, F. Lüthen et al., Positive impact of IGF-1-coupled nanops on the differentiation potential of human chondrocytes cultured on collagen scaffolds. Int. J. Nanomed. 10, 1131–1143 (2015). https://doi.org/10.2147/ijn.S72872
L. Longobardi, L. O’Rear, S. Aakula, B. Johnstone, K. Shimer et al., Effect of IGF-i in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Miner. Res. 21(4), 626–636 (2006). https://doi.org/10.1359/jbmr.051213
J. Frisch, A. Rey-Rico, J.K. Venkatesan, G. Schmitt, H. Madry et al., Chondrogenic differentiation processes in human bone marrow aspirates upon raav-mediated gene transfer and overexpression of the insulin-like growth factor i. Tissue Eng. Part A 21(17–18), 2460–2471 (2015). https://doi.org/10.1089/ten.TEA.2014.0679
M. Zhang, Q. Zhou, Q.Q. Liang, C.G. Li, J.D. Holz et al., IGF-1 regulation of type ii collagen and mmp-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis Cartil. 17(1), 100–106 (2009). https://doi.org/10.1016/j.joca.2008.05.007
J.A. Tyler, Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem. J. 260(2), 543–548 (1989). https://doi.org/10.1042/bj2600543
J.L. Ellsworth, J. Berry, T. Bukowski, J. Claus, A. Feldhaus et al., Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartil. 10(4), 308–320 (2002). https://doi.org/10.1053/joca.2002.0514
E.E. Moore, A.M. Bendele, D.L. Thompson, A. Littau, K.S. Waggie et al., Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartil. 13(7), 623–631 (2005). https://doi.org/10.1016/j.joca.2005.03.003
S.L. Chia, Y. Sawaji, A. Burleigh, C. McLean, J. Inglis et al., Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses adamts-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheum. 60(7), 2019–2027 (2009). https://doi.org/10.1002/art.24654
X. Wang, P.A. Manner, A. Horner, L. Shum, R.S. Tuan et al., Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartil. 12(12), 963–973 (2004). https://doi.org/10.1016/j.joca.2004.08.008
H.J. Im, X. Li, P. Muddasani, G.H. Kim, F. Davis et al., Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J. Cell. Physiol. 215(2), 452–463 (2008). https://doi.org/10.1002/jcp.21317
D. Yan, D. Chen, S.M. Cool, A.J. van Wijnen, K. Mikecz et al., Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res. Ther. 13(4), R130 (2011). https://doi.org/10.1186/ar3441
N.D. Miljkovic, G.M. Cooper, K.G. Marra, Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartil. 16(10), 1121–1130 (2008). https://doi.org/10.1016/j.joca.2008.03.003
C. Wang, R.M. Silverman, J. Shen, R.J. O’Keefe, Distinct metabolic programs induced by TGF-β1 and bmp2 in human articular chondrocytes with osteoarthritis. J. Orthop. Transl. 12, 66–73 (2018). https://doi.org/10.1016/j.jot.2017.12.004
B.S. Yoon, K.M. Lyons, Multiple functions of BMPS in chondrogenesis. J. Cell. Biochem. 93(1), 93–103 (2004). https://doi.org/10.1002/jcb.20211
K. Johnson, S. Zhu, M.S. Tremblay, J.N. Payette, J. Wang et al., A stem cell-based approach to cartilage repair. Science 336(6082), 717–721 (2012). https://doi.org/10.1126/science.1215157
Y. Hong, Y. Han, J. Wu, X. Zhao, J. Cheng et al., Chitosan modified Fe3O4/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics 10(12), 5565–5577 (2020). https://doi.org/10.7150/thno.43569
S.P. Henry, S. Liang, K.C. Akdemir, B. de Crombrugghe, The postnatal role of SOX9 in cartilage. J. Bone Miner. Res. 27(12), 2511–2525 (2012). https://doi.org/10.1002/jbmr.1696
W. Li, J. Lin, Z. Wang, S. Ren, X. Wu et al., Bevacizumab tested for treatment of knee osteoarthritis via inhibition of synovial vascular hyperplasia in rabbits. J. Orthop. Transl. 19, 38–46 (2019). https://doi.org/10.1016/j.jot.2019.04.002
C.L. Wu, N.S. Harasymowicz, M.A. Klimak, K.H. Collins, F. Guilak, The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartil. (2020). https://doi.org/10.1016/j.joca.2019.12.007
S. Li, W. Cong, A. Hakamivala, Y. Huang, J. Borrelli et al., Hyaluronic acid-based optical probe for the diagnosis of human osteoarthritic cartilage. Nanotheranostics 2(4), 347–359 (2018). https://doi.org/10.7150/ntno.26119
Y. Yang, L. Guo, Z. Wang, P. Liu, X. Liu et al., Targeted silver nanops for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials 264, 120390 (2021). https://doi.org/10.1016/j.biomaterials.2020.120390
L. Ma, T.W. Liu, M.A. Wallig, I.T. Dobrucki, L.W. Dobrucki et al., Efficient targeting of adipose tissue macrophages in obesity with polysaccharide nanocarriers. ACS Nano 10(7), 6952–6962 (2016). https://doi.org/10.1021/acsnano.6b02878
G. Hu, M. Guo, J. Xu, F. Wu, J. Fan et al., Nanops targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front. Immunol. 10, 1998–1998 (2019). https://doi.org/10.3389/fimmu.2019.01998
M. Ovais, M. Guo, C. Chen, Tailoring nanomaterials for targeting tumor-associated macrophages. Adv. Mater. 31(19), e1808303 (2019). https://doi.org/10.1002/adma.201808303
J. Yang, X. Zhang, C. Liu, Z. Wang, L. Deng, C. Feng, W. Tao, X. Xu, W. Cui, Biologically modified nanops as theranostic bionanomaterials. Prog. Mater. Sci. 118, 100768 (2021). https://doi.org/10.1016/j.pmatsci.2020.100768
R. Li, Y. He, Y. Zhu, L. Jiang, S. Zhang et al., Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanops. Nano Lett. 19(1), 124–134 (2019). https://doi.org/10.1021/acs.nanolett.8b03439
Q. Zhang, D. Dehaini, Y. Zhang, J. Zhou, X. Chen et al., Neutrophil membrane-coated nanops inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13(12), 1182–1190 (2018). https://doi.org/10.1038/s41565-018-0254-4
D.M. Findlay, J.S. Kuliwaba, Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res. 4, 16028 (2016). https://doi.org/10.1038/boneres.2016.28
R.J. Lories, F.P. Luyten, The bone-cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 7(1), 43–49 (2011). https://doi.org/10.1038/nrrheum.2010.197
L. Chu, Z. He, X. Qu, X. Liu, W. Zhang et al., Different subchondral trabecular bone microstructure and biomechanical properties between developmental dysplasia of the hip and primary osteoarthritis. J. Orthop. Transl. 22, 50–57 (2020). https://doi.org/10.1016/j.jot.2019.09.001
G. Li, L. Chen, Q. Zheng, Y. Ma, C. Zhang et al., Subchondral bone deterioration in femoral heads in patients with osteoarthritis secondary to hip dysplasia: a case–control study. J. Orthop. Transl. 24, 190–197 (2019). https://doi.org/10.1016/j.jot.2019.10.014
S. Zhu, J. Zhu, G. Zhen, Y. Hu, S. An et al., Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129(3), 1076–1093 (2019). https://doi.org/10.1172/JCI121561
R. Kc, X. Li, J.S. Kroin, Z. Liu, D. Chen et al., PKCδ null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TRKA-induced axonal outgrowth. Ann. Rheum. Dis. 75(12), 2133–2141 (2016). https://doi.org/10.1136/annrheumdis-2015-208444
M. Ikeuchi, Q. Wang, M. Izumi, T. Tani, Nociceptive sensory innervation of the posterior cruciate ligament in osteoarthritic knees. Arch. Orthop. Trauma Surg. 132(6), 891–895 (2012). https://doi.org/10.1007/s00402-012-1478-7
A.M. Malfait, T.J. Schnitzer, Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9(11), 654–664 (2013). https://doi.org/10.1038/nrrheum.2013.138
M.P. Kashyap, C. Roberts, M. Waseem, P. Tyagi, Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol. Neurobiol. 55(8), 6939–6955 (2018). https://doi.org/10.1007/s12035-018-0885-3
S. Takano, K. Uchida, G. Inoue, M. Miyagi, J. Aikawa et al., Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin. Exp. Immunol. 190(2), 235–243 (2017). https://doi.org/10.1111/cei.13007
P. Jayabalan, T.J. Schnitzer, Tanezumab in the treatment of chronic musculoskeletal conditions. Expert Opin. Biol. Ther. 17(2), 245–254 (2017). https://doi.org/10.1080/14712598.2017.1271873
L.N. Nwosu, P.I. Mapp, V. Chapman, D.A. Walsh, Blocking the tropomyosin receptor kinase a (TRKA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann. Rheum. Dis. 75(6), 1246–1254 (2016). https://doi.org/10.1136/annrheumdis-2014-207203
M.S.M. Persson, J. Stocks, D.A. Walsh, M. Doherty, W. Zhang, The relative efficacy of topical non-steroidal anti-inflammatory drugs and capsaicin in osteoarthritis: a network meta-analysis of randomised controlled trials. Osteoarthritis Cartil. 26(12), 1575–1582 (2018). https://doi.org/10.1016/j.joca.2018.08.008
P.I. Mapp, D.A. Walsh, Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 8(7), 390–398 (2012). https://doi.org/10.1038/nrrheum.2012.80
S. Ashraf, D.A. Walsh, Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 20(5), 573–580 (2008). https://doi.org/10.1097/BOR.0b013e3283103d12
M.P. Murphy, L.S. Koepke, M.T. Lopez, X. Tong, T.H. Ambrosi et al., Articular cartilage regeneration by activated skeletal stem cells. Nat. Med. 26(10), 1583–1592 (2020). https://doi.org/10.1038/s41591-020-1013-2
C.J. Avraamides, B. Garmy-Susini, J.A. Varner, Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8(8), 604–617 (2008). https://doi.org/10.1038/nrc2353
P. Mukherjee, R. Bhattacharya, P. Wang, L. Wang, S. Basu et al., Antiangiogenic properties of gold nanops. Clin. Cancer Res. 11(9), 3530–3534 (2005). https://doi.org/10.1158/1078-0432.Ccr-04-2482
T. Yang, Q. Yao, F. Cao, Q. Liu, B. Liu et al., Silver nanops inhibit the function of hypoxia-inducible factor-1 and target genes: Insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomed. 11, 6679–6692 (2016). https://doi.org/10.2147/ijn.S109695
S. Gurunathan, K.J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan et al., Antiangiogenic properties of silver nanops. Biomaterials 30(31), 6341–6350 (2009). https://doi.org/10.1016/j.biomaterials.2009.08.008
J. Kim, A.C. Mirando, A.S. Popel, J.J. Green, Gene delivery nanops to modulate angiogenesis. Adv. Drug Deliv. Rev. 119, 20–43 (2017). https://doi.org/10.1016/j.addr.2016.11.003
M.A. Greene, R.F. Loeser, Aging-related inflammation in osteoarthritis. Osteoarthritis Cartil. 23(11), 1966–1971 (2015). https://doi.org/10.1016/j.joca.2015.01.008
J. Lieberthal, N. Sambamurthy, C.R. Scanzello, Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartil. 23(11), 1825–1834 (2015). https://doi.org/10.1016/j.joca.2015.08.015
C.C. Wu, W.H. Chen, B. Zao, P.L. Lai, T.C. Lin et al., Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials 32(25), 5847–5854 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.002
C. Gao, Y. Wang, Z. Ye, Z. Lin, X. Ma et al., Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater. 33(6), e2000512 (2021). https://doi.org/10.1002/adma.202000512
P. Mi, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 10(10), 4557–4588 (2020). https://doi.org/10.7150/thno.38069
S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
S. Jafari, L.O. Mair, S. Chowdhury, A. Nacev, R. Hilaman et al., Magnetically targeted delivery through cartilage. AIP Adv. 8(5), 056717 (2018). https://doi.org/10.1063/1.5006156
J.-Y. Su, S.-H. Chen, Y.-P. Chen, W.-C. Chen, Evaluation of magnetic nanop-labeled chondrocytes cultivated on a type ii collagen-chitosan/poly(lactic-co-glycolic) acid biphasic scaffold. Int. J. Mol. Sci. 18(1), 87 (2017). https://doi.org/10.3390/ijms18010087
B. Son, H.D. Kim, M. Kim, J.A. Kim, J. Lee et al., Physical stimuli-induced chondrogenic differentiation of mesenchymal stem cells using magnetic nanops. Adv. Healthc. Mater. 4(9), 1339–1347 (2015). https://doi.org/10.1002/adhm.201400835
X.-Y. Zhou, X.-X. Zhang, G.-Y. Yu, Z.-C. Zhang, F. Wang et al., Effects of low-intensity pulsed ultrasound on knee osteoarthritis: A meta-analysis of randomized clinical trials. Biomed Res. Int. 2018, 7469197–7469197 (2018). https://doi.org/10.1155/2018/7469197
T. Nishida, S. Kubota, E. Aoyama, N. Yamanaka, K.M. Lyons et al., Low-intensity pulsed ultrasound (LIPUS) treatment of cultured chondrocytes stimulates production of ccn family protein 2 (CCN2), a protein involved in the regeneration of articular cartilage: Mechanism underlying this stimulation. Osteoarthritis Cartil. 25(5), 759–769 (2017). https://doi.org/10.1016/j.joca.2016.10.003
D. Gao, T. Chen, S. Chen, X. Ren, Y. Han et al., Targeting hypoxic tumors with hybrid nanobullets for oxygen-independent synergistic photothermal and thermodynamic therapy. Nano-Micro Lett. 13(1), 99 (2021). https://doi.org/10.1007/s40820-021-00616-4
Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14(12), 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang et al., Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater. Today Bio 5, 100035 (2020). https://doi.org/10.1016/j.mtbio.2019.100035
J. You, R. Zhang, C. Xiong, M. Zhong, M. Melancon et al., Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EPHB4 receptors in tumors. Cancer Res. 72(18), 4777–4786 (2012). https://doi.org/10.1158/0008-5472.Can-12-1003
A.W. Visser, R. de Mutsert, S. le Cessie, M. den Heijer, F.R. Rosendaal et al., The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the neo study. Ann. Rheum. Dis. 74(10), 1842–1847 (2015). https://doi.org/10.1136/annrheumdis-2013-205012
M.N. Holme, I.A. Fedotenko, D. Abegg, J. Althaus, L. Babel et al., Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7(8), 536–543 (2012). https://doi.org/10.1038/nnano.2012.84
R. Rajamanickam, S. Baek, K. Gwon, Y. Hwang, K. Shin et al., Mechanical stimuli responsive and highly elastic biopolymer/nanop hybrid microcapsules for controlled release. J. Mater. Chem. B 4(24), 4278–4286 (2016). https://doi.org/10.1039/c6tb00410e
M. Deloney, K. Smart, B.A. Christiansen, A. Panitch, Thermoresponsive, hollow, degradable core-shell nanops for intra-articular delivery of anti-inflammatory peptide. J. Control. Release 323, 47–58 (2020). https://doi.org/10.1016/j.jconrel.2020.04.007
Y. Wang, D. Gao, Y. Liu, X. Guo, S. Chen et al., Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact. Mater. 6(6), 1513–1527 (2021). https://doi.org/10.1016/j.bioactmat.2020.11.016
S.M. Horvath, J.L. Hollander, Intra-articular temperature as a measure of joint reaction. J. Clin. Invest. 28(3), 469–473 (1949). https://doi.org/10.1172/jci102092
N.A. Cummings, G.L. Nordby, Measurement of synovial fluid pH in normal and arthritic knees. Arthritis Rheum. 9(1), 47–56 (1966). https://doi.org/10.1002/art.1780090106
S. Khanal, U. Adhikari, N.P. Rijal, S.R. Bhattarai, J. Sankar et al., pH-responsive plga nanop for controlled payload delivery of diclofenac sodium. J. Funct. Biol. 7(3), 21 (2016). https://doi.org/10.3390/jfb7030021
M.F. Chung, W.T. Chia, W.L. Wan, Y.J. Lin, H.W. Sung, Controlled release of an anti-inflammatory drug using an ultrasensitive ros-responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 137(39), 12462–12465 (2015). https://doi.org/10.1021/jacs.5b08057
D. Olszewska-Slonina, S. Jung, D. Matewski, K.J. Olszewski, E. Krzyzynska-Malinowska et al., Lysosomal enzymes in serum and synovial fluid in patients with osteoarthritis. Scand. J. Clin. Lab. Invest. 75(2), 145–151 (2015). https://doi.org/10.3109/00365513.2014.992946
Z. Jia, L. Song, F. Zang, J. Song, W. Zhang et al., Active-target t1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes. Theranostics 6(11), 1780–1791 (2016). https://doi.org/10.7150/thno.14280
Y.M. Soshnikova, S.G. Roman, N.A. Chebotareva, O.I. Baum, M.V. Obrezkova et al., Starch-modified magnetite nanops for impregnation into cartilage. J. Nanopart. Res. 15(11), 2092 (2013). https://doi.org/10.1007/s11051-013-2092-5
C. Bai, Z. Jia, L. Song, W. Zhang, Y. Chen et al., Time-dependent t1–t2 switchable magnetic resonance imaging realized by c (RGDYK) modified ultrasmall Fe3O4 nanoprobes. Adv. Funct. Mater. 28(32), 1802281 (2018). https://doi.org/10.1002/adfm.201802281
A.J. Mieszawska, W.J.M. Mulder, Z.A. Fayad, D.P. Cormode, Multifunctional gold nanops for diagnosis and therapy of disease. Mol. Pharm. 10(3), 831–847 (2013). https://doi.org/10.1021/mp3005885
S. Peng, Q. Zheng, X. Zhang, L. Dai, J. Zhu et al., Detection of adamts-4 activity using a fluorogenic peptide-conjugated au nanop probe in human knee synovial fluid. ACS Appl. Mater. Interfaces 5(13), 6089–6096 (2013). https://doi.org/10.1021/am400854z
V.C. Pierre, M. Botta, S. Aime, K.N. Raymond, Substituent effects on Gd(iii)-based MRI contrast agents: optimizing the stability and selectivity of the complex and the number of coordinated water molecules. Inorg. Chem. 45(20), 8355–8364 (2006). https://doi.org/10.1021/ic061262q
T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi et al., Mesoporous silica-coated hollow manganese oxide nanops as positive t1 contrast agents for labeling and mri tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 133(9), 2955–2961 (2011). https://doi.org/10.1021/ja1084095
P.H. Kuo, E. Kanal, A.K. Abu-Alfa, S.E. Cowper, Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242(3), 647–649 (2007). https://doi.org/10.1148/radiol.2423061640
J. Chen, J. Qi, C. Chen, J. Chen, L. Liu et al., Tocilizumab-conjugated polymer nanops for NIR-ii photoacoustic-imaging-guided therapy of rheumatoid arthritis. Adv. Mater. (2020). https://doi.org/10.1002/adma.202003399
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc. Natl. Acad. Sci. U. S. A. 117(46), 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
L. Jin, X. Guo, D. Gao, C. Wu, B. Hu et al., Nir-responsive mxene nanobelts for wound healing. NPG Asia Mater. 13(1), 24 (2021). https://doi.org/10.1038/s41427-021-00289-w
P. Jin, C. Wiraja, J. Zhao, J. Zhang, L. Zheng et al., Nitric oxide nanosensors for predicting the development of osteoarthritis in rat model. ACS Appl. Mater. Interfaces 9(30), 25128–25137 (2017). https://doi.org/10.1021/acsami.7b06404
L. Zhou, V.O. Gjvm, J. Malda, M.J. Stoddart, Y. Lai et al., Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: Current progress and challenges. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.202001008
S.T. Grady, L. Britton, K. Hinrichs, A.J. Nixon, A.E. Watts, Persistence of fluorescent nanop-labelled bone marrow mesenchymal stem cells in vitro and after intra-articular injection. J. Tissue Eng. Regen. Med. 13(2), 191–202 (2019). https://doi.org/10.1002/term.2781
J.M. Lee, B.S. Kim, H. Lee, G.I. Im, In vivo tracking of mesechymal stem cells using fluorescent nanops in an osteochondral repair model. Mol. Ther. 20(7), 1434–1442 (2012). https://doi.org/10.1038/mt.2012.60
H. Markides, O. Kehoe, R.H. Morris, A.J. El. Haj, Whole body tracking of superparamagnetic iron oxide nanop-labelled cells–a rheumatoid arthritis mouse model. Stem Cell Res. Ther. 4(5), 126–126 (2013). https://doi.org/10.1186/scrt337
J. Chen, F. Wang, Y. Zhang, X. Jin, L. Zhang et al., In vivo tracking of superparamagnetic iron oxide nanop labeled chondrocytes in large animal model. Ann. Biomed. Eng. 40(12), 2568–2578 (2012). https://doi.org/10.1007/s10439-012-0621-5
G. Parekh, Y. Shi, J. Zheng, X. Zhang, S. Leporatti, Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther. Deliv. 9(6), 451–468 (2018). https://doi.org/10.4155/tde-2018-0013
P. Singh, S. Pandit, V. Mokkapati, A. Garg, V. Ravikumar et al., Gold nanops in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. (2018). https://doi.org/10.3390/ijms19071979
M. Moglianetti, E. De. Luca, D. Pedone, R. Marotta, T. Catelani et al., Platinum nanozymes recover cellular ros homeostasis in an oxidative stress-mediated disease model. Nanoscale 8(6), 3739–3752 (2016). https://doi.org/10.1039/C5NR08358C
Y. Vlamidis, V. Voliani, Bringing again noble metal nanops to the forefront of cancer therapy. Front. Bioeng. Biotechnol. 6, 143–143 (2018). https://doi.org/10.3389/fbioe.2018.00143
K. Memarzadeh, A.S. Sharili, J. Huang, S.C. Rawlinson, R.P. Allaker, Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J. Biomed. Mater. Res. Part A 103(3), 981–989 (2015). https://doi.org/10.1002/jbm.a.35241
J.-L. Wang, J.-K. Xu, C. Hopkins, D.H.-K. Chow, L. Qin, Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv. Sci. 7(8), 1902443–1902443 (2020). https://doi.org/10.1002/advs.201902443
J.H. Kim, J. Jeon, M. Shin, Y. Won, M. Lee et al., Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4), 730–743 (2014). https://doi.org/10.1016/j.cell.2014.01.007
H. Yao, J.K. Xu, N.Y. Zheng, J.L. Wang et al., Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats. Osteoarthr. Cartil. 27(12), 1811–1821 (2019). https://doi.org/10.1016/j.joca.2019.08.007
W.L. Wan, Y.J. Lin, P.C. Shih, Y.R. Bow, Q. Cui et al., An in situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis. Angew. Chem. Int. Ed. 57(31), 9875–9879 (2018). https://doi.org/10.1002/anie.201806159
Z. Tang, N. Kong, X. Zhang, Y. Liu, P. Hu et al., A materials-science perspective on tackling covid-19. Nat. Rev. Mater. (2020). https://doi.org/10.1038/s41578-020-00247-y
Z. Lei, W. Zhu, X. Zhang, X. Wang, P. Wu, Bio-inspired ionic skin for theranostics. Adv. Funct. Mater. 31(8), 2008020 (2021). https://doi.org/10.1002/adfm.202008020
Z. Li, D. Chu, Y. Gao, L. Jin, X. Zhang et al., Biomimicry, biomineralization, and bioregeneration of bone using advanced three-dimensional fibrous hydroxyapatite scaffold. Mater. Today Adv. 3, 100014 (2019). https://doi.org/10.1016/j.mtadv.2019.100014
C.L. Ventola, Progress in nanomedicine: approved and investigational nanodrugs. Pharm. Ther. 42(12), 742–755 (2017)
W. Xinluan, L. Yuxiao, N.H. Helena, Y. Zhijun, Q. Ling, Systemic drug delivery systems for bone tissue regeneration—a mini review. Curr. Pharm. Des. 21(12), 1575–1583 (2015). https://doi.org/10.2174/1381612821666150115152841
N. Bodick, J. Lufkin, C. Willwerth, A. Kumar, J. Bolognese et al., An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J. Bone Jt. Surg. Am. 97(11), 877–888 (2015). https://doi.org/10.2106/jbjs.N.00918
S.G. Owen, H.W. Francis, M.S. Roberts, Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br. J. Clin. Pharmacol. 38(4), 349–355 (1994). https://doi.org/10.1111/j.1365-2125.1994.tb04365.x
M.B. Goldring, J.-M. Dayer, S.R. Goldring, in Chapter 14—Osteoarthritis and the Immune System, eds. by J. Lorenzo, M.C. Horowitz, Y. Choi et al. (Academic Press, San Diego, 2016), pp. 257–269