Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
Corresponding Author: Yu Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 46
Abstract
Composite polymer electrolytes (CPEs) offer a promising solution for all-solid-state lithium-metal batteries (ASSLMBs). However, conventional nanofillers with Lewis-acid–base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously. Here, by regulating the surface charge characteristics of halloysite nanotube (HNT), we propose a concept of lithium-ion dynamic interface (Li+-DI) engineering in nano-charged CPE (NCCPE). Results show that the surface charge characteristics of HNTs fundamentally change the Li+-DI, and thereof the mechanical and ion-conduction behaviors of the NCCPEs. Particularly, the HNTs with positively charged surface (HNTs+) lead to a higher Li+ transference number (0.86) than that of HNTs− (0.73), but a lower toughness (102.13 MJ m−3 for HNTs+ and 159.69 MJ m−3 for HNTs−). Meanwhile, a strong interface compatibilization effect by Li+ is observed for especially the HNTs+-involved Li+-DI, which improves the toughness by 2000% compared with the control. Moreover, HNTs+ are more effective to weaken the Li+-solvation strength and facilitate the formation of LiF-rich solid–electrolyte interphase of Li metal compared to HNTs−. The resultant Li|NCCPE|LiFePO4 cell delivers a capacity of 144.9 mAh g−1 after 400 cycles at 0.5 C and a capacity retention of 78.6%. This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
Highlights:
1 The surface charge characteristics of halloysite nanotubes (HNTs) are manipulated to engineer the Li+-dynamic interface (Li+-DI) in composite polymer electrolytes.
2 Surface charge characteristics of HNTs generate pronounced impact on not only the ionic/mechanical properties of the composite electrolytes, but also the formation and composition of solid–electrolyte interphase (SEI) layer.
3 HNTs+-supported Li+-DI exhibits an anion-rich Li+-solvation structure and soft-and-tough mechanical interface, leading to LiF-rich SEI layer and improvement of toughness by over 2000% compared with the control.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Huo, M. Jiang, Y. Bai, S. Ahmed, K. Volz et al., Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23(4), 543–551 (2024). https://doi.org/10.1038/s41563-023-01792-x
- Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5(10), 3221–3223 (2020). https://doi.org/10.1021/acsenergylett.0c01977
- X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52(11), 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
- X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11(3), 527–543 (2018). https://doi.org/10.1039/c7ee02555f
- S. Yang, X. He, T. Hu, Y. He, S. Lv et al., A supertough, nonflammable, biomimetic gel with neuron-like nanoskeleton for puncture-tolerant safe lithium metal batteries. Adv. Funct. Mater. 33(45), 2304727 (2023). https://doi.org/10.1002/adfm.202304727
- X. He, Z. Zhu, G. Wen, S. Lv, S. Yang et al., Design of high-entropy tape electrolytes for compression-free solid-state batteries. Adv. Mater. 36(16), 2307599 (2024). https://doi.org/10.1002/adma.202307599
- K. Guo, S. Li, J. Wang, Z. Shi, Y. Wang et al., In situ orthogonal polymerization for constructing fast-charging and long-lifespan Li metal batteries with topological copolymer electrolytes. ACS Energy Lett. 9(3), 843–852 (2024). https://doi.org/10.1021/acsenergylett.3c02422
- W. Bao, Y. Zhang, L. Cao, Y. Jiang, H. Zhang et al., An H2O-initiated crosslinking strategy for ultrafine-nanoclusters-reinforced high-toughness polymer-In-plasticizer solid electrolyte. Adv. Mater. 35(41), 2304712 (2023). https://doi.org/10.1002/adma.202304712
- J. Zheng, L. Duan, H. Ma, Q. An, Q. Liu et al., Leveraging polymer architecture design with acylamino functionalization for electrolytes to enable highly durable lithium metal batteries. Energy Environ. Sci. 17(18), 6739–6754 (2024). https://doi.org/10.1039/D4EE02218A
- Y. Zheng, C. Wang, R. Zhang, S. Dai, H. Xie et al., Crosslinked polymer electrolyte constructed by metal-oxo clusters for solid lithium metal batteries. Energy Storage Mater. 57, 540–548 (2023). https://doi.org/10.1016/j.ensm.2023.02.037
- X. Liu, L. Sun, F. Zhai, T. Wu, P. Wang et al., Carbon dots induced supramolecular gel polymer electrolyte for high-performance lithium metal batteries. Adv. Energy Mater. 15(26), 2570113 (2025). https://doi.org/10.1002/aenm.202570113
- Y. Cheng, X. Liu, Y. Guo, G. Dong, X. Hu et al., Monodispersed sub-1 nm inorganic cluster chains in polymers for solid electrolytes with enhanced Li-ion transport. Adv. Mater. 35(47), e2303226 (2023). https://doi.org/10.1002/adma.202303226
- Y. Ma, L. Chen, Y. Li, B. Li, X. An et al., Mesoscale polymer regulation for fast-charging solid-state lithium metal batteries. Energy Environ. Sci. 18(8), 3730–3739 (2025). https://doi.org/10.1039/d5ee00203f
- V. Vijayakumar, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot et al., 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13(15), 2203326 (2023). https://doi.org/10.1002/aenm.202203326
- S. Kim, H. Jamal, F. Khan, A. Al-Ahmed, M.M. Abdelnaby et al., Achieving high durability in all-solid-state lithium metal batteries using metal–organic framework solid polymer electrolytes. J. Mater. Chem. A 12(18), 10942–10955 (2024). https://doi.org/10.1039/D3TA07184G
- Q. Zhu, X. Wang, J.D. Miller, Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11(9), 8954–8960 (2019). https://doi.org/10.1021/acsami.8b13735
- Y.-L. Liao, X.-L. Wang, H. Yuan, Y.-J. Li, C.-M. Xu et al., Ultrafast Li-rich transport in composite solid-state electrolytes. Adv. Mater. 37(10), 2419782 (2025). https://doi.org/10.1002/adma.202419782
- X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
- X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- Y. Ma, J. Wu, H. Xie, R. Zhang, Y. Zhang et al., The synthesis of three-dimensional hexagonal boron nitride as the reinforcing phase of polymer-based electrolyte for all-solid-state Li metal batteries. Angew. Chem. Int. Ed. 63(13), e202317256 (2024). https://doi.org/10.1002/anie.202317256
- P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
- M.-S. Tu, Z.-H. Wang, Q.-H. Chen, Z.-P. Guo, F.-F. Cao et al., Li-ion nanorobots with enhanced mobility for fast-ion conducting polymer electrolytes. Energy Environ. Sci. 18(6), 2873–2882 (2025). https://doi.org/10.1039/d4ee05881j
- W. Wang, Y. Yang, J. Yang, J. Zhang, Neuron-like silicone Nanofilaments@Montmorillonite nanofillers of PEO-based solid-state electrolytes for lithium metal batteries with wide operation temperature. Angew. Chem. Int. Ed. 63(34), e202400091 (2024). https://doi.org/10.1002/anie.202400091
- W. Zhang, V. Koverga, S. Liu, J. Zhou, J. Wang et al., Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy 9(4), 386–400 (2024). https://doi.org/10.1038/s41560-023-01443-0
- D. Zhang, Y. Liu, D. Li, S. Li, Q. Xiong et al., Salt dissociation and localized high-concentration solvation at the interface of a fluorinated gel and polymer solid electrolyte. Energy Environ. Sci. 18(1), 227–235 (2025). https://doi.org/10.1039/D4EE04078C
- K. Yang, J. Ma, Y. Li, J. Jiao, S. Jiao et al., Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries. J. Am. Chem. Soc. 146(16), 11371–11381 (2024). https://doi.org/10.1021/jacs.4c00976
- D. Zhang, Y. Liu, S. Yang, J. Zhu, H. Hong et al., Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries. Adv. Mater. 36(28), 2401549 (2024). https://doi.org/10.1002/adma.202401549
- Z. Wang, Y. Sun, Y. Mao, F. Zhang, L. Zheng et al., Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020). https://doi.org/10.1016/j.ensm.2020.05.020
- J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33(38), 2303718 (2023). https://doi.org/10.1002/adfm.202303718
- H. Peng, T. Long, J. Peng, H. Chen, L. Ji et al., Molecular design for in situ polymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries. Adv. Energy Mater. 14(22), 2400428 (2024). https://doi.org/10.1002/aenm.202400428
- S. Jurng, Z.L. Brown, J. Kim, B.L. Lucht, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11(9), 2600–2608 (2018). https://doi.org/10.1039/C8EE00364E
- A. Ye, Z. Zhu, Z. Ji, X. He, Y. He et al., Electrochemical active micro-protein coating by self-assembling 2D-microfluidics for stabilizing lithium metal anode. Adv. Funct. Mater. 34(6), 2310593 (2024). https://doi.org/10.1002/adfm.202310593
- S. Lv, G. Wen, W. Cai, S. Yang, J. Yang et al., Building slippy ion-conduction highways in polymer electrolyte by electrostatic adsorption enabled asymmetric solvation structure. J. Energy Chem. 103, 48–58 (2025). https://doi.org/10.1016/j.jechem.2024.11.050
- Y. Dai, M. Zhuang, Y.-X. Deng, Y. Liao, J. Gu et al., Stable cycling of all-solid-state lithium batteries enabled by cyano-molecular diamond improved polymer electrolytes. Nano-Micro Lett. 16(1), 217 (2024). https://doi.org/10.1007/s40820-024-01415-3
- S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13(44), 2302711 (2023). https://doi.org/10.1002/aenm.202302711
- P. Xu, Y. Zhou, H. Cheng, Large-scale orientated self-assembled halloysite nanotubes membrane with nanofluidic ion transport properties. Appl. Clay Sci. 180, 105184 (2019). https://doi.org/10.1016/j.clay.2019.105184
- F. Tao, X. Wang, S. Jin, L. Tian, Z. Liu et al., A composite of hierarchical porous MOFs and halloysite nanotubes as single-ion-conducting electrolyte toward high-performance solid-state lithium-ion batteries. Adv. Mater. 35(29), 2300687 (2023). https://doi.org/10.1002/adma.202300687
- D.-Q. Yang, J.-F. Rochette, E. Sacher, Spectroscopic evidence for pi-pi interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. J. Phys. Chem. B 109(10), 4481–4484 (2005). https://doi.org/10.1021/jp044511+
- C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen et al., Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium–metal anodes. Angew. Chem. Int. Ed. 60(19), 10871–10879 (2021). https://doi.org/10.1002/anie.202101976
- B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143(17), 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
- X. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan et al., Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21(9), 1057–1065 (2022). https://doi.org/10.1038/s41563-022-01296-0
- Z. Peng, X. Cao, P. Gao, H. Jia, X. Ren et al., High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30(24), 2001285 (2020). https://doi.org/10.1002/adfm.202001285
- J. Li, Z. Hu, S. Zhang, H. Zhang, S. Guo et al., Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat. Sustain. 7(11), 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7
- G. Jiang, W. Zou, W. Zhang, Z. Ou, S. Qi et al., Lithium-ion accelerated regulators by locally-zwitterionic covalent organic framework nanosheets. Adv. Energy Mater. 14(12), 2303672 (2024). https://doi.org/10.1002/aenm.202303672
- W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202320149 (2024). https://doi.org/10.1002/anie.202320149
- J. Jiang, X. Hu, S. Lu, C. Shen, S. Huang et al., Construction of lithophilic solid electrolyte interfaces with a bottom-up nucleation barrier difference for low-N/P ratio Li-metal batteries. Energy Storage Mater. 54, 885–894 (2023). https://doi.org/10.1016/j.ensm.2022.11.022
References
H. Huo, M. Jiang, Y. Bai, S. Ahmed, K. Volz et al., Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries. Nat. Mater. 23(4), 543–551 (2024). https://doi.org/10.1038/s41563-023-01792-x
Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5(10), 3221–3223 (2020). https://doi.org/10.1021/acsenergylett.0c01977
X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52(11), 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
X. Yu, A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 11(3), 527–543 (2018). https://doi.org/10.1039/c7ee02555f
S. Yang, X. He, T. Hu, Y. He, S. Lv et al., A supertough, nonflammable, biomimetic gel with neuron-like nanoskeleton for puncture-tolerant safe lithium metal batteries. Adv. Funct. Mater. 33(45), 2304727 (2023). https://doi.org/10.1002/adfm.202304727
X. He, Z. Zhu, G. Wen, S. Lv, S. Yang et al., Design of high-entropy tape electrolytes for compression-free solid-state batteries. Adv. Mater. 36(16), 2307599 (2024). https://doi.org/10.1002/adma.202307599
K. Guo, S. Li, J. Wang, Z. Shi, Y. Wang et al., In situ orthogonal polymerization for constructing fast-charging and long-lifespan Li metal batteries with topological copolymer electrolytes. ACS Energy Lett. 9(3), 843–852 (2024). https://doi.org/10.1021/acsenergylett.3c02422
W. Bao, Y. Zhang, L. Cao, Y. Jiang, H. Zhang et al., An H2O-initiated crosslinking strategy for ultrafine-nanoclusters-reinforced high-toughness polymer-In-plasticizer solid electrolyte. Adv. Mater. 35(41), 2304712 (2023). https://doi.org/10.1002/adma.202304712
J. Zheng, L. Duan, H. Ma, Q. An, Q. Liu et al., Leveraging polymer architecture design with acylamino functionalization for electrolytes to enable highly durable lithium metal batteries. Energy Environ. Sci. 17(18), 6739–6754 (2024). https://doi.org/10.1039/D4EE02218A
Y. Zheng, C. Wang, R. Zhang, S. Dai, H. Xie et al., Crosslinked polymer electrolyte constructed by metal-oxo clusters for solid lithium metal batteries. Energy Storage Mater. 57, 540–548 (2023). https://doi.org/10.1016/j.ensm.2023.02.037
X. Liu, L. Sun, F. Zhai, T. Wu, P. Wang et al., Carbon dots induced supramolecular gel polymer electrolyte for high-performance lithium metal batteries. Adv. Energy Mater. 15(26), 2570113 (2025). https://doi.org/10.1002/aenm.202570113
Y. Cheng, X. Liu, Y. Guo, G. Dong, X. Hu et al., Monodispersed sub-1 nm inorganic cluster chains in polymers for solid electrolytes with enhanced Li-ion transport. Adv. Mater. 35(47), e2303226 (2023). https://doi.org/10.1002/adma.202303226
Y. Ma, L. Chen, Y. Li, B. Li, X. An et al., Mesoscale polymer regulation for fast-charging solid-state lithium metal batteries. Energy Environ. Sci. 18(8), 3730–3739 (2025). https://doi.org/10.1039/d5ee00203f
V. Vijayakumar, M. Ghosh, K. Asokan, S.B. Sukumaran, S. Kurungot et al., 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13(15), 2203326 (2023). https://doi.org/10.1002/aenm.202203326
S. Kim, H. Jamal, F. Khan, A. Al-Ahmed, M.M. Abdelnaby et al., Achieving high durability in all-solid-state lithium metal batteries using metal–organic framework solid polymer electrolytes. J. Mater. Chem. A 12(18), 10942–10955 (2024). https://doi.org/10.1039/D3TA07184G
Q. Zhu, X. Wang, J.D. Miller, Advanced nanoclay-based nanocomposite solid polymer electrolyte for lithium iron phosphate batteries. ACS Appl. Mater. Interfaces 11(9), 8954–8960 (2019). https://doi.org/10.1021/acsami.8b13735
Y.-L. Liao, X.-L. Wang, H. Yuan, Y.-J. Li, C.-M. Xu et al., Ultrafast Li-rich transport in composite solid-state electrolytes. Adv. Mater. 37(10), 2419782 (2025). https://doi.org/10.1002/adma.202419782
X. Zhang, S. Cheng, C. Fu, G. Yin, L. Wang et al., Advancements and challenges in organic–inorganic composite solid electrolytes for all-solid-state lithium batteries. Nano-Micro Lett. 17(1), 2 (2024). https://doi.org/10.1007/s40820-024-01498-y
X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
Y. Ma, J. Wu, H. Xie, R. Zhang, Y. Zhang et al., The synthesis of three-dimensional hexagonal boron nitride as the reinforcing phase of polymer-based electrolyte for all-solid-state Li metal batteries. Angew. Chem. Int. Ed. 63(13), e202317256 (2024). https://doi.org/10.1002/anie.202317256
P. Shi, J. Ma, M. Liu, S. Guo, Y. Huang et al., A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18(6), 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2
M.-S. Tu, Z.-H. Wang, Q.-H. Chen, Z.-P. Guo, F.-F. Cao et al., Li-ion nanorobots with enhanced mobility for fast-ion conducting polymer electrolytes. Energy Environ. Sci. 18(6), 2873–2882 (2025). https://doi.org/10.1039/d4ee05881j
W. Wang, Y. Yang, J. Yang, J. Zhang, Neuron-like silicone Nanofilaments@Montmorillonite nanofillers of PEO-based solid-state electrolytes for lithium metal batteries with wide operation temperature. Angew. Chem. Int. Ed. 63(34), e202400091 (2024). https://doi.org/10.1002/anie.202400091
W. Zhang, V. Koverga, S. Liu, J. Zhou, J. Wang et al., Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy 9(4), 386–400 (2024). https://doi.org/10.1038/s41560-023-01443-0
D. Zhang, Y. Liu, D. Li, S. Li, Q. Xiong et al., Salt dissociation and localized high-concentration solvation at the interface of a fluorinated gel and polymer solid electrolyte. Energy Environ. Sci. 18(1), 227–235 (2025). https://doi.org/10.1039/D4EE04078C
K. Yang, J. Ma, Y. Li, J. Jiao, S. Jiao et al., Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries. J. Am. Chem. Soc. 146(16), 11371–11381 (2024). https://doi.org/10.1021/jacs.4c00976
D. Zhang, Y. Liu, S. Yang, J. Zhu, H. Hong et al., Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries. Adv. Mater. 36(28), 2401549 (2024). https://doi.org/10.1002/adma.202401549
Z. Wang, Y. Sun, Y. Mao, F. Zhang, L. Zheng et al., Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020). https://doi.org/10.1016/j.ensm.2020.05.020
J. Li, H. Hu, W. Fang, J. Ding, D. Yuan et al., Impact of fluorine-based lithium salts on SEI for all-solid-state PEO-based lithium metal batteries. Adv. Funct. Mater. 33(38), 2303718 (2023). https://doi.org/10.1002/adfm.202303718
H. Peng, T. Long, J. Peng, H. Chen, L. Ji et al., Molecular design for in situ polymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries. Adv. Energy Mater. 14(22), 2400428 (2024). https://doi.org/10.1002/aenm.202400428
S. Jurng, Z.L. Brown, J. Kim, B.L. Lucht, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11(9), 2600–2608 (2018). https://doi.org/10.1039/C8EE00364E
A. Ye, Z. Zhu, Z. Ji, X. He, Y. He et al., Electrochemical active micro-protein coating by self-assembling 2D-microfluidics for stabilizing lithium metal anode. Adv. Funct. Mater. 34(6), 2310593 (2024). https://doi.org/10.1002/adfm.202310593
S. Lv, G. Wen, W. Cai, S. Yang, J. Yang et al., Building slippy ion-conduction highways in polymer electrolyte by electrostatic adsorption enabled asymmetric solvation structure. J. Energy Chem. 103, 48–58 (2025). https://doi.org/10.1016/j.jechem.2024.11.050
Y. Dai, M. Zhuang, Y.-X. Deng, Y. Liao, J. Gu et al., Stable cycling of all-solid-state lithium batteries enabled by cyano-molecular diamond improved polymer electrolytes. Nano-Micro Lett. 16(1), 217 (2024). https://doi.org/10.1007/s40820-024-01415-3
S. Lv, X. He, Z. Ji, S. Yang, L. Feng et al., A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li+-solvation microenvironment for lithium metal batteries. Adv. Energy Mater. 13(44), 2302711 (2023). https://doi.org/10.1002/aenm.202302711
P. Xu, Y. Zhou, H. Cheng, Large-scale orientated self-assembled halloysite nanotubes membrane with nanofluidic ion transport properties. Appl. Clay Sci. 180, 105184 (2019). https://doi.org/10.1016/j.clay.2019.105184
F. Tao, X. Wang, S. Jin, L. Tian, Z. Liu et al., A composite of hierarchical porous MOFs and halloysite nanotubes as single-ion-conducting electrolyte toward high-performance solid-state lithium-ion batteries. Adv. Mater. 35(29), 2300687 (2023). https://doi.org/10.1002/adma.202300687
D.-Q. Yang, J.-F. Rochette, E. Sacher, Spectroscopic evidence for pi-pi interaction between poly(diallyl dimethylammonium) chloride and multiwalled carbon nanotubes. J. Phys. Chem. B 109(10), 4481–4484 (2005). https://doi.org/10.1021/jp044511+
C. Jiang, Q. Jia, M. Tang, K. Fan, Y. Chen et al., Regulating the solvation sheath of Li ions by using hydrogen bonds for highly stable lithium–metal anodes. Angew. Chem. Int. Ed. 60(19), 10871–10879 (2021). https://doi.org/10.1002/anie.202101976
B. Xu, X. Li, C. Yang, Y. Li, N.S. Grundish et al., Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143(17), 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752
X. Wang, C. Zhang, M. Sawczyk, J. Sun, Q. Yuan et al., Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21(9), 1057–1065 (2022). https://doi.org/10.1038/s41563-022-01296-0
Z. Peng, X. Cao, P. Gao, H. Jia, X. Ren et al., High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30(24), 2001285 (2020). https://doi.org/10.1002/adfm.202001285
J. Li, Z. Hu, S. Zhang, H. Zhang, S. Guo et al., Molecular engineering of renewable cellulose biopolymers for solid-state battery electrolytes. Nat. Sustain. 7(11), 1481–1491 (2024). https://doi.org/10.1038/s41893-024-01414-7
G. Jiang, W. Zou, W. Zhang, Z. Ou, S. Qi et al., Lithium-ion accelerated regulators by locally-zwitterionic covalent organic framework nanosheets. Adv. Energy Mater. 14(12), 2303672 (2024). https://doi.org/10.1002/aenm.202303672
W. Liang, X. Zhou, B. Zhang, Z. Zhao, X. Song et al., The versatile establishment of charge storage in polymer solid electrolyte with enhanced charge transfer for LiF-rich SEI generation in lithium metal batteries. Angew. Chem. Int. Ed. 63(18), e202320149 (2024). https://doi.org/10.1002/anie.202320149
J. Jiang, X. Hu, S. Lu, C. Shen, S. Huang et al., Construction of lithophilic solid electrolyte interfaces with a bottom-up nucleation barrier difference for low-N/P ratio Li-metal batteries. Energy Storage Mater. 54, 885–894 (2023). https://doi.org/10.1016/j.ensm.2022.11.022