Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways
Corresponding Author: YongAn Huang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 64
Abstract
This study presents a breakthrough in flexible strain sensor technology with the development of an ultra-high sensitivity and wide-range sensor, addressing the critical challenge of reconciling sensitivity with measurement range. Inspired by the structure of bamboo slips, we introduce a novel approach that utilises liquid metal to modulate the electrical pathways within a cracked platinum fabric electrode. The resulting sensor demonstrates a gauge factor greater than 108 and a strain measurement capability exceeding 100%. The integration of patterned liquid metal enables customisable tuning of the sensor’s response, while the porous fabric structure ensures superior comfort and air permeability for the wearer. Our design not only optimises the sensor’s performance but also enhances the electrical stability that is essential for practical applications. Through systematic investigation, we reveal the intrinsic mechanisms governing the sensor’s response, offering valuable insights for the design of wearable strain sensors. The sensor’s exceptional performance across a spectrum of applications, from micro-strain to large-strain detection, highlights its potential for a wide range of real-world uses, demonstrating a significant advancement in the field of flexible electronics.
Highlights:
1 A method is proposed for the modulation of electrical pathways in the cracks of stretchable electrodes using liquid metals, based on which ultra-high sensitivity (> 108) and large-range (> 100%) strain sensors are realised.
2 A secondary modulation of the response (or performance) of the sensor is proposed, allowing not only electrical modulation by liquid metal patterning during fabrication, but also mechanical modulation by pre-stretching at the time of use.
3 The air permeability and stability of the patterned liquid metal electrode region is optimised to enable air permeability similar to that of conventional fabrics and cycle durability in excess of 2000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
- J.J. Kim, Y. Wang, H. Wang, S. Lee, T. Yokota et al., Skin electronics: next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 31, 2009602 (2021). https://doi.org/10.1002/adfm.202009602
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- Y. Bai, L. Yin, C. Hou, Y. Zhou, F. Zhang et al., Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 33, 2214119 (2023). https://doi.org/10.1002/adfm.202214119
- Y. Wang, T. Tang, X. Yin, Y. Bai, L. Yin et al., All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. npj Flexible Electron. (2021). https://doi.org/10.1038/s41528-021-00119-7
- M. Zhuang, L. Yin, Y. Wang, Y. Bai, J. Zhan et al., Highly robust and wearable facial expression recognition via deep-learning-assisted, soft epidermal electronics. Research 2021, 9759601 (2021). https://doi.org/10.34133/2021/9759601
- Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6, eabd0996 (2020). https://doi.org/10.1126/sciadv.abd0996
- S. Patel, F. Ershad, M. Zhao, R.R. Isseroff, B. Duan et al., Wearable electronics for skin wound monitoring and healing. Soft Sci. 2, 9 (2022). https://doi.org/10.20517/ss.2022.13
- Q. Wang, Y. Li, Y. Lin, Y. Sun, C. Bai et al., A generic strategy to create mechanically interlocked nanocomposite/hydrogel hybrid electrodes for epidermal electronics. Nano-Micro Lett. 16, 87 (2024). https://doi.org/10.1007/s40820-023-01314-z
- K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16, 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
- Y. Huang, C. Zhu, W. Xiong, Y. Wang, Y. Jiang et al., Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft. Sci. China Technol. Sci. 65, 1–29 (2022). https://doi.org/10.1007/s11431-020-1793-0
- W. Xiong, C. Zhu, D. Guo, C. Hou, Z. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
- B.H. Kim, K. Li, J.-T. Kim, Y. Park, H. Jang et al., Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021). https://doi.org/10.1038/s41586-021-03847-y
- Y. Huang, Y. Ding, J. Bian, Y. Su, J. Zhou et al., Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40, 432–439 (2017). https://doi.org/10.1016/j.nanoen.2017.07.048
- D. Hurdoganoglu, B. Safaei, J. Cheng, Z. Qin, S. Sahmani, A comprehensive review on the novel principles, development and applications of triboelectric nanogenerators. Appl. Mech. Rev. 76, 010802 (2024). https://doi.org/10.1115/1.4056391
- Y. Gong, Y.-Z. Zhang, S. Fang, Y. Sun, J. Niu et al., Wireless human–machine interface based on artificial bionic skin with damage reconfiguration and multisensing capabilities. ACS Appl. Mater. Interfaces 14, 47300–47309 (2022). https://doi.org/10.1021/acsami.2c14907
- T.H. Wong, C.K. Yiu, J. Zhou, Z. Song, Y. Liu et al., Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci. 1, 10 (2021). https://doi.org/10.20517/ss.2021.09
- K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human-machine interaction. Nano-Micro Lett. 15, 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
- Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin et al., High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31, 2100857 (2021). https://doi.org/10.1002/adfm.202100857
- K.H. Kim, J.H. Kim, Y.J. Ko, H.E. Lee, Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications. Soft Sci. (2024). https://doi.org/10.20517/ss.2024.09
- J. Yang, L. Chang, X. Zhang, Z. Cao, L. Jiang, Ionic liquid-enhanced assembly of nanomaterials for highly stable flexible transparent electrodes. Nano-Micro Lett. 16, 140 (2024). https://doi.org/10.1007/s40820-024-01333-4
- Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6, eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
- C. Wei, W. Lin, L. Wang, Z. Cao, Z. Huang et al., Conformal human-machine integration using highly bending-insensitive, unpixelated, and waterproof epidermal electronics toward metaverse. Nano-Micro Lett. 15, 199 (2023). https://doi.org/10.1007/s40820-023-01176-5
- J. Chen, F. Wang, G. Zhu, C. Wang, X. Cui et al., Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity. ACS Appl. Mater. Interfaces 13, 51567–51577 (2021). https://doi.org/10.1021/acsami.1c16733
- M. Chu, T. Nguyen, V. Pandey, Y. Zhou, H.N. Pham et al., Respiration rate and volume measurements using wearable strain sensors. npj Digit. Med. 2, 8 (2019). https://doi.org/10.1038/s41746-019-0083-3
- J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
- Y. Sun, Z. Zhang, Y. Zhou, S. Liu, H. Xu, Wearable strain sensor based on double-layer graphene fabrics for real-time, continuous acquirement of human pulse signal in daily activities. Adv. Mater. Technol. 6, 2001071 (2021). https://doi.org/10.1002/admt.202001071
- W.-W. Jheng, Y.-S. Su, Y.-L. Hsieh, Y.-J. Lin, S.-D. Tzeng et al., Gold nanop thin film-based strain sensors for monitoring human pulse. ACS Appl. Nano Mater. 4, 1712–1718 (2021). https://doi.org/10.1021/acsanm.0c03167
- T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin et al., A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2, 967–974 (2017). https://doi.org/10.1021/acssensors.7b00230
- S. Gong, L.W. Yap, B. Zhu, Q. Zhai, Y. Liu et al., Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 31, 1903789 (2019). https://doi.org/10.1002/adma.201903789
- S. Yang, P. Sharma, A tutorial on the stability and bifurcation analysis of the electromechanical behaviour of soft materials. Appl. Mech. Rev. 75, 044801 (2023). https://doi.org/10.1115/1.4056303
- Y. Bai, C. Hou, W. Cheng, Z. Xu, K. Li et al., Fibre-based stretchable electrodes for flexible metamaterial electronics: a review. Program. Mater. 2, e3 (2024). https://doi.org/10.1017/pma.2024.3
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
- S. Duan, Y. Lin, Z. Wang, J. Tang, Y. Li et al., Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research (2021). https://doi.org/10.34133/2021/9861467
- C. Cho, P. Kang, A. Taqieddin, Y. Jing, K. Yong et al., Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 4, 126–133 (2021). https://doi.org/10.1038/s41928-021-00538-4
- H. Yang, J. Li, X. Xiao, J. Wang, Y. Li et al., Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022). https://doi.org/10.1038/s41467-022-33021-5
- S. Li, G. Liu, R. Li, Q. Li, Y. Zhao et al., Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS Nano 16, 541–553 (2022). https://doi.org/10.1021/acsnano.1c07645
- K. Li, Y. Shuai, X. Cheng, H. Luan, S. Liu et al., Island effect in stretchable inorganic electronics. Small 18, e2107879 (2022). https://doi.org/10.1002/smll.202107879
- D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). https://doi.org/10.1126/science.1154367
- Y. Li, T. Fang, J. Zhang, H. Zhu, Y. Sun et al., Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc. Natl. Acad. Sci. U.S.A. 120, e2300953120 (2023). https://doi.org/10.1073/pnas.2300953120
- Y. Lin, T. Fang, C. Bai, Y. Sun, C. Yang et al., Ultrastretchable electrically self-healing conductors based on silver nanowire/liquid metal microcapsule nanocomposites. Nano Lett. 23, 11174–11183 (2023). https://doi.org/10.1021/acs.nanolett.3c03670
- K. Chen, L. Zhang, K. Wu, C. Yang, R. Wang et al., Highly robust and strain-resilient thin film conductors featuring brittle materials. Nano Lett. 23, 6619–6628 (2023). https://doi.org/10.1021/acs.nanolett.3c01781
- J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12, 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
- L.-Y. Zhou, J.-Z. Fu, Q. Gao, P. Zhao, Y. He, All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal–silicone inks. Adv. Funct. Mater. 30, 1906683 (2020). https://doi.org/10.1002/adfm.201906683
- C.A. Silva, J. Lv, L. Yin, I. Jeerapan, G. Innocenzi et al., Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30, 2002041 (2020). https://doi.org/10.1002/adfm.202002041
- Y. Liu, T. Yang, Y. Zhang, G. Qu, S. Wei et al., Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv. Mater. 31, 1902783 (2019). https://doi.org/10.1002/adma.201902783
- J.H. Lee, S.H. Kim, J.S. Heo, J.Y. Kwak, C.W. Park et al., Heterogeneous structure omnidirectional strain sensor arrays with cognitively learned neural networks. Adv. Mater. 35, e2208184 (2023). https://doi.org/10.1002/adma.202208184
- Y.-X. Qu, Q.-Q. Xia, L.-T. Li, C.-F. Cao, G.-D. Zhang et al., Rational design of oil-resistant and electrically conductive fluorosilicone rubber foam nanocomposites for sensitive detectability in complex solvent environments. ACS Nano 18, 22021–22033 (2024). https://doi.org/10.1021/acsnano.4c04135
- H.-Y. Chen, Z.-Y. Chen, M. Mao, Y.-Y. Wu, F. Yang et al., Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities. Adv. Funct. Mater. 33, 2304927 (2023). https://doi.org/10.1002/adfm.202304927
- P. Das, P.K. Marvi, S. Ganguly, X. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16, 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- O. Castillo-Cruz, C. Pérez-Aranda, F. Gamboa, J.V. Cauich-Rodríguez, D. Mantovani et al., Prediction of circumferential compliance and burst strength of polymeric vascular grafts. J. Mech. Behav. Biomed. Mater. 79, 332–340 (2018). https://doi.org/10.1016/j.jmbbm.2017.12.031
- C. Pérez-Aranda, Z. Valdez-Nava, F. Gamboa, J.V. Cauich-Rodríguez, F. Avilés, Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing. Smart Mater. Struct. 29, 115021 (2020). https://doi.org/10.1088/1361-665x/aba9e6
- Y. Wang, J. Wang, S. Cao, D. Kong, A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C 7, 9748–9755 (2019). https://doi.org/10.1039/C9TC02584G
- Y. Li, S. Wang, J. Zhang, X. Ma, S. Cao et al., A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 14, 13713–13721 (2022). https://doi.org/10.1021/acsami.1c25206
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
- R. Fu, L. Tu, Y. Zhou, L. Fan, F. Zhang et al., A tough and self-powered hydrogel for artificial skin. Chem. Mater. 31, 9850–9860 (2019). https://doi.org/10.1021/acs.chemmater.9b04041
- T. Liu, G.-Y. Gou, F. Gao, P. Yao, H. Wu et al., Multichannel flexible pulse perception array for intelligent disease diagnosis system. ACS Nano 17, 5673–5685 (2023). https://doi.org/10.1021/acsnano.2c11897
References
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim et al., Epidermal electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019). https://doi.org/10.1002/adma.201904765
J.J. Kim, Y. Wang, H. Wang, S. Lee, T. Yokota et al., Skin electronics: next-generation device platform for virtual and augmented reality. Adv. Funct. Mater. 31, 2009602 (2021). https://doi.org/10.1002/adfm.202009602
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
Y. Bai, L. Yin, C. Hou, Y. Zhou, F. Zhang et al., Response regulation for epidermal fabric strain sensors via mechanical strategy. Adv. Funct. Mater. 33, 2214119 (2023). https://doi.org/10.1002/adfm.202214119
Y. Wang, T. Tang, X. Yin, Y. Bai, L. Yin et al., All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. npj Flexible Electron. (2021). https://doi.org/10.1038/s41528-021-00119-7
M. Zhuang, L. Yin, Y. Wang, Y. Bai, J. Zhan et al., Highly robust and wearable facial expression recognition via deep-learning-assisted, soft epidermal electronics. Research 2021, 9759601 (2021). https://doi.org/10.34133/2021/9759601
Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6, eabd0996 (2020). https://doi.org/10.1126/sciadv.abd0996
S. Patel, F. Ershad, M. Zhao, R.R. Isseroff, B. Duan et al., Wearable electronics for skin wound monitoring and healing. Soft Sci. 2, 9 (2022). https://doi.org/10.20517/ss.2022.13
Q. Wang, Y. Li, Y. Lin, Y. Sun, C. Bai et al., A generic strategy to create mechanically interlocked nanocomposite/hydrogel hybrid electrodes for epidermal electronics. Nano-Micro Lett. 16, 87 (2024). https://doi.org/10.1007/s40820-023-01314-z
K.Y. Chung, B. Xu, D. Tan, Q. Yang, Z. Li et al., Naturally crosslinked biocompatible carbonaceous liquid metal aqueous ink printing wearable electronics for multi-sensing and energy harvesting. Nano-Micro Lett. 16, 149 (2024). https://doi.org/10.1007/s40820-024-01362-z
Y. Huang, C. Zhu, W. Xiong, Y. Wang, Y. Jiang et al., Flexible smart sensing skin for “Fly-by-Feel” morphing aircraft. Sci. China Technol. Sci. 65, 1–29 (2022). https://doi.org/10.1007/s11431-020-1793-0
W. Xiong, C. Zhu, D. Guo, C. Hou, Z. Yang et al., Bio-inspired, intelligent flexible sensing skin for multifunctional flying perception. Nano Energy 90, 106550 (2021). https://doi.org/10.1016/j.nanoen.2021.106550
B.H. Kim, K. Li, J.-T. Kim, Y. Park, H. Jang et al., Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021). https://doi.org/10.1038/s41586-021-03847-y
Y. Huang, Y. Ding, J. Bian, Y. Su, J. Zhou et al., Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40, 432–439 (2017). https://doi.org/10.1016/j.nanoen.2017.07.048
D. Hurdoganoglu, B. Safaei, J. Cheng, Z. Qin, S. Sahmani, A comprehensive review on the novel principles, development and applications of triboelectric nanogenerators. Appl. Mech. Rev. 76, 010802 (2024). https://doi.org/10.1115/1.4056391
Y. Gong, Y.-Z. Zhang, S. Fang, Y. Sun, J. Niu et al., Wireless human–machine interface based on artificial bionic skin with damage reconfiguration and multisensing capabilities. ACS Appl. Mater. Interfaces 14, 47300–47309 (2022). https://doi.org/10.1021/acsami.2c14907
T.H. Wong, C.K. Yiu, J. Zhou, Z. Song, Y. Liu et al., Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci. 1, 10 (2021). https://doi.org/10.20517/ss.2021.09
K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human-machine interaction. Nano-Micro Lett. 15, 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin et al., High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31, 2100857 (2021). https://doi.org/10.1002/adfm.202100857
K.H. Kim, J.H. Kim, Y.J. Ko, H.E. Lee, Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications. Soft Sci. (2024). https://doi.org/10.20517/ss.2024.09
J. Yang, L. Chang, X. Zhang, Z. Cao, L. Jiang, Ionic liquid-enhanced assembly of nanomaterials for highly stable flexible transparent electrodes. Nano-Micro Lett. 16, 140 (2024). https://doi.org/10.1007/s40820-024-01333-4
Y. Wang, S. Lee, T. Yokota, H. Wang, Z. Jiang et al., A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 6, eabb7043 (2020). https://doi.org/10.1126/sciadv.abb7043
C. Wei, W. Lin, L. Wang, Z. Cao, Z. Huang et al., Conformal human-machine integration using highly bending-insensitive, unpixelated, and waterproof epidermal electronics toward metaverse. Nano-Micro Lett. 15, 199 (2023). https://doi.org/10.1007/s40820-023-01176-5
J. Chen, F. Wang, G. Zhu, C. Wang, X. Cui et al., Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity. ACS Appl. Mater. Interfaces 13, 51567–51577 (2021). https://doi.org/10.1021/acsami.1c16733
M. Chu, T. Nguyen, V. Pandey, Y. Zhou, H.N. Pham et al., Respiration rate and volume measurements using wearable strain sensors. npj Digit. Med. 2, 8 (2019). https://doi.org/10.1038/s41746-019-0083-3
J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
Y. Sun, Z. Zhang, Y. Zhou, S. Liu, H. Xu, Wearable strain sensor based on double-layer graphene fabrics for real-time, continuous acquirement of human pulse signal in daily activities. Adv. Mater. Technol. 6, 2001071 (2021). https://doi.org/10.1002/admt.202001071
W.-W. Jheng, Y.-S. Su, Y.-L. Hsieh, Y.-J. Lin, S.-D. Tzeng et al., Gold nanop thin film-based strain sensors for monitoring human pulse. ACS Appl. Nano Mater. 4, 1712–1718 (2021). https://doi.org/10.1021/acsanm.0c03167
T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin et al., A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2, 967–974 (2017). https://doi.org/10.1021/acssensors.7b00230
S. Gong, L.W. Yap, B. Zhu, Q. Zhai, Y. Liu et al., Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 31, 1903789 (2019). https://doi.org/10.1002/adma.201903789
S. Yang, P. Sharma, A tutorial on the stability and bifurcation analysis of the electromechanical behaviour of soft materials. Appl. Mech. Rev. 75, 044801 (2023). https://doi.org/10.1115/1.4056303
Y. Bai, C. Hou, W. Cheng, Z. Xu, K. Li et al., Fibre-based stretchable electrodes for flexible metamaterial electronics: a review. Program. Mater. 2, e3 (2024). https://doi.org/10.1017/pma.2024.3
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
S. Duan, Y. Lin, Z. Wang, J. Tang, Y. Li et al., Conductive porous MXene for bionic, wearable, and precise gesture motion sensors. Research (2021). https://doi.org/10.34133/2021/9861467
C. Cho, P. Kang, A. Taqieddin, Y. Jing, K. Yong et al., Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 4, 126–133 (2021). https://doi.org/10.1038/s41928-021-00538-4
H. Yang, J. Li, X. Xiao, J. Wang, Y. Li et al., Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 13, 5311 (2022). https://doi.org/10.1038/s41467-022-33021-5
S. Li, G. Liu, R. Li, Q. Li, Y. Zhao et al., Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS Nano 16, 541–553 (2022). https://doi.org/10.1021/acsnano.1c07645
K. Li, Y. Shuai, X. Cheng, H. Luan, S. Liu et al., Island effect in stretchable inorganic electronics. Small 18, e2107879 (2022). https://doi.org/10.1002/smll.202107879
D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim et al., Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). https://doi.org/10.1126/science.1154367
Y. Li, T. Fang, J. Zhang, H. Zhu, Y. Sun et al., Ultrasensitive and ultrastretchable electrically self-healing conductors. Proc. Natl. Acad. Sci. U.S.A. 120, e2300953120 (2023). https://doi.org/10.1073/pnas.2300953120
Y. Lin, T. Fang, C. Bai, Y. Sun, C. Yang et al., Ultrastretchable electrically self-healing conductors based on silver nanowire/liquid metal microcapsule nanocomposites. Nano Lett. 23, 11174–11183 (2023). https://doi.org/10.1021/acs.nanolett.3c03670
K. Chen, L. Zhang, K. Wu, C. Yang, R. Wang et al., Highly robust and strain-resilient thin film conductors featuring brittle materials. Nano Lett. 23, 6619–6628 (2023). https://doi.org/10.1021/acs.nanolett.3c01781
J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12, 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
L.-Y. Zhou, J.-Z. Fu, Q. Gao, P. Zhao, Y. He, All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal–silicone inks. Adv. Funct. Mater. 30, 1906683 (2020). https://doi.org/10.1002/adfm.201906683
C.A. Silva, J. Lv, L. Yin, I. Jeerapan, G. Innocenzi et al., Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30, 2002041 (2020). https://doi.org/10.1002/adfm.202002041
Y. Liu, T. Yang, Y. Zhang, G. Qu, S. Wei et al., Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv. Mater. 31, 1902783 (2019). https://doi.org/10.1002/adma.201902783
J.H. Lee, S.H. Kim, J.S. Heo, J.Y. Kwak, C.W. Park et al., Heterogeneous structure omnidirectional strain sensor arrays with cognitively learned neural networks. Adv. Mater. 35, e2208184 (2023). https://doi.org/10.1002/adma.202208184
Y.-X. Qu, Q.-Q. Xia, L.-T. Li, C.-F. Cao, G.-D. Zhang et al., Rational design of oil-resistant and electrically conductive fluorosilicone rubber foam nanocomposites for sensitive detectability in complex solvent environments. ACS Nano 18, 22021–22033 (2024). https://doi.org/10.1021/acsnano.4c04135
H.-Y. Chen, Z.-Y. Chen, M. Mao, Y.-Y. Wu, F. Yang et al., Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities. Adv. Funct. Mater. 33, 2304927 (2023). https://doi.org/10.1002/adfm.202304927
P. Das, P.K. Marvi, S. Ganguly, X. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16, 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
O. Castillo-Cruz, C. Pérez-Aranda, F. Gamboa, J.V. Cauich-Rodríguez, D. Mantovani et al., Prediction of circumferential compliance and burst strength of polymeric vascular grafts. J. Mech. Behav. Biomed. Mater. 79, 332–340 (2018). https://doi.org/10.1016/j.jmbbm.2017.12.031
C. Pérez-Aranda, Z. Valdez-Nava, F. Gamboa, J.V. Cauich-Rodríguez, F. Avilés, Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing. Smart Mater. Struct. 29, 115021 (2020). https://doi.org/10.1088/1361-665x/aba9e6
Y. Wang, J. Wang, S. Cao, D. Kong, A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. J. Mater. Chem. C 7, 9748–9755 (2019). https://doi.org/10.1039/C9TC02584G
Y. Li, S. Wang, J. Zhang, X. Ma, S. Cao et al., A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl. Mater. Interfaces 14, 13713–13721 (2022). https://doi.org/10.1021/acsami.1c25206
Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
R. Fu, L. Tu, Y. Zhou, L. Fan, F. Zhang et al., A tough and self-powered hydrogel for artificial skin. Chem. Mater. 31, 9850–9860 (2019). https://doi.org/10.1021/acs.chemmater.9b04041
T. Liu, G.-Y. Gou, F. Gao, P. Yao, H. Wu et al., Multichannel flexible pulse perception array for intelligent disease diagnosis system. ACS Nano 17, 5673–5685 (2023). https://doi.org/10.1021/acsnano.2c11897