Revisiting the Role of Physical Confinement and Chemical Regulation of 3D Hosts for Dendrite-Free Li Metal Anode
Corresponding Author: Yan Yu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 187
Abstract
Lithium metal anode has been demonstrated as the most promising anode for lithium batteries because of its high theoretical capacity, but infinite volume change and dendritic growth during Li electrodeposition have prevented its practical applications. Both physical morphology confinement and chemical adsorption/diffusion regulation are two crucial approaches to designing lithiophilic materials to alleviate dendrite of Li metal anode. However, their roles in suppressing dendrite growth for long-life Li anode are not fully understood yet. Herein, three different Ni-based nanosheet arrays (NiO-NS, Ni3N-NS, and Ni5P4-NS) on carbon cloth as proof-of-concept lithiophilic frameworks are proposed for Li metal anodes. The two-dimensional nanoarray is more promising to facilitate uniform Li+ flow and electric field. Compared with the NiO-NS and the Ni5P4-NS, the Ni3N-NS on carbon cloth after reacting with molten Li (Li-Ni/Li3N-NS@CC) can afford the strongest adsorption to Li+ and the most rapid Li+ diffusion path. Therefore, the Li-Ni/Li3N-NS@CC electrode realizes the lowest overpotential and the most excellent electrochemical performance (60 mA cm−2 and 60 mAh cm−2 for 1000 h). Furthermore, a remarkable full battery (LiFePO4||Li-Ni/Li3N-NS@CC) reaches 300 cycles at 2C. This research provides valuable insight into designing dendrite-free alkali metal batteries.
Highlights:
1 The two-dimensional nanoarray with excellent physical confinement is more promising to facilitate uniform Li+ flow and electric field.
2 Li3N with superior chemical regulation provides nucleation sites, accelerates the replenishment of consumed Li+, and achieves dendrite-free morphology.
3 The synergistic effect of physical confinement and chemical regulation achieves superior electrochemical performance at high current density and areal capacity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
- J. Xiao, N. Xiao, K. Li, L.P. Zhang, J.W. Chang et al., Ultra-high fluorine enhanced homogeneous nucleation of lithium metal on stepped carbon nanosheets with abundant edge sites. Adv. Energy Mater. 12(10), 2103123 (2022). https://doi.org/10.1002/aenm.202103123
- Z.L. Yang, Y. Dang, P.B. Zhai, Y. Wei, Q. Chen et al., Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv. Energy Mater. 12(8), 2103368 (2022). https://doi.org/10.1002/aenm.202103368
- Y. Ma, L. Wei, Y. He, X. Yuan, Y. Su et al., A “blockchain” synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high Coulombic efficiency. Angew. Chem. Int. Ed. 61(12), e202116291 (2022). https://doi.org/10.1002/anie.202116291
- J.F. Ding, R. Xu, C. Yan, B.Q. Li, H. Yuan et al., A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 59, 306–319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016
- H. Zhang, Y. Chen, C. Li, M. Armand, Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat 1(1), 24–37 (2021). https://doi.org/10.1002/sus2.6
- Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 34(8), 2108400 (2022). https://doi.org/10.1002/adma.202108400
- T. Zhou, Y. Zhao, M.E. Kazzi, J.W. Choi, A. Coskun, Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angew. Chem. Int. Ed. 61(19), e202115884 (2022). https://doi.org/10.1002/anie.202115884
- J.F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60(20), 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
- J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu et al., Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 15(4), 1647–1658 (2022). https://doi.org/10.1039/d1ee03422g
- M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21(4), 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
- G. Jiang, F. Li, H. Wang, M. Wu, S. Qi et al., Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct. 2(5), 2000122 (2021). https://doi.org/10.1002/sstr.202000122
- L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
- W. Chen, R.V. Salvatierra, J.T. Li, D.X. Luong, J.L. Beckham et al., Brushed metals for rechargeable metal batteries. Adv. Mater. 34(31), 2202668 (2022). https://doi.org/10.1002/adma.202202668
- Y. Jeoun, K. Kim, S.Y. Kim, S.H. Lee, S.H. Huh et al., Surface roughness-independent homogeneous lithium plating in synergetic conditioned electrolyte. ACS Energy Lett. 7(7), 2219–2227 (2022). https://doi.org/10.1021/acsenergylett.2c00974
- Z. Huang, S. Choudhury, N. Paul, J.H. Thienenkamp, P. Lennartz et al., Effects of polymer coating mechanics at solid-electrolyte interphase for stabilizing lithium metal anodes. Adv. Energy Mater. 12(5), 2103187 (2021). https://doi.org/10.1002/aenm.202103187
- S. Qian, C. Xing, M. Zheng, Z. Su, H. Chen et al., CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv. Energy Mater. 12(15), 2103480 (2022). https://doi.org/10.1002/aenm.202103480
- Y. Luo, T. Li, H. Zhang, Y. Yu, A. Hussain et al., New insights into the formation of silicon–oxygen layer on lithium metal anode via in situ reaction with tetraethoxysilane. J. Energy Chem. 56, 14–22 (2021). https://doi.org/10.1016/j.jechem.2020.07.036
- H. Wang, Z. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6(3), 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
- Y. Guo, S. Wu, Y.B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2(2), 138–163 (2022). https://doi.org/10.1016/j.esci.2022.02.008
- L. Zhou, T.T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7(1), 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- C. Ma, W.F. Cui, X.Z. Liu, Y. Ding, Y.G. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 4(2), e12232 (2022). https://doi.org/10.1002/inf2.12232
- L. Huang, H. Fu, J. Duan, T. Wang, X. Zheng et al., Negating Li+ transfer barrier at solid-liquid electrolyte interface in hybrid batteries. Chem 8(7), 1928–1943 (2022). https://doi.org/10.1016/j.chempr.2022.03.002
- P. Xue, S. Liu, X. Shi, C. Sun, C. Lai et al., A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 30(44), 1804165 (2018). https://doi.org/10.1002/adma.201804165
- W. Zeng, X. Zhang, C. Yang, C. Zhang, H. Shi et al., Regulating alkali metal deposition behavior via Li/Na-philic Ni nanops modified 3D hierarchical carbon skeleton. Chem. Eng. J. 412, 128661 (2021). https://doi.org/10.1016/j.cej.2021.128661
- Q. Meng, M. Guan, Y. Huang, L. Li, F. Wu et al., Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat (2022). https://doi.org/10.1002/inf2.12313
- C. Niu, H. Pan, W. Xu, J. Xiao, J.G. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14(6), 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
- L. Luo, S. Xia, X. Zhang, J. Yang, S. Zheng, In situ construction of efficient interface layer with lithiophilic nanoseeds toward dendrite-free and low N/P ratio Li metal batteries. Adv. Sci. 9(8), 2104391 (2022). https://doi.org/10.1002/advs.202104391
- Y. Xu, H. Zheng, H. Yang, Y. Yu, J. Luo et al., Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries. Nano Lett. 21(20), 8664–8670 (2021). https://doi.org/10.1021/acs.nanolett.1c02613
- Z. Shi, Z. Sun, X. Yang, C. Lu, S. Li et al., Synergizing conformal lithiophilic granule and dealloyed porous skeleton toward pragmatic Li metal anodes. Small 2(5), 2100110 (2022). https://doi.org/10.1002/smsc.202100110
- K. Yan, Z. Lu, H.W. Lee, F. Xiong, P.C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
- T. Le, C. Yang, W. Lv, Q. Liang, X. Huang et al., Deeply cyclable and ultrahigh-rate lithium metal anodes enabled by coaxial nanochamber heterojunction on carbon nanofibers. Adv. Sci. 8(23), 2101940 (2021). https://doi.org/10.1002/advs.202101940
- S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng et al., Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv. Mater. 30(9), 1705830 (2018). https://doi.org/10.1002/adma.201705830
- Y. Wang, Z. Zhao, W. Zeng, X. Liu, L. Wang et al., Hierarchically porous Cu current collector with lithiophilic CuO interphase towards high-performance lithium metal batteries. J. Energy Chem. 58, 292–299 (2021). https://doi.org/10.1016/j.jechem.2020.10.005
- X. Zhang, F. Ma, K. Srinivas, B. Yu, X. Chen et al., Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 45, 656–666 (2022). https://doi.org/10.1016/j.ensm.2021.12.010
- T. Zhang, H. Lu, J. Yang, Z. Xu, J. Wang et al., Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework. ACS Nano 14(5), 5618–5627 (2020). https://doi.org/10.1021/acsnano.9b10083
- C. Sun, A. Lin, W. Li, J. Jin, Y. Sun et al., In situ conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv. Energy Mater. 10(3), 1902989 (2019). https://doi.org/10.1002/aenm.201902989
- S. Yang, R. Xiao, T. Hu, X. Fan, R. Xu et al., Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries. Nano Energy 90, 106584 (2021). https://doi.org/10.1016/j.nanoen.2021.106584
- W. Lu, C. Wu, W. Wei, J. Ma, L. Chen et al., Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. J. Mater. Chem. A 7(42), 24262–24270 (2019). https://doi.org/10.1039/c9ta09396f
- Y. Liu, Y. Zhai, Y. Xia, W. Li, D. Zhao, Recent progress of porous materials in lithium-metal batteries. Small Struct. 2(5), 2000118 (2021). https://doi.org/10.1002/sstr.202000118
- D. Lee, S. Sun, J. Kwon, H. Park, M. Jang et al., Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32(7), 1905573 (2020). https://doi.org/10.1002/adma.201905573
- C. Jin, O. Sheng, J. Luo, H. Yuan, C. Fang et al., 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017). https://doi.org/10.1016/j.nanoen.2017.05.015
- Y. Mei, J. Zhou, Y. Hao, X. Hu, J. Lin et al., High-lithiophilicity host with micro/nanostructured active sites based on Wenzel wetting model for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(50), 2106676 (2021). https://doi.org/10.1002/adfm.202106676
- C. Yang, Y. Yao, S. He, H. Xie, E. Hitz et al., Ultrafine silver nanops for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29(38), 1702714 (2017). https://doi.org/10.1002/adma.201702714
- H.R. Shin, J. Yun, G.H. Eom, J. Moon, J.H. Kim et al., Mechanistic and nanoarchitectonics insight into Li-host interactions in carbon hosts for reversible Li metal storage. Nano Energy 95, 106999 (2022). https://doi.org/10.1016/j.nanoen.2022.106999
- K. Tantratian, D. Cao, A. Abdelaziz, X. Sun, J. Sheng et al., Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays. Adv. Energy Mater. 10(5), 1902819 (2019). https://doi.org/10.1002/aenm.201902819
- T.S. Wang, X. Liu, Y. Wang, L.Z. Fan, High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Adv. Funct. Mater. 31(2), 2001973 (2020). https://doi.org/10.1002/adfm.202001973
- X. Wang, Z. Pan, J. Yang, Z. Lyu, Y. Zhong et al., Stretchable fiber-shaped lithium metal anode. Energy Storage Mater. 22, 179–184 (2019). https://doi.org/10.1016/j.ensm.2019.01.013
- H. Shen, F. Qi, H. Li, P. Tang, X. Gao et al., Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode. Adv. Funct. Mater. 31(48), 2103309 (2021). https://doi.org/10.1002/adfm.202103309
- Z. Xu, L. Xu, Z. Xu, Z. Deng, X. Wang, N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv. Funct. Mater. 31(40), 2102354 (2021). https://doi.org/10.1002/adfm.202102354
- L. Luo, J. Li, H.Y. Asl, A. Manthiram, A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv. Mater. 31(48), 1904537 (2019). https://doi.org/10.1002/adma.201904537
- L. Ye, M. Liao, X. Cheng, X. Zhou, Y. Zhao et al., Lithium-metal anodes working at 60 mA cm-2 and 60 mAh cm-2 through nanoscale lithium-ion adsorbing. Angew. Chem. Int. Ed. 60(32), 17419–17425 (2021). https://doi.org/10.1002/anie.202106047
- Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
- Y.L. Xu, K. Dong, Y.L. Jie, P. Adelhelm, Y.W. Chen et al., Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives. Adv. Energy Mater. 12(19), 2200398 (2022). https://doi.org/10.1002/aenm.202200398
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11185 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.5126336
- F.N. Jiang, S.J. Yang, H. Liu, X.B. Cheng, L. Liu et al., Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat 1(4), 506–536 (2021). https://doi.org/10.1002/sus2.37
- X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li et al., The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10(10), 1903645 (2020). https://doi.org/10.1002/aenm.201903645
- R. Zhang, X. Shen, X.B. Cheng, Q. Zhang, The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 23, 556–565 (2019). https://doi.org/10.1016/j.ensm.2019.03.029
- M. Ledendecker, H. Schlott, M. Antonietti, B. Meyer, M. Shalom, Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction. Adv. Energy Mater. 7(5), 1601735 (2017). https://doi.org/10.1002/aenm.201601735
- N. Tapia-Ruiz, A.G. Gordon, C.M. Jewell, H.K. Edwards, C.W. Dunnill et al., Low dimensional nanostructures of fast ion conducting lithium nitride. Nat. Commun. 11, 4492 (2020). https://doi.org/10.1038/s41467-020-17951-6
- C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32(4), 2107249 (2021). https://doi.org/10.1002/adfm.202107249
- J. Di, J.L. Yang, H. Tian, P. Ren, Y. Deng et al., Dendrites-free lithium metal anode enabled by synergistic surface structural engineering. Adv. Funct. Mater. 32(23), 2200474 (2022). https://doi.org/10.1002/adfm.202200474
- J. He, A. Bhargav, A. Manthiram, Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem. Int. Ed. 61(18), e202116586 (2022). https://doi.org/10.1002/anie.202116586
- H. Mao, W. Yu, Z. Cai, G. Liu, L. Liu et al., Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. Angew. Chem. Int. Ed. 60(35), 19306–19313 (2021). https://doi.org/10.1002/anie.202105831
- Z. Wen, W. Fang, L. Chen, Z. Guo, N. Zhang et al., Anticorrosive copper current collector passivated by self-assembled porous membrane for highly stable lithium metal batteries. Adv. Funct. Mater. 31(42), 2104930 (2021). https://doi.org/10.1002/adfm.202104930
- H. Lin, Z. Zhang, Y. Wang, X.L. Zhang, Z. Tie et al., Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Adv. Funct. Mater. 31(30), 2102735 (2021). https://doi.org/10.1002/adfm.202102735
- J. Meng, M. Lei, C. Lai, Q. Wu, Y. Liu et al., Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem. Int. Ed. 60(43), 23256–23266 (2021). https://doi.org/10.1002/anie.202108143
- Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng et al., Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat. Commun. 11, 488 (2020). https://doi.org/10.1038/s41467-020-14358-1
- J.B. Park, C. Choi, S. Yu, K.Y. Chung, D.W. Kim, Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 11(37), 2101544 (2021). https://doi.org/10.1002/aenm.202101544
- Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
- Y. Fang, W. Cai, S. Zhu, K. Xu, M. Zhu et al., Vesicle-shaped ZIF-8 shell shielded in 3D carbon cloth for uniform nucleation and growth towards long-life lithium metal anode. J. Energy Chem. 54, 105–110 (2021). https://doi.org/10.1016/j.jechem.2020.05.067
- Y.X. Yao, X.Q. Zhang, B.Q. Li, C. Yan, P.Y. Chen et al., A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2(2), 379–388 (2019). https://doi.org/10.1002/inf2.12046
- H. Dai, J. Dong, M. Wu, Q. Hu, D. Wang et al., Cobalt-phthalocyanine-derived molecular isolation layer for highly stable lithium anode. Angew. Chem. Int. Ed. 60(36), 19852–19859 (2021). https://doi.org/10.1002/anie.202106027
- X. Meng, Y. Sun, M. Yu, Z. Wang, J. Qiu, Hydrogen-bonding crosslinking MXene to highly robust and ultralight aerogels for strengthening lithium metal anode. Small Sci. 1(9), 2100021 (2021). https://doi.org/10.1002/smsc.202100021
- Z. Zhang, S. Guan, S. Liu, B. Hu, C. Xue et al., A valence gradient protective layer for dendrite-free and highly stable lithium metal anodes. Adv. Energy Mater. 12(11), 2103332 (2022). https://doi.org/10.1002/aenm.202103332
- W. Liu, Y. Xia, W. Wang, Y. Wang, J. Jin et al., Pristine or highly defective? Understanding the role of graphene structure for stable lithium metal plating. Adv. Energy Mater. 9(3), 1802918 (2018). https://doi.org/10.1002/aenm.201802918
References
X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes. Chem. Soc. Rev. 49(10), 3040–3071 (2020). https://doi.org/10.1039/c9cs00838a
J. Xiao, N. Xiao, K. Li, L.P. Zhang, J.W. Chang et al., Ultra-high fluorine enhanced homogeneous nucleation of lithium metal on stepped carbon nanosheets with abundant edge sites. Adv. Energy Mater. 12(10), 2103123 (2022). https://doi.org/10.1002/aenm.202103123
Z.L. Yang, Y. Dang, P.B. Zhai, Y. Wei, Q. Chen et al., Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv. Energy Mater. 12(8), 2103368 (2022). https://doi.org/10.1002/aenm.202103368
Y. Ma, L. Wei, Y. He, X. Yuan, Y. Su et al., A “blockchain” synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high Coulombic efficiency. Angew. Chem. Int. Ed. 61(12), e202116291 (2022). https://doi.org/10.1002/anie.202116291
J.F. Ding, R. Xu, C. Yan, B.Q. Li, H. Yuan et al., A review on the failure and regulation of solid electrolyte interphase in lithium batteries. J. Energy Chem. 59, 306–319 (2021). https://doi.org/10.1016/j.jechem.2020.11.016
H. Zhang, Y. Chen, C. Li, M. Armand, Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat 1(1), 24–37 (2021). https://doi.org/10.1002/sus2.6
Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 34(8), 2108400 (2022). https://doi.org/10.1002/adma.202108400
T. Zhou, Y. Zhao, M.E. Kazzi, J.W. Choi, A. Coskun, Integrated ring-chain design of a new fluorinated ether solvent for high-voltage lithium-metal batteries. Angew. Chem. Int. Ed. 61(19), e202115884 (2022). https://doi.org/10.1002/anie.202115884
J.F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60(20), 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
J. Holoubek, K. Kim, Y. Yin, Z. Wu, H. Liu et al., Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 15(4), 1647–1658 (2022). https://doi.org/10.1039/d1ee03422g
M.S. Kim, Z. Zhang, P.E. Rudnicki, Z. Yu, J. Wang et al., Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 21(4), 445–454 (2022). https://doi.org/10.1038/s41563-021-01172-3
G. Jiang, F. Li, H. Wang, M. Wu, S. Qi et al., Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct. 2(5), 2000122 (2021). https://doi.org/10.1002/sstr.202000122
L.L. Jiang, C. Yan, Y.X. Yao, W. Cai, J.Q. Huang et al., Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew. Chem. Int. Ed. 60(7), 3402–3406 (2021). https://doi.org/10.1002/anie.202009738
W. Chen, R.V. Salvatierra, J.T. Li, D.X. Luong, J.L. Beckham et al., Brushed metals for rechargeable metal batteries. Adv. Mater. 34(31), 2202668 (2022). https://doi.org/10.1002/adma.202202668
Y. Jeoun, K. Kim, S.Y. Kim, S.H. Lee, S.H. Huh et al., Surface roughness-independent homogeneous lithium plating in synergetic conditioned electrolyte. ACS Energy Lett. 7(7), 2219–2227 (2022). https://doi.org/10.1021/acsenergylett.2c00974
Z. Huang, S. Choudhury, N. Paul, J.H. Thienenkamp, P. Lennartz et al., Effects of polymer coating mechanics at solid-electrolyte interphase for stabilizing lithium metal anodes. Adv. Energy Mater. 12(5), 2103187 (2021). https://doi.org/10.1002/aenm.202103187
S. Qian, C. Xing, M. Zheng, Z. Su, H. Chen et al., CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv. Energy Mater. 12(15), 2103480 (2022). https://doi.org/10.1002/aenm.202103480
Y. Luo, T. Li, H. Zhang, Y. Yu, A. Hussain et al., New insights into the formation of silicon–oxygen layer on lithium metal anode via in situ reaction with tetraethoxysilane. J. Energy Chem. 56, 14–22 (2021). https://doi.org/10.1016/j.jechem.2020.07.036
H. Wang, Z. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6(3), 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
Y. Guo, S. Wu, Y.B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2(2), 138–163 (2022). https://doi.org/10.1016/j.esci.2022.02.008
L. Zhou, T.T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7(1), 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
C. Ma, W.F. Cui, X.Z. Liu, Y. Ding, Y.G. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 4(2), e12232 (2022). https://doi.org/10.1002/inf2.12232
L. Huang, H. Fu, J. Duan, T. Wang, X. Zheng et al., Negating Li+ transfer barrier at solid-liquid electrolyte interface in hybrid batteries. Chem 8(7), 1928–1943 (2022). https://doi.org/10.1016/j.chempr.2022.03.002
P. Xue, S. Liu, X. Shi, C. Sun, C. Lai et al., A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 30(44), 1804165 (2018). https://doi.org/10.1002/adma.201804165
W. Zeng, X. Zhang, C. Yang, C. Zhang, H. Shi et al., Regulating alkali metal deposition behavior via Li/Na-philic Ni nanops modified 3D hierarchical carbon skeleton. Chem. Eng. J. 412, 128661 (2021). https://doi.org/10.1016/j.cej.2021.128661
Q. Meng, M. Guan, Y. Huang, L. Li, F. Wu et al., Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat (2022). https://doi.org/10.1002/inf2.12313
C. Niu, H. Pan, W. Xu, J. Xiao, J.G. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14(6), 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
L. Luo, S. Xia, X. Zhang, J. Yang, S. Zheng, In situ construction of efficient interface layer with lithiophilic nanoseeds toward dendrite-free and low N/P ratio Li metal batteries. Adv. Sci. 9(8), 2104391 (2022). https://doi.org/10.1002/advs.202104391
Y. Xu, H. Zheng, H. Yang, Y. Yu, J. Luo et al., Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries. Nano Lett. 21(20), 8664–8670 (2021). https://doi.org/10.1021/acs.nanolett.1c02613
Z. Shi, Z. Sun, X. Yang, C. Lu, S. Li et al., Synergizing conformal lithiophilic granule and dealloyed porous skeleton toward pragmatic Li metal anodes. Small 2(5), 2100110 (2022). https://doi.org/10.1002/smsc.202100110
K. Yan, Z. Lu, H.W. Lee, F. Xiong, P.C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
T. Le, C. Yang, W. Lv, Q. Liang, X. Huang et al., Deeply cyclable and ultrahigh-rate lithium metal anodes enabled by coaxial nanochamber heterojunction on carbon nanofibers. Adv. Sci. 8(23), 2101940 (2021). https://doi.org/10.1002/advs.202101940
S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng et al., Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv. Mater. 30(9), 1705830 (2018). https://doi.org/10.1002/adma.201705830
Y. Wang, Z. Zhao, W. Zeng, X. Liu, L. Wang et al., Hierarchically porous Cu current collector with lithiophilic CuO interphase towards high-performance lithium metal batteries. J. Energy Chem. 58, 292–299 (2021). https://doi.org/10.1016/j.jechem.2020.10.005
X. Zhang, F. Ma, K. Srinivas, B. Yu, X. Chen et al., Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 45, 656–666 (2022). https://doi.org/10.1016/j.ensm.2021.12.010
T. Zhang, H. Lu, J. Yang, Z. Xu, J. Wang et al., Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework. ACS Nano 14(5), 5618–5627 (2020). https://doi.org/10.1021/acsnano.9b10083
C. Sun, A. Lin, W. Li, J. Jin, Y. Sun et al., In situ conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv. Energy Mater. 10(3), 1902989 (2019). https://doi.org/10.1002/aenm.201902989
S. Yang, R. Xiao, T. Hu, X. Fan, R. Xu et al., Ni2P electrocatalysts decorated hollow carbon spheres as bi-functional mediator against shuttle effect and Li dendrite for Li-S batteries. Nano Energy 90, 106584 (2021). https://doi.org/10.1016/j.nanoen.2021.106584
W. Lu, C. Wu, W. Wei, J. Ma, L. Chen et al., Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. J. Mater. Chem. A 7(42), 24262–24270 (2019). https://doi.org/10.1039/c9ta09396f
Y. Liu, Y. Zhai, Y. Xia, W. Li, D. Zhao, Recent progress of porous materials in lithium-metal batteries. Small Struct. 2(5), 2000118 (2021). https://doi.org/10.1002/sstr.202000118
D. Lee, S. Sun, J. Kwon, H. Park, M. Jang et al., Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32(7), 1905573 (2020). https://doi.org/10.1002/adma.201905573
C. Jin, O. Sheng, J. Luo, H. Yuan, C. Fang et al., 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 37, 177–186 (2017). https://doi.org/10.1016/j.nanoen.2017.05.015
Y. Mei, J. Zhou, Y. Hao, X. Hu, J. Lin et al., High-lithiophilicity host with micro/nanostructured active sites based on Wenzel wetting model for dendrite-free lithium metal anodes. Adv. Funct. Mater. 31(50), 2106676 (2021). https://doi.org/10.1002/adfm.202106676
C. Yang, Y. Yao, S. He, H. Xie, E. Hitz et al., Ultrafine silver nanops for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 29(38), 1702714 (2017). https://doi.org/10.1002/adma.201702714
H.R. Shin, J. Yun, G.H. Eom, J. Moon, J.H. Kim et al., Mechanistic and nanoarchitectonics insight into Li-host interactions in carbon hosts for reversible Li metal storage. Nano Energy 95, 106999 (2022). https://doi.org/10.1016/j.nanoen.2022.106999
K. Tantratian, D. Cao, A. Abdelaziz, X. Sun, J. Sheng et al., Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays. Adv. Energy Mater. 10(5), 1902819 (2019). https://doi.org/10.1002/aenm.201902819
T.S. Wang, X. Liu, Y. Wang, L.Z. Fan, High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Adv. Funct. Mater. 31(2), 2001973 (2020). https://doi.org/10.1002/adfm.202001973
X. Wang, Z. Pan, J. Yang, Z. Lyu, Y. Zhong et al., Stretchable fiber-shaped lithium metal anode. Energy Storage Mater. 22, 179–184 (2019). https://doi.org/10.1016/j.ensm.2019.01.013
H. Shen, F. Qi, H. Li, P. Tang, X. Gao et al., Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode. Adv. Funct. Mater. 31(48), 2103309 (2021). https://doi.org/10.1002/adfm.202103309
Z. Xu, L. Xu, Z. Xu, Z. Deng, X. Wang, N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv. Funct. Mater. 31(40), 2102354 (2021). https://doi.org/10.1002/adfm.202102354
L. Luo, J. Li, H.Y. Asl, A. Manthiram, A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv. Mater. 31(48), 1904537 (2019). https://doi.org/10.1002/adma.201904537
L. Ye, M. Liao, X. Cheng, X. Zhou, Y. Zhao et al., Lithium-metal anodes working at 60 mA cm-2 and 60 mAh cm-2 through nanoscale lithium-ion adsorbing. Angew. Chem. Int. Ed. 60(32), 17419–17425 (2021). https://doi.org/10.1002/anie.202106047
Y. Zhang, T.T. Zuo, J. Popovic, K. Lim, Y.X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
Y.L. Xu, K. Dong, Y.L. Jie, P. Adelhelm, Y.W. Chen et al., Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives. Adv. Energy Mater. 12(19), 2200398 (2022). https://doi.org/10.1002/aenm.202200398
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11185 (1996). https://doi.org/10.1103/PhysRevB.54.11169
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.5126336
F.N. Jiang, S.J. Yang, H. Liu, X.B. Cheng, L. Liu et al., Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat 1(4), 506–536 (2021). https://doi.org/10.1002/sus2.37
X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li et al., The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10(10), 1903645 (2020). https://doi.org/10.1002/aenm.201903645
R. Zhang, X. Shen, X.B. Cheng, Q. Zhang, The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater. 23, 556–565 (2019). https://doi.org/10.1016/j.ensm.2019.03.029
M. Ledendecker, H. Schlott, M. Antonietti, B. Meyer, M. Shalom, Experimental and theoretical assessment of Ni-based binary compounds for the hydrogen evolution reaction. Adv. Energy Mater. 7(5), 1601735 (2017). https://doi.org/10.1002/aenm.201601735
N. Tapia-Ruiz, A.G. Gordon, C.M. Jewell, H.K. Edwards, C.W. Dunnill et al., Low dimensional nanostructures of fast ion conducting lithium nitride. Nat. Commun. 11, 4492 (2020). https://doi.org/10.1038/s41467-020-17951-6
C. Chen, Q. Liang, G. Wang, D. Liu, X. Xiong, Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32(4), 2107249 (2021). https://doi.org/10.1002/adfm.202107249
J. Di, J.L. Yang, H. Tian, P. Ren, Y. Deng et al., Dendrites-free lithium metal anode enabled by synergistic surface structural engineering. Adv. Funct. Mater. 32(23), 2200474 (2022). https://doi.org/10.1002/adfm.202200474
J. He, A. Bhargav, A. Manthiram, Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem. Int. Ed. 61(18), e202116586 (2022). https://doi.org/10.1002/anie.202116586
H. Mao, W. Yu, Z. Cai, G. Liu, L. Liu et al., Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. Angew. Chem. Int. Ed. 60(35), 19306–19313 (2021). https://doi.org/10.1002/anie.202105831
Z. Wen, W. Fang, L. Chen, Z. Guo, N. Zhang et al., Anticorrosive copper current collector passivated by self-assembled porous membrane for highly stable lithium metal batteries. Adv. Funct. Mater. 31(42), 2104930 (2021). https://doi.org/10.1002/adfm.202104930
H. Lin, Z. Zhang, Y. Wang, X.L. Zhang, Z. Tie et al., Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Adv. Funct. Mater. 31(30), 2102735 (2021). https://doi.org/10.1002/adfm.202102735
J. Meng, M. Lei, C. Lai, Q. Wu, Y. Liu et al., Lithium ion repulsion-enrichment synergism induced by core-shell ionic complexes to enable high-loading lithium metal batteries. Angew. Chem. Int. Ed. 60(43), 23256–23266 (2021). https://doi.org/10.1002/anie.202108143
Z. Ju, J. Nai, Y. Wang, T. Liu, J. Zheng et al., Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat. Commun. 11, 488 (2020). https://doi.org/10.1038/s41467-020-14358-1
J.B. Park, C. Choi, S. Yu, K.Y. Chung, D.W. Kim, Porous lithiophilic Li-Si alloy-type interfacial framework via self-discharge mechanism for stable lithium metal anode with superior rate. Adv. Energy Mater. 11(37), 2101544 (2021). https://doi.org/10.1002/aenm.202101544
Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
Y. Fang, W. Cai, S. Zhu, K. Xu, M. Zhu et al., Vesicle-shaped ZIF-8 shell shielded in 3D carbon cloth for uniform nucleation and growth towards long-life lithium metal anode. J. Energy Chem. 54, 105–110 (2021). https://doi.org/10.1016/j.jechem.2020.05.067
Y.X. Yao, X.Q. Zhang, B.Q. Li, C. Yan, P.Y. Chen et al., A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2(2), 379–388 (2019). https://doi.org/10.1002/inf2.12046
H. Dai, J. Dong, M. Wu, Q. Hu, D. Wang et al., Cobalt-phthalocyanine-derived molecular isolation layer for highly stable lithium anode. Angew. Chem. Int. Ed. 60(36), 19852–19859 (2021). https://doi.org/10.1002/anie.202106027
X. Meng, Y. Sun, M. Yu, Z. Wang, J. Qiu, Hydrogen-bonding crosslinking MXene to highly robust and ultralight aerogels for strengthening lithium metal anode. Small Sci. 1(9), 2100021 (2021). https://doi.org/10.1002/smsc.202100021
Z. Zhang, S. Guan, S. Liu, B. Hu, C. Xue et al., A valence gradient protective layer for dendrite-free and highly stable lithium metal anodes. Adv. Energy Mater. 12(11), 2103332 (2022). https://doi.org/10.1002/aenm.202103332
W. Liu, Y. Xia, W. Wang, Y. Wang, J. Jin et al., Pristine or highly defective? Understanding the role of graphene structure for stable lithium metal plating. Adv. Energy Mater. 9(3), 1802918 (2018). https://doi.org/10.1002/aenm.201802918