Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage
Corresponding Author: Yan Yu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 193
Abstract
The latest view suggests the inactive core, surface pulverization, and polysulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries (SIBs). Whereas overcoming the above problems based on conventional nanoengineering is not efficient enough. In this work, erythrocyte-like CuS microspheres with an elastic buffering layer of ultrathin polyaniline (PANI) were synthesized through one-step self-assembly growth, followed by in situ polymerization of aniline. When CuS@PANI is used as anode electrode in SIBs, it delivers high capacity, ultrahigh rate capability (500 mAh g−1 at 0.1 A g−1, and 214.5 mAh g−1 at 40 A g−1), and superior cycling life of over 7500 cycles at 20 A g−1. A series of in/ex situ characterization techniques were applied to investigate the structural evolution and sodium-ion storage mechanism. The PANI swollen with electrolyte can stabilize solid electrolyte interface layer, benefit the ion transport/charge transfer at the PANI/electrolyte interface, and restrain the size growth of Cu particles in confined space. Moreover, finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion, suppresses the surface pulverization, and traps the polysulfide.
Highlights:
1 Erythrocyte-like CuS microspheres were encapsulated in ultrathin polyaniline (PANI) layer coating.
2 PANI swollen by electrolytes stabilizes solid electrolyte interface layer and benefits the ion transport and charge transfer at the PANI/electrolyte interface.
3 Multi-functional PANI coating ensures an outstanding comprehensive performance for sodium-ion storage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
- Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor–battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13, 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
- Q. Wei, R.H. DeBlock, D.M. Butts, C. Choi, B. Dunn, Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 3(3), 221–234 (2020). https://doi.org/10.1002/eem2.12131
- F. Xie, Z. Xu, Z. Guo, M.M. Titirici, Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2(4), 042002 (2020). https://doi.org/10.1088/2516-1083/aba5f5
- Y. Lan, W. Yao, X. He, T. Song, Y. Tang, Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem. Int. Ed. 59(24), 9255–9262 (2020). https://doi.org/10.1002/anie.201915666
- J. Yang, S. Xiao, X. Cui, W. Dai, X. Lian et al., Inorganic-anion-modulated synthesis of 2D nonlayered aluminum-based metal-organic frameworks as carbon precursor for capacitive sodium ion storage. Energy Storage Mater. 26, 391–399 (2020). https://doi.org/10.1016/j.ensm.2019.11.010
- J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 13, 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
- Y. Xiao, S.H. Lee, Y.K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329
- Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai et al., A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10(25), 2000666 (2020). https://doi.org/10.1002/aenm.202000666
- Z. Li, Y. Zhang, X. Li, F. Gu, L. Zhang et al., Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry. J. Am. Chem. Soc. 143(32), 12800–12808 (2021). https://doi.org/10.1021/jacs.1c06115
- H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
- X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
- Y. Xiao, Z. Xu, Y. Liu, L. Peng, J. Xi et al., Sheet collapsing approach for rubber-like graphene papers. ACS Nano 11(8), 8092–8102 (2017). https://doi.org/10.1021/acsnano.7b02915
- S. Güryel, B. Hajgató, Y. Dauphin, J.M. Blairon, H.E. Miltner et al., Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Phys. Chem. Chem. Phys. 15(2), 659–665 (2013). https://doi.org/10.1039/C2CP43033A
- Z. Zhang, X. Zhang, Y. Wang, Y. Wang, Y. Zhang et al., Crack propagation and fracture toughness of graphene probed by Raman spectroscopy. ACS Nano 13(9), 10327–10332 (2019). https://doi.org/10.1021/acsnano.9b03999
- P. Li, K. Sun, J. Ouyang, Stretchable and conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces 7(33), 18415–18423 (2015). https://doi.org/10.1021/acsami.5b04492
- G. Kalimuldina, A. Nurpeissova, A. Adylkhanova, D. Adair, I. Taniguchi et al., Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: a review. ACS Appl. Energy Mater. 3(12), 11480–11499 (2020). https://doi.org/10.1021/acsaem.0c01686
- N. Yamakawa, M. Jiang, C.P. Grey, Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem. Mater. 21(14), 3162–3176 (2009). https://doi.org/10.1021/cm900581b
- A. Kitani, M. Kaya, S.I. Tsujioka, K. Sasaki, Flexible polyaniline. J. Polym. Sci. A Polym. Chem. 26(6), 1531–1539 (1988). https://doi.org/10.1002/pola.1988.080260604
- P. Kumar, M. Gusain, R. Nagarajan, Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl−, NO3−, SO42−) influence on the product stoichiometry. Inorg. Chem. 50(7), 3065–3070 (2011). https://doi.org/10.1021/ic102593h
- C. Wu, S.H. Yu, M. Antonietti, Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process. Chem. Mater. 18(16), 3599–3601 (2006). https://doi.org/10.1021/cm060956u
- S. Wang, S. Jiao, J. Wang, H.S. Chen, D. Tian et al., High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1), 469–477 (2017). https://doi.org/10.1021/acsnano.6b06446
- M. Ye, X. Wen, N. Zhang, W. Guo, X.Y. Liu et al., In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. J. Mater. Chem. A 3(18), 9595–9600 (2015). https://doi.org/10.1039/C5TA00390C
- L. An, P. Zhou, J. Yin, H. Liu, F. Chen et al., Phase transformation fabrication of a Cu2S nanoplate as an efficient catalyst for water oxidation with glycine. Inorg. Chem. 54(7), 3281–3289 (2015). https://doi.org/10.1021/ic502920r
- Y. Situ, W. Ji, C. Liu, J. Xu, H. Huang, Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings. Prog. Org. Coat. 130, 158–167 (2019). https://doi.org/10.1016/j.porgcoat.2019.01.034
- K. Chen, G. Zhang, L. Xiao, P. Li, W. Li et al., Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium–sulfur batteries. Small Methods 5(3), 2001056 (2021). https://doi.org/10.1002/smtd.202001056
- M.S. Dopico-García, A. Ares, A. Lasagabáster-Latorre, X. García, L. Arboleda et al., Extruded polyaniline/EVA blends: enhancing electrical conductivity using gallate compatibilizers. Synth. Met. 189, 193–202 (2014). https://doi.org/10.1016/j.synthmet.2014.01.009
- J. Kang, H. Sahin, F.M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 17(41), 27742–27749 (2015). https://doi.org/10.1039/C5CP04576B
- S.U. Rehman, F.K. Butt, B.U. Haq, S. AlFaify, W.S. Khan et al., Exploring novel phase of tin sulfide for photon/energy harvesting materials. Sol. Energy 169, 648–657 (2018). https://doi.org/10.1016/j.solener.2018.05.006
- A. Roldan, D. Santos-Carballal, N.H. Leeuw, A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4. J. Chem. Phys. 138(20), 204712 (2013). https://doi.org/10.1063/1.4807614
- R. Garcia-Mendez, J.G. Smith, J.C. Neuefeind, D.J. Siegel, J. Sakamoto, Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries. Adv. Energy Mater. 10(19), 2000335 (2020). https://doi.org/10.1002/aenm.202000335
- M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000). https://doi.org/10.1126/science.287.5453.637
- J.M. Sansiñena, J. Gao, H.L. Wang, High-performance, monolithic polyaniline electrochemical actuators. Adv. Funct. Mater. 13(9), 703–709 (2003). https://doi.org/10.1002/adfm.200304347
- A. Makradi, S. Ahzi, R.V. Gregory, Modeling of the mechanical response and evolution of optical anisotropy in deformed polyaniline. Polym. Eng. Sci. 40(7), 1716–1723 (2000). https://doi.org/10.1002/pen.11303
- J.N. Pereira, P. Vieira, A. Ferreira, A.J. Paleo, J.G. Rocha et al., Piezoresistive effect in spin-coated polyaniline thin films. J. Polym. Res. 19(2), 9815 (2012). https://doi.org/10.1007/s10965-011-9815-z
- H. Valentová, J. Stejskal, Mechanical properties of polyaniline. Synth. Met. 160(7), 832–834 (2010). https://doi.org/10.1016/j.synthmet.2010.01.007
- W. Li, K. Cao, H. Wang, J. Liu, L. Zhou et al., Carbon coating may expedite the fracture of carbon-coated silicon core–shell nanops during lithiation. Nanoscale 8(9), 5254–5259 (2016). https://doi.org/10.1039/C5NR08498A
- Z.F. Li, E.T. Kang, K.G. Neoh, K.L. Tan, Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films. Synth. Met. 87(1), 45–52 (1997). https://doi.org/10.1016/S0379-6779(97)80096-3
- H.M. Xiao, W.D. Zhang, C. Lv, S.Y. Fu, M.X. Wan et al., Large enhancement in conductivity of polyaniline films by cold stretching. Macromol. Chem. Phys. 211(10), 1109–1116 (2010). https://doi.org/10.1002/macp.200900711
- W. Tan, J.C. Stallard, C. Jo, M.F.L.D. Volder, N.A. Fleck, The mechanical and electrochemical properties of polyaniline-coated carbon nanotube mat. J. Energy Storage 41, 102757 (2021). https://doi.org/10.1016/j.est.2021.102757
- H. Li, Y. Wang, J. Jiang, Y. Zhang, Y. Peng et al., CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim. Acta 247, 851–859 (2017). https://doi.org/10.1016/j.electacta.2017.07.018
- R. Liu, Y. Zhang, D. Wang, L. Xu, S. Luo et al., Microwave-assisted synthesis of self-assembled camellia-like CuS superstructure of ultra-thin nanosheets and exploration of its sodium ion storage properties. J. Electroanal. Chem. 898, 115607 (2021). https://doi.org/10.1016/j.jelechem.2021.115607
- Z. Hu, Q. Liu, S. Chou, S. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
- Y. Fang, B.Y. Guan, D. Luan, X.W.D. Lou, Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem. Int. Ed. 58(23), 7739–7743 (2019). https://doi.org/10.1002/anie.201902583
- D. Zhao, M. Yin, C. Feng, K. Zhan, Q. Jiao et al., Rational design of N-doped CuS@C nanowires toward high-performance half/full sodium-ion batteries. ACS Sustain. Chem. Eng. 8(30), 11317–11327 (2020). https://doi.org/10.1021/acssuschemeng.0c03273
- Z. Yang, Z. Wu, J. Liu, Y. Liu, S. Gao et al., Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. J. Mater. Chem. A 8(16), 8049–8057 (2020). https://doi.org/10.1039/d0ta00763c
- L. Zhang, Y. Hu, Y. Liu, J. Bai, H. Ruan et al., Tunable CuS nanocables with hierarchical nanosheet-assembly for ultrafast and long-cycle life sodium-ion storage. Ceram Int. 47(10), 14138–14145 (2021). https://doi.org/10.1016/j.ceramint.2021.01.284
- Z.G. Yang, Z.G. Wu, W.B. Hua, Y. Xiao, G.K. Wang et al., Hydrangea-like CuS with irreversible amorphization transition for high-performance sodium-ion storage. Adv. Sci. 7(11), 1903279 (2020). https://doi.org/10.1002/advs.201903279
- Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou et al., CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater. 8(22), 1800930 (2018). https://doi.org/10.1002/aenm.201800930
- Y. Hu, L. Zhang, J. Bai, F. Liu, Z. Wang et al., Boosting high-rate sodium storage of CuS via a hollow spherical nanostructure and surface pseudocapacitive behavior. ACS Appl. Energy Mater. 4(9), 8901–8909 (2021). https://doi.org/10.1021/acsaem.1c01103
- C. An, Y. Ni, Z. Wang, X. Li, X. Liu, Facile fabrication of CuS microflower as a highly durable sodium-ion battery anode. Inorg. Chem. Front. 5(5), 1045–1052 (2018). https://doi.org/10.1039/c8qi00117k
- W. Zhao, L. Gao, L. Yue, X. Wang, Q. Liu et al., Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J. Mater. Chem. A 9(10), 6402–6412 (2021). https://doi.org/10.1039/d1ta00497b
- W. Zhao, X. Wang, X. Ma, L. Yue, Q. Liu et al., In situ tailoring bimetallic–organic framework-derived yolk–shell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. J. Mater. Chem. A 9(28), 15807–15819 (2021). https://doi.org/10.1039/d1ta04386b
- J.S. Chung, H.J. Sohn, Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J. Power Sources 108(1–2), 226–231 (2002). https://doi.org/10.1016/S0378-7753(02)00024-1
- Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang et al., Few-layered SnS2 on few-layered reduced graphene oxide as na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833
- M.M. Sung, K. Sung, C.G. Kim, S.S. Lee, Y. Kim, Self-assembled monolayers of alkanethiols on oxidized copper surfaces. J. Phys. Chem. B 104(10), 2273–2277 (2000). https://doi.org/10.1021/jp992995h
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- C.D. Wagner, Handbook of X-ray Photoelectron Spectroscopy. (Perkin-Elmer Corporation, 1979).
- S. Deng, Y. Shen, D. Xie, Y. Lu, X. Yu et al., Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. J. Energy Chem. 39, 61–67 (2019). https://doi.org/10.1016/j.jechem.2019.01.014
- M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5(93), 75953–75963 (2015). https://doi.org/10.1039/C5RA14915K
- X. Yu, A. Manthiram, Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118(40), 22952–22959 (2014). https://doi.org/10.1021/jp507655u
- M. Hu, Z. Ju, Z. Bai, K. Yu, Z. Fang et al., Revealing the critical factor in metal sulfide anode performance in sodium-ion batteries: an investigation of polysulfide shuttling issues. Small Methods 4(1), 1900673 (2020). https://doi.org/10.1002/smtd.201900673
- H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370(6513), 192–197 (2020). https://doi.org/10.1126/science.aav5842
- F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6
- N. Kurra, M. Alhabeb, K. Maleski, C.H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
- R. Ding, L. Qi, H. Wang, An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim. Acta 114, 726–735 (2013). https://doi.org/10.1016/j.electacta.2013.10.113
- J. Yin, L. Qi, H. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4(5), 2762–2768 (2012). https://doi.org/10.1021/am300385r
References
Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018). https://doi.org/10.1002/adma.201700104
Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor–battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13, 55 (2021). https://doi.org/10.1007/s40820-020-00567-2
Q. Wei, R.H. DeBlock, D.M. Butts, C. Choi, B. Dunn, Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 3(3), 221–234 (2020). https://doi.org/10.1002/eem2.12131
F. Xie, Z. Xu, Z. Guo, M.M. Titirici, Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2(4), 042002 (2020). https://doi.org/10.1088/2516-1083/aba5f5
Y. Lan, W. Yao, X. He, T. Song, Y. Tang, Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage. Angew. Chem. Int. Ed. 59(24), 9255–9262 (2020). https://doi.org/10.1002/anie.201915666
J. Yang, S. Xiao, X. Cui, W. Dai, X. Lian et al., Inorganic-anion-modulated synthesis of 2D nonlayered aluminum-based metal-organic frameworks as carbon precursor for capacitive sodium ion storage. Energy Storage Mater. 26, 391–399 (2020). https://doi.org/10.1016/j.ensm.2019.11.010
J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 13, 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
Y. Xiao, S.H. Lee, Y.K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329
Y. Xiao, X. Zhao, X. Wang, D. Su, S. Bai et al., A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage. Adv. Energy Mater. 10(25), 2000666 (2020). https://doi.org/10.1002/aenm.202000666
Z. Li, Y. Zhang, X. Li, F. Gu, L. Zhang et al., Reacquainting the electrochemical conversion mechanism of FeS2 sodium-ion batteries by operando magnetometry. J. Am. Chem. Soc. 143(32), 12800–12808 (2021). https://doi.org/10.1021/jacs.1c06115
H. Geng, Y. Peng, L. Qu, H. Zhang, M. Wu, Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 10(10), 1903030 (2020). https://doi.org/10.1002/aenm.201903030
X.Y. Yu, L. Yu, X.W. Lou, Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 6(3), 1501333 (2016). https://doi.org/10.1002/aenm.201501333
Y. Xiao, Z. Xu, Y. Liu, L. Peng, J. Xi et al., Sheet collapsing approach for rubber-like graphene papers. ACS Nano 11(8), 8092–8102 (2017). https://doi.org/10.1021/acsnano.7b02915
S. Güryel, B. Hajgató, Y. Dauphin, J.M. Blairon, H.E. Miltner et al., Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Phys. Chem. Chem. Phys. 15(2), 659–665 (2013). https://doi.org/10.1039/C2CP43033A
Z. Zhang, X. Zhang, Y. Wang, Y. Wang, Y. Zhang et al., Crack propagation and fracture toughness of graphene probed by Raman spectroscopy. ACS Nano 13(9), 10327–10332 (2019). https://doi.org/10.1021/acsnano.9b03999
P. Li, K. Sun, J. Ouyang, Stretchable and conductive polymer films prepared by solution blending. ACS Appl. Mater. Interfaces 7(33), 18415–18423 (2015). https://doi.org/10.1021/acsami.5b04492
G. Kalimuldina, A. Nurpeissova, A. Adylkhanova, D. Adair, I. Taniguchi et al., Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: a review. ACS Appl. Energy Mater. 3(12), 11480–11499 (2020). https://doi.org/10.1021/acsaem.0c01686
N. Yamakawa, M. Jiang, C.P. Grey, Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem. Mater. 21(14), 3162–3176 (2009). https://doi.org/10.1021/cm900581b
A. Kitani, M. Kaya, S.I. Tsujioka, K. Sasaki, Flexible polyaniline. J. Polym. Sci. A Polym. Chem. 26(6), 1531–1539 (1988). https://doi.org/10.1002/pola.1988.080260604
P. Kumar, M. Gusain, R. Nagarajan, Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl−, NO3−, SO42−) influence on the product stoichiometry. Inorg. Chem. 50(7), 3065–3070 (2011). https://doi.org/10.1021/ic102593h
C. Wu, S.H. Yu, M. Antonietti, Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process. Chem. Mater. 18(16), 3599–3601 (2006). https://doi.org/10.1021/cm060956u
S. Wang, S. Jiao, J. Wang, H.S. Chen, D. Tian et al., High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1), 469–477 (2017). https://doi.org/10.1021/acsnano.6b06446
M. Ye, X. Wen, N. Zhang, W. Guo, X.Y. Liu et al., In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. J. Mater. Chem. A 3(18), 9595–9600 (2015). https://doi.org/10.1039/C5TA00390C
L. An, P. Zhou, J. Yin, H. Liu, F. Chen et al., Phase transformation fabrication of a Cu2S nanoplate as an efficient catalyst for water oxidation with glycine. Inorg. Chem. 54(7), 3281–3289 (2015). https://doi.org/10.1021/ic502920r
Y. Situ, W. Ji, C. Liu, J. Xu, H. Huang, Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings. Prog. Org. Coat. 130, 158–167 (2019). https://doi.org/10.1016/j.porgcoat.2019.01.034
K. Chen, G. Zhang, L. Xiao, P. Li, W. Li et al., Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium–sulfur batteries. Small Methods 5(3), 2001056 (2021). https://doi.org/10.1002/smtd.202001056
M.S. Dopico-García, A. Ares, A. Lasagabáster-Latorre, X. García, L. Arboleda et al., Extruded polyaniline/EVA blends: enhancing electrical conductivity using gallate compatibilizers. Synth. Met. 189, 193–202 (2014). https://doi.org/10.1016/j.synthmet.2014.01.009
J. Kang, H. Sahin, F.M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 17(41), 27742–27749 (2015). https://doi.org/10.1039/C5CP04576B
S.U. Rehman, F.K. Butt, B.U. Haq, S. AlFaify, W.S. Khan et al., Exploring novel phase of tin sulfide for photon/energy harvesting materials. Sol. Energy 169, 648–657 (2018). https://doi.org/10.1016/j.solener.2018.05.006
A. Roldan, D. Santos-Carballal, N.H. Leeuw, A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4. J. Chem. Phys. 138(20), 204712 (2013). https://doi.org/10.1063/1.4807614
R. Garcia-Mendez, J.G. Smith, J.C. Neuefeind, D.J. Siegel, J. Sakamoto, Correlating macro and atomic structure with elastic properties and ionic transport of glassy Li2S-P2S5 (LPS) solid electrolyte for solid-state Li metal batteries. Adv. Energy Mater. 10(19), 2000335 (2020). https://doi.org/10.1002/aenm.202000335
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000). https://doi.org/10.1126/science.287.5453.637
J.M. Sansiñena, J. Gao, H.L. Wang, High-performance, monolithic polyaniline electrochemical actuators. Adv. Funct. Mater. 13(9), 703–709 (2003). https://doi.org/10.1002/adfm.200304347
A. Makradi, S. Ahzi, R.V. Gregory, Modeling of the mechanical response and evolution of optical anisotropy in deformed polyaniline. Polym. Eng. Sci. 40(7), 1716–1723 (2000). https://doi.org/10.1002/pen.11303
J.N. Pereira, P. Vieira, A. Ferreira, A.J. Paleo, J.G. Rocha et al., Piezoresistive effect in spin-coated polyaniline thin films. J. Polym. Res. 19(2), 9815 (2012). https://doi.org/10.1007/s10965-011-9815-z
H. Valentová, J. Stejskal, Mechanical properties of polyaniline. Synth. Met. 160(7), 832–834 (2010). https://doi.org/10.1016/j.synthmet.2010.01.007
W. Li, K. Cao, H. Wang, J. Liu, L. Zhou et al., Carbon coating may expedite the fracture of carbon-coated silicon core–shell nanops during lithiation. Nanoscale 8(9), 5254–5259 (2016). https://doi.org/10.1039/C5NR08498A
Z.F. Li, E.T. Kang, K.G. Neoh, K.L. Tan, Effect of thermal processing conditions on the intrinsic oxidation states and mechanical properties of polyaniline films. Synth. Met. 87(1), 45–52 (1997). https://doi.org/10.1016/S0379-6779(97)80096-3
H.M. Xiao, W.D. Zhang, C. Lv, S.Y. Fu, M.X. Wan et al., Large enhancement in conductivity of polyaniline films by cold stretching. Macromol. Chem. Phys. 211(10), 1109–1116 (2010). https://doi.org/10.1002/macp.200900711
W. Tan, J.C. Stallard, C. Jo, M.F.L.D. Volder, N.A. Fleck, The mechanical and electrochemical properties of polyaniline-coated carbon nanotube mat. J. Energy Storage 41, 102757 (2021). https://doi.org/10.1016/j.est.2021.102757
H. Li, Y. Wang, J. Jiang, Y. Zhang, Y. Peng et al., CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim. Acta 247, 851–859 (2017). https://doi.org/10.1016/j.electacta.2017.07.018
R. Liu, Y. Zhang, D. Wang, L. Xu, S. Luo et al., Microwave-assisted synthesis of self-assembled camellia-like CuS superstructure of ultra-thin nanosheets and exploration of its sodium ion storage properties. J. Electroanal. Chem. 898, 115607 (2021). https://doi.org/10.1016/j.jelechem.2021.115607
Z. Hu, Q. Liu, S. Chou, S. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
Y. Fang, B.Y. Guan, D. Luan, X.W.D. Lou, Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem. Int. Ed. 58(23), 7739–7743 (2019). https://doi.org/10.1002/anie.201902583
D. Zhao, M. Yin, C. Feng, K. Zhan, Q. Jiao et al., Rational design of N-doped CuS@C nanowires toward high-performance half/full sodium-ion batteries. ACS Sustain. Chem. Eng. 8(30), 11317–11327 (2020). https://doi.org/10.1021/acssuschemeng.0c03273
Z. Yang, Z. Wu, J. Liu, Y. Liu, S. Gao et al., Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. J. Mater. Chem. A 8(16), 8049–8057 (2020). https://doi.org/10.1039/d0ta00763c
L. Zhang, Y. Hu, Y. Liu, J. Bai, H. Ruan et al., Tunable CuS nanocables with hierarchical nanosheet-assembly for ultrafast and long-cycle life sodium-ion storage. Ceram Int. 47(10), 14138–14145 (2021). https://doi.org/10.1016/j.ceramint.2021.01.284
Z.G. Yang, Z.G. Wu, W.B. Hua, Y. Xiao, G.K. Wang et al., Hydrangea-like CuS with irreversible amorphization transition for high-performance sodium-ion storage. Adv. Sci. 7(11), 1903279 (2020). https://doi.org/10.1002/advs.201903279
Y. Xiao, D. Su, X. Wang, S. Wu, L. Zhou et al., CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater. 8(22), 1800930 (2018). https://doi.org/10.1002/aenm.201800930
Y. Hu, L. Zhang, J. Bai, F. Liu, Z. Wang et al., Boosting high-rate sodium storage of CuS via a hollow spherical nanostructure and surface pseudocapacitive behavior. ACS Appl. Energy Mater. 4(9), 8901–8909 (2021). https://doi.org/10.1021/acsaem.1c01103
C. An, Y. Ni, Z. Wang, X. Li, X. Liu, Facile fabrication of CuS microflower as a highly durable sodium-ion battery anode. Inorg. Chem. Front. 5(5), 1045–1052 (2018). https://doi.org/10.1039/c8qi00117k
W. Zhao, L. Gao, L. Yue, X. Wang, Q. Liu et al., Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J. Mater. Chem. A 9(10), 6402–6412 (2021). https://doi.org/10.1039/d1ta00497b
W. Zhao, X. Wang, X. Ma, L. Yue, Q. Liu et al., In situ tailoring bimetallic–organic framework-derived yolk–shell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode. J. Mater. Chem. A 9(28), 15807–15819 (2021). https://doi.org/10.1039/d1ta04386b
J.S. Chung, H.J. Sohn, Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J. Power Sources 108(1–2), 226–231 (2002). https://doi.org/10.1016/S0378-7753(02)00024-1
Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang et al., Few-layered SnS2 on few-layered reduced graphene oxide as na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833
M.M. Sung, K. Sung, C.G. Kim, S.S. Lee, Y. Kim, Self-assembled monolayers of alkanethiols on oxidized copper surfaces. J. Phys. Chem. B 104(10), 2273–2277 (2000). https://doi.org/10.1021/jp992995h
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss et al., A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
C.D. Wagner, Handbook of X-ray Photoelectron Spectroscopy. (Perkin-Elmer Corporation, 1979).
S. Deng, Y. Shen, D. Xie, Y. Lu, X. Yu et al., Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. J. Energy Chem. 39, 61–67 (2019). https://doi.org/10.1016/j.jechem.2019.01.014
M. Fantauzzi, B. Elsener, D. Atzei, A. Rigoldi, A. Rossi, Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 5(93), 75953–75963 (2015). https://doi.org/10.1039/C5RA14915K
X. Yu, A. Manthiram, Room-temperature sodium–sulfur batteries with liquid-phase sodium polysulfide catholytes and binder-free multiwall carbon nanotube fabric electrodes. J. Phys. Chem. C 118(40), 22952–22959 (2014). https://doi.org/10.1021/jp507655u
M. Hu, Z. Ju, Z. Bai, K. Yu, Z. Fang et al., Revealing the critical factor in metal sulfide anode performance in sodium-ion batteries: an investigation of polysulfide shuttling issues. Small Methods 4(1), 1900673 (2020). https://doi.org/10.1002/smtd.201900673
H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370(6513), 192–197 (2020). https://doi.org/10.1126/science.aav5842
F. Song, J. Hu, G. Li, J. Wang, S. Chen et al., Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage. Nano-Micro Lett. 14, 37 (2021). https://doi.org/10.1007/s40820-021-00781-6
N. Kurra, M. Alhabeb, K. Maleski, C.H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018). https://doi.org/10.1021/acsenergylett.8b01062
R. Ding, L. Qi, H. Wang, An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim. Acta 114, 726–735 (2013). https://doi.org/10.1016/j.electacta.2013.10.113
J. Yin, L. Qi, H. Wang, Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl. Mater. Interfaces 4(5), 2762–2768 (2012). https://doi.org/10.1021/am300385r