Polarizable Additive with Intermediate Chelation Strength for Stable Aqueous Zinc-Ion Batteries
Corresponding Author: Chang‑An Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 82
Abstract
Aqueous zinc-ion batteries are promising due to inherent safety, low cost, low toxicity, and high volumetric capacity. However, issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life. Here, we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction, overpotential growth, and dendrite formation. Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose. It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation. Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm−2. Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6% capacity retention after 500 cycles at 1 A g−1. Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+ diffusion and deposition, highlyreversible Zn electrodes can be achieved as verified by the experimental results. Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.
Highlights:
1 Design principle of a reliable electrolyte based on chelation strength is proposed for high-performance aqueous batteries.
2 The addition of penta-sodium diethylene-triaminepentaacetic acid salt is effective in dynamically modulating anode/electrolyte interface, inhibiting water-related side reactions, and mitigating dendrite generation on zinc anodes.
3 Symmetrical, Zn||Cu half and Zn||NH4V4O10 full cells using the new electrolyte exhibit improved electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017). https://doi.org/10.1016/j.joule.2017.08.019
- V. Blay, R.E. Galian, L.M. Muresan, D. Pankratov, P. Pinyou et al., Research frontiers in energy-related materials and applications for 2020–2030. Adv. Sustain. Syst. 4, 1900145 (2020). https://doi.org/10.1002/adsu.201900145
- J. Huang, X. Qiu, N. Wang, Y. Wang, Aqueous rechargeable zinc batteries: challenges and opportunities. Curr. Opin. Electrochem. 30, 100801 (2021). https://doi.org/10.1016/j.coelec.2021.100801
- G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13, 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
- D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- J. Yan, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., High-voltage zinc-ion batteries: design strategies and challenges. Adv. Funct. Mater. 31, 2010213 (2021). https://doi.org/10.1002/adfm.202010213
- L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689 (2021). https://doi.org/10.1039/D1EE02021H
- H. Li, S. Guo, H. Zhou, Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Stor. Mater. 56, 227–257 (2023). https://doi.org/10.1016/j.ensm.2023.01.027
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14, 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang et al., Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32, e1906803 (2020). https://doi.org/10.1002/adma.201906803
- H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox et al., Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021). https://doi.org/10.1038/s41467-020-20334-6
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- C. Guo, J. Zhou, Y. Chen, H. Zhuang, Q. Li et al., Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem. Int. Ed. 61, e202210871 (2022). https://doi.org/10.1002/anie.202210871
- Y. Xia, H. Wang, G. Shao, C.-A. Wang, Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer. J. Power. Sources 540, 231659 (2022). https://doi.org/10.1016/j.jpowsour.2022.231659
- H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14, 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
- S. Khamsanga, H. Uyama, W. Nuanwat, P. Pattananuwat, Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Sci. Rep. 12, 8689 (2022). https://doi.org/10.1038/s41598-022-12657-9
- G. Qian, G. Zan, J. Li, S.-J. Lee, Y. Wang et al., Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery. Adv. Energy Mater. 12, 2270084 (2022). https://doi.org/10.1002/aenm.202270084
- X. Zhao, X. Zhang, N. Dong, M. Yan, F. Zhang et al., Advanced buffering acidic aqueous electrolytes for ultra-long life aqueous zinc-ion batteries. Small 18, e2200742 (2022). https://doi.org/10.1002/smll.202200742
- L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
- X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281 (2023). https://doi.org/10.1093/nsr/nwac281
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019). https://doi.org/10.1002/adfm.201902653
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
- F. Santos, A.J. Fernández Romero, Hydration as a solution to zinc batteries. Nat. Sustain. 5, 179–180 (2022). https://doi.org/10.1038/s41893-021-00834-z
- Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017). https://doi.org/10.1039/C6TA08736A
- A. Wang, W. Zhou, A. Huang, M. Chen, Q. Tian et al., Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J. Colloid Interface Sci. 586, 362–370 (2021). https://doi.org/10.1016/j.jcis.2020.10.099
- J. Liu, X. Wang, Y. Zhu, Y. Han, Flotation separation of scheelite from fluorite by using DTPA as a depressant. Miner. Eng. 175, 107311 (2022). https://doi.org/10.1016/j.mineng.2021.107311
- A. Eivazihollagh, J. Bäckström, M. Norgren, H. Edlund, Electrochemical recovery of copper complexed by DTPA and C12-DTPA from aqueous solution using a membrane cell. J. Chem. Technol. Biotechnol. 93, 1421–1431 (2018). https://doi.org/10.1002/jctb.5510
- S. Watanabe, K. Hashimoto, N.S. Ishioka, Lutetium-177 complexation of DOTA and DTPA in the presence of competing metals. J. Radioanal. Nucl. Chem. 303, 1519–1521 (2015). https://doi.org/10.1007/s10967-014-3590-3
- M. Maftoun, H. Haghighat Nia, N. Karimian, A.M. Ronaghi, Evaluation of chemical extractants for predicting lowland rice response to zinc in highly calcareous soils. Commun. Soil Sci. Plant Anal. 34, 1269–1280 (2003). https://doi.org/10.1081/css-120020443
- Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34, e2203104 (2022). https://doi.org/10.1002/adma.202203104
- J.-L. Ma, F.-L. Meng, Y. Yu, D.-P. Liu, J.-M. Yan et al., Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 11, 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
- B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu et al., Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7, 940–945 (2019). https://doi.org/10.1039/C8TA09338E
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- Z.-J. Zhao, J. Gong, Catalyst design via descriptors. Nat. Nanotechnol. 17, 563–564 (2022). https://doi.org/10.1038/s41565-022-01120-5
- C. Yuan, D. Zhao, B. Zhao, Y. Wu, J. Liu et al., 2D NMR and FT-raman spectroscopic studies on the interaction of lanthanide ions and ln-DTPA with phospholipid bilayers. Langmuir 12, 5375–5378 (1996). https://doi.org/10.1021/la950437y
- R. Jenjob, N. Kun, J.Y. Ghee, Z. Shen, X. Wu et al., Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent. Mater. Sci. Eng. C Mater. Biol. Appl. 61, 659–664 (2016). https://doi.org/10.1016/j.msec.2016.01.008
- B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie et al., XPS and FTIR surface characterization of TiO2 ps used in polymer encapsulation. Langmuir 17, 2664–2669 (2001). https://doi.org/10.1021/la0015213
- S. Ravi, S. Zhang, Y.-R. Lee, K.-K. Kang, J.-M. Kim et al., EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J. Ind. Eng. Chem. 67, 210–218 (2018). https://doi.org/10.1016/j.jiec.2018.06.031
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- S. Qian, J. Zhou, M. Peng, Y. Qian, Y. Meng et al., A Lewis acidity adjustable organic ammonium cation derived robust protecting shield for stable aqueous zinc-ion batteries by inhibiting the tip effect. Mater. Chem. Front. 6, 901–907 (2022). https://doi.org/10.1039/D1QM01604K
- J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei et al., Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22, 1017–1023 (2022). https://doi.org/10.1021/acs.nanolett.1c03917
- H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 32, e2004240 (2020). https://doi.org/10.1002/adma.202004240
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favorable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
References
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017). https://doi.org/10.1016/j.joule.2017.08.019
V. Blay, R.E. Galian, L.M. Muresan, D. Pankratov, P. Pinyou et al., Research frontiers in energy-related materials and applications for 2020–2030. Adv. Sustain. Syst. 4, 1900145 (2020). https://doi.org/10.1002/adsu.201900145
J. Huang, X. Qiu, N. Wang, Y. Wang, Aqueous rechargeable zinc batteries: challenges and opportunities. Curr. Opin. Electrochem. 30, 100801 (2021). https://doi.org/10.1016/j.coelec.2021.100801
G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13, 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 58, 7823–7828 (2019). https://doi.org/10.1002/anie.201904174
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
J. Yan, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., High-voltage zinc-ion batteries: design strategies and challenges. Adv. Funct. Mater. 31, 2010213 (2021). https://doi.org/10.1002/adfm.202010213
L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14, 5669–5689 (2021). https://doi.org/10.1039/D1EE02021H
H. Li, S. Guo, H. Zhou, Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Stor. Mater. 56, 227–257 (2023). https://doi.org/10.1016/j.ensm.2023.01.027
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14, 46 (2022). https://doi.org/10.1007/s40820-021-00788-z
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020). https://doi.org/10.1039/C9EE03545A
Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang et al., Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32, e1906803 (2020). https://doi.org/10.1002/adma.201906803
H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox et al., Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021). https://doi.org/10.1038/s41467-020-20334-6
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
C. Guo, J. Zhou, Y. Chen, H. Zhuang, Q. Li et al., Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem. Int. Ed. 61, e202210871 (2022). https://doi.org/10.1002/anie.202210871
Y. Xia, H. Wang, G. Shao, C.-A. Wang, Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer. J. Power. Sources 540, 231659 (2022). https://doi.org/10.1016/j.jpowsour.2022.231659
H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14, 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
S. Khamsanga, H. Uyama, W. Nuanwat, P. Pattananuwat, Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Sci. Rep. 12, 8689 (2022). https://doi.org/10.1038/s41598-022-12657-9
G. Qian, G. Zan, J. Li, S.-J. Lee, Y. Wang et al., Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery. Adv. Energy Mater. 12, 2270084 (2022). https://doi.org/10.1002/aenm.202270084
X. Zhao, X. Zhang, N. Dong, M. Yan, F. Zhang et al., Advanced buffering acidic aqueous electrolytes for ultra-long life aqueous zinc-ion batteries. Small 18, e2200742 (2022). https://doi.org/10.1002/smll.202200742
L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142, 21404–21409 (2020). https://doi.org/10.1021/jacs.0c09794
X. Xie, J. Li, Z. Xing, B. Lu, S. Liang et al., Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10, nwac281 (2023). https://doi.org/10.1093/nsr/nwac281
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019). https://doi.org/10.1002/adfm.201902653
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
F. Santos, A.J. Fernández Romero, Hydration as a solution to zinc batteries. Nat. Sustain. 5, 179–180 (2022). https://doi.org/10.1038/s41893-021-00834-z
Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. J. Mater. Chem. A 5, 730–738 (2017). https://doi.org/10.1039/C6TA08736A
A. Wang, W. Zhou, A. Huang, M. Chen, Q. Tian et al., Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. J. Colloid Interface Sci. 586, 362–370 (2021). https://doi.org/10.1016/j.jcis.2020.10.099
J. Liu, X. Wang, Y. Zhu, Y. Han, Flotation separation of scheelite from fluorite by using DTPA as a depressant. Miner. Eng. 175, 107311 (2022). https://doi.org/10.1016/j.mineng.2021.107311
A. Eivazihollagh, J. Bäckström, M. Norgren, H. Edlund, Electrochemical recovery of copper complexed by DTPA and C12-DTPA from aqueous solution using a membrane cell. J. Chem. Technol. Biotechnol. 93, 1421–1431 (2018). https://doi.org/10.1002/jctb.5510
S. Watanabe, K. Hashimoto, N.S. Ishioka, Lutetium-177 complexation of DOTA and DTPA in the presence of competing metals. J. Radioanal. Nucl. Chem. 303, 1519–1521 (2015). https://doi.org/10.1007/s10967-014-3590-3
M. Maftoun, H. Haghighat Nia, N. Karimian, A.M. Ronaghi, Evaluation of chemical extractants for predicting lowland rice response to zinc in highly calcareous soils. Commun. Soil Sci. Plant Anal. 34, 1269–1280 (2003). https://doi.org/10.1081/css-120020443
Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 34, e2203104 (2022). https://doi.org/10.1002/adma.202203104
J.-L. Ma, F.-L. Meng, Y. Yu, D.-P. Liu, J.-M. Yan et al., Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 11, 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu et al., Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7, 940–945 (2019). https://doi.org/10.1039/C8TA09338E
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18, 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
Z.-J. Zhao, J. Gong, Catalyst design via descriptors. Nat. Nanotechnol. 17, 563–564 (2022). https://doi.org/10.1038/s41565-022-01120-5
C. Yuan, D. Zhao, B. Zhao, Y. Wu, J. Liu et al., 2D NMR and FT-raman spectroscopic studies on the interaction of lanthanide ions and ln-DTPA with phospholipid bilayers. Langmuir 12, 5375–5378 (1996). https://doi.org/10.1021/la950437y
R. Jenjob, N. Kun, J.Y. Ghee, Z. Shen, X. Wu et al., Enhanced conjugation stability and blood circulation time of macromolecular gadolinium-DTPA contrast agent. Mater. Sci. Eng. C Mater. Biol. Appl. 61, 659–664 (2016). https://doi.org/10.1016/j.msec.2016.01.008
B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie et al., XPS and FTIR surface characterization of TiO2 ps used in polymer encapsulation. Langmuir 17, 2664–2669 (2001). https://doi.org/10.1021/la0015213
S. Ravi, S. Zhang, Y.-R. Lee, K.-K. Kang, J.-M. Kim et al., EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J. Ind. Eng. Chem. 67, 210–218 (2018). https://doi.org/10.1016/j.jiec.2018.06.031
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60, 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
S. Qian, J. Zhou, M. Peng, Y. Qian, Y. Meng et al., A Lewis acidity adjustable organic ammonium cation derived robust protecting shield for stable aqueous zinc-ion batteries by inhibiting the tip effect. Mater. Chem. Front. 6, 901–907 (2022). https://doi.org/10.1039/D1QM01604K
J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei et al., Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22, 1017–1023 (2022). https://doi.org/10.1021/acs.nanolett.1c03917
H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He et al., A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 32, e2004240 (2020). https://doi.org/10.1002/adma.202004240
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favorable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8