Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti3C2Tx MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs
Corresponding Author: Cheng Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 79
Abstract
Black phosphorus with a superior theoretical capacity (2596 mAh g−1) and high conductivity is regarded as one of the powerful candidates for lithium-ion battery (LIB) anode materials, whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs. By contrast, the exfoliated two-dimensional phosphorene owns negligible volume variation, and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics, while its positive influence has not been discussed yet. Herein, a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage. The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions, but also endow the nanocomposite with favorable piezoelectricity, thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator. By waltzing with the MXene framework, the optimized electrode exhibits enhanced kinetics and stability, achieving stable cycling performances for 1,000 cycles at 2 A g−1, and delivering a high reversible capacity of 524 mAh g−1 at − 20 ℃, indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.
Highlights:
1 An asymmetric membrane electrode based on phosphorene/MXene heterostructure-textured nanopiezocomposite was fabricated via a polar urea-assisted self-assembly strategy and additive manufacturing of the heterostructure beyond the skin effect.
2 The merits of this novel asymmetric heterostructure-textured electrode and its intrinsic piezoelectricity were detailedly discussed.
3 The stepwise lithiation process of phosphorene was revealed, and the enhanced electrochemical properties of this phosphorene-based nanopiezocomposite textured electrode were verified by the improved cycling stability and kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, M.C. Öhman et al., Sustainable development goals for people and planet. Nature 495, 305 (2013). https://doi.org/10.1038/495305a
- Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
- M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
- D. Ying, Q. Xu, R. Ding, Y. Huang, T. Yan et al., Insight into pseudocapacitive-diffusion mixed kinetics and conversion-alloying hybrid mechanisms of low-cost Zn-Mn perovskite fluorides anodes for powerful Li-ion/dual-ion storage. Chem. Eng. J. 388, 124154 (2020). https://doi.org/10.1016/j.cej.2020.124154
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- Y. Li, R. Ding, Z. Jia, W. Yu, A. Wang et al., Unlocking the intrinsic mechanisms of a-site K/Na doped perovskite fluorides pseudocapacitive cathode materials for enhanced aqueous zinc-based batteries. Energy Storage Mater. 57, 334–345 (2023). https://doi.org/10.1016/j.ensm.2023.02.020
- A. Wang, R. Ding, Y. Li, M. Liu, F. Yang et al., Redox electrolytes-assisting aqueous Zn-based batteries by pseudocapacitive multiple perovskite fluorides cathode and charge storage mechanisms. Small 19, 2302333 (2023). https://doi.org/10.1002/smll.202302333
- R. Ding, X. Li, W. Shi, Q. Xu, X. Han et al., Perovskite KNi0.8Co0.2F3 nanocrystals for supercapacitors. J. Mater. Chem. A 5, 17822–17827 (2017). https://doi.org/10.1039/C7TA05209J
- Q. Xu, R. Ding, W. Shi, D. Ying, Y. Huang et al., Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J. Mater. Chem. A 7, 8315–8326 (2019). https://doi.org/10.1039/C9TA00493A
- D. Ying, R. Ding, Y. Huang, W. Shi, Q. Xu et al., Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids. J. Mater. Chem. A 7, 18257–18266 (2019). https://doi.org/10.1039/C9TA06438A
- T. Yan, R. Ding, Y. Huang, D. Ying, C. Tan et al., A novel sodium-ion supercabattery based on vacancy defective Ni–Co–Mn ternary perovskite fluoride electrode materials. J. Mater. Chem. A 9, 14276–14284 (2021). https://doi.org/10.1039/D1TA02894D
- D. Ying, Y. Li, R. Ding, W. Shi, Q. Xu et al., Nanosilver-promoted trimetallic Ni–Co–Mn perovskite fluorides for advanced aqueous supercabatteries with pseudocapacitive multielectrons phase conversion mechanisms. Adv. Funct. Mater. 31, 2101353 (2021). https://doi.org/10.1002/adfm.202101353
- Z. Jia, R. Ding, W. Yu, Y. Li, A. Wang et al., Unraveling the charge storage and activity-enhancing mechanisms of zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries. Adv. Funct. Mater. 32, 2107674 (2022). https://doi.org/10.1002/adfm.202107674
- F. Yang, R. Ding, Z. Jia, W. Yu, Y. Li et al., High specific energy and power sodium-based dual-ion supercabatteries by pseudocapacitive Ni–Zn–Mn ternary perovskite fluorides@reduced graphene oxides anodes with conversion-alloying-intercalation triple mechanisms. Energy Storage Mater. 53, 222–237 (2022). https://doi.org/10.1016/j.ensm.2022.08.049
- H. Li, Practical evaluation of Li-ion batteries. Joule 3, 911–914 (2019). https://doi.org/10.1016/j.joule.2019.03.028
- N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, 2107899 (2021). https://doi.org/10.1002/adma.202107899
- W. Cao, J. Zhang, H. Li, Batteries with high theoretical energy densities. Energy Storage Mater. 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024
- M. Ko, S. Chae, J. Ma, N. Kim, H.-W. Lee et al., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016). https://doi.org/10.1038/nenergy.2016.113
- Y. Zhang, X. Rui, Y. Tang, Y. Liu, J. Wei et al., Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 6, 1502409 (2016). https://doi.org/10.1002/aenm.201502409
- D. Li, H. Wang, T. Zhou, W. Zhang, H.K. Liu et al., Unique structural design and strategies for germanium-based anode materials toward enhanced lithium storage. Adv. Energy Mater. 7, 1700488 (2017). https://doi.org/10.1002/aenm.201700488
- J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang et al., Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanop–graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014). https://doi.org/10.1021/nl501617j
- Y. Zhang, H. Wang, Z. Luo, H.T. Tan, B. Li et al., An air-stable densely packed phosphorene–graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 6, 1600453 (2016). https://doi.org/10.1002/aenm.201600453
- Q. Yao, C. Huang, Y. Yuan, Y. Liu, S. Liu et al., Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. J. Phys. Chem. C 119, 6923–6928 (2015). https://doi.org/10.1021/acs.jpcc.5b02130
- H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/C4CS00257A
- H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192 (2020). https://doi.org/10.1126/science.aav5842
- Y. Zhang, L. Wang, H. Xu, J. Cao, D. Chen et al., 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 30, 1909372 (2020). https://doi.org/10.1002/adfm.201909372
- F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458
- X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo et al., Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015). https://doi.org/10.1002/anie.201409400
- Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
- R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 Mxene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
- J. Sun, H.W. Lee, M. Pasta, H. Yuan, G. Zheng et al., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
- X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
- W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu et al., Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 32(7), 1905795 (2020). https://doi.org/10.1002/adma.201905795
- B.-S. Lee, J. Yoon, C. Jung, D.Y. Kim, S.-Y. Jeon et al., Silicon/carbon nanotube/BaTiO3 nanocomposite anode: evidence for enhanced lithium-ion mobility induced by the local piezoelectric potential. ACS Nano 10, 2617–2627 (2016). https://doi.org/10.1021/acsnano.5b07674
- R. Li, G. Zhang, Y. Wang, Z. Lin, C. He et al., Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.106591
- Y. Li, X. Dong, Z. Xu, M. Wang, R. Wang et al., Piezoelectric 1T phase MoSe2 nanoflowers and crystallographically textured electrodes for enhanced low-temperature zinc-ion storage. Adv. Mater. 35, 2208615 (2023). https://doi.org/10.1002/adma.202208615
- L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen et al., Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28, 510–517 (2016). https://doi.org/10.1002/adma.201503678
- H. Liu, Y. Zou, L. Tao, Z. Ma, D. Liu et al., Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13, 1700758 (2017). https://doi.org/10.1002/smll.201700758
- J. Zheng, L.A. Archer, Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem. Rev. 122, 14440–14470 (2022). https://doi.org/10.1021/acs.chemrev.2c00022
- C. Huang, Q.M. Zhang, A. Jákli, Nematic anisotropic liquid-crystal gels—self-assembled nanocomposites with high electromechanical response. Adv. Funct. Mater. 13, 525–529 (2003). https://doi.org/10.1002/adfm.200304322
- Y. Yan, L.D. Geng, H. Liu, H. Leng, X. Li, Y.U. Wang, S. Priya, Near-ideal electromechanical coupling in textured piezoelectric ceramics. Nat. Commun. 13, 3565 (2022). https://doi.org/10.1038/s41467-022-31165-y
- X. Yue, J. Zhang, Y. Dong, Y. Chen, Z. Shi, X. Xu, X. Li, Z. Liang, Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew. Chem. Int. Ed. 62, e202302285 (2023). https://doi.org/10.1002/anie.202302285
- M.K. Aslam, Y. Niu, M. Xu, Mxenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 2000681 (2021). https://doi.org/10.1002/aenm.202000681
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, M.P. Masquelier, First-principles study of boron diffusion in silicon. Phys. Rev. Lett. 83, 4345–4348 (1999). https://doi.org/10.1103/PhysRevLett.83.4345
- W. Gao, Y. Zhou, X. Wu, Q. Shen, J. Ye, Z. Zou, State-of-the-art progress in diverse black phosphorus-based structures: basic properties, synthesis, stability, photo- and electrocatalysis-driven energy conversion. Adv. Funct. Mater. 31, 2005197 (2021). https://doi.org/10.1002/adfm.202005197
- J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
- S. Ge, L. Zhang, P. Wang, Y. Fang, Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Sci. Rep. 6, 27307 (2016). https://doi.org/10.1038/srep27307
- S. Jana, S. Mukherjee, A. Ghorai, S.B.N. Bhaktha, S.K. Ray, Negative thermal quenching and size-dependent optical characteristics of highly luminescent phosphorene nanocrystals. Adv. Optical. Mater. 8, 2000180 (2020). https://doi.org/10.1002/adom.202000180
- L.B. Drissi, S. Sadki, K. Sadki, Phosphorene under strain: electronic, mechanical and piezoelectric responses. J. Phys. Chem. Solids 112, 137–142 (2018). https://doi.org/10.1016/j.jpcs.2017.09.017
- H. Li, P. Lian, Q. Lu, J. Chen, R. Hou et al., Excellent air and water stability of two-dimensional black phosphorene/mxene heterostructure. Mater. Res. Express. 6, 065504 (2019). https://doi.org/10.1088/2053-1591/ab0b84
- F. Meng, M. Seredych, C. Chen, V. Gura, S. Mikhalovsky et al., Mxene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018). https://doi.org/10.1021/acsnano.8b06494
- C. Zhang, Interfacial assembly of two-dimensional mxenes. J. Energy Chem. 60, 417–434 (2021). https://doi.org/10.1016/j.jechem.2020.12.036
- Y.-F. Tian, G. Li, D.-X. Xu, Z.-Y. Lu, M.-Y. Yan et al., Micron-sized simgyox with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 34, 2200672 (2022). https://doi.org/10.1002/adma.202200672
- J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, M.F. Toney, Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012). https://doi.org/10.1021/cr3001109
- M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu et al., Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55, 5003–5007 (2016). https://doi.org/10.1002/anie.201512038
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
- C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007). https://doi.org/10.1002/adma.200602592
- Y. Li, K. Chang, E. Shangguan, D. Guo, W. Zhou et al., Powder exfoliated MoS2 nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale 11, 1887–1900 (2019). https://doi.org/10.1039/C8NR08511K
- J. Lu, G. Xia, S. Gong, C. Wang, P. Jiang et al., Metallic 1T phase MoS2 nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage. J. Mater. Chem. A 6, 12613–12622 (2018). https://doi.org/10.1039/C8TA02716A
- R. Zhao, Z. Qian, Z. Liu, D. Zhao, X. Hui et al., Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy 65, 104037 (2019). https://doi.org/10.1016/j.nanoen.2019.104037
- Y. Li, K. Chang, H. Tang, B. Li, Y. Qin et al., Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance li-ion batteries. Electrochim. Acta 298, 640–649 (2019). https://doi.org/10.1016/j.electacta.2018.12.137
- H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32, 1904320 (2020). https://doi.org/10.1002/adma.201904320
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028
- C.E.P. Villegas, A.R. Rocha, A. Marini, Anomalous temperature dependence of the band gap in black phosphorus. Nano Lett. 16, 5095–5101 (2016). https://doi.org/10.1021/acs.nanolett.6b02035
- S. Huang, F. Wang, G. Zhang, C. Song, Y. Lei et al., From anomalous to normal: temperature dependence of the band gap in two-dimensional black phosphorus. Phys. Rev. Lett. 125, 156802 (2020). https://doi.org/10.1103/PhysRevLett.125.156802
- X. Jiang, X. Zhang, Z. Hua, D. Han, W. Zhao et al., Ferromagnetic titanium doped black phosphorus. Phys. Lett. A 383, 2097–2101 (2019). https://doi.org/10.1016/j.physleta.2019.03.035
- T. Ramireddy, T. Xing, M.M. Rahman, Y. Chen, Q. Dutercq et al., Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 3, 5572–5584 (2015). https://doi.org/10.1039/C4TA06186A
- C. Marino, A. Debenedetti, B. Fraisse, F. Favier, L. Monconduit, Activated-phosphorus as new electrode material for li-ion batteries. Electrochem. Commun. 13, 346–349 (2011). https://doi.org/10.1016/j.elecom.2011.01.021
- R. Amine, A. Daali, X. Zhou, X. Liu, Y. Liu et al., A practical phosphorus-based anode material for high-energy lithium-ion batteries. Nano Energy 74, 104849 (2020). https://doi.org/10.1016/j.nanoen.2020.104849
- T. Ichitsubo, S. Yukitani, K. Hirai, S. Yagi, T. Uda et al., Mechanical-energy influences to electrochemical phenomena in lithium-ion batteries. J. Mater. Chem. 21, 2701–2708 (2011). https://doi.org/10.1039/C0JM02893B
References
D. Griggs, M. Stafford-Smith, O. Gaffney, J. Rockström, M.C. Öhman et al., Sustainable development goals for people and planet. Nature 495, 305 (2013). https://doi.org/10.1038/495305a
Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
D. Ying, Q. Xu, R. Ding, Y. Huang, T. Yan et al., Insight into pseudocapacitive-diffusion mixed kinetics and conversion-alloying hybrid mechanisms of low-cost Zn-Mn perovskite fluorides anodes for powerful Li-ion/dual-ion storage. Chem. Eng. J. 388, 124154 (2020). https://doi.org/10.1016/j.cej.2020.124154
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
Y. Li, R. Ding, Z. Jia, W. Yu, A. Wang et al., Unlocking the intrinsic mechanisms of a-site K/Na doped perovskite fluorides pseudocapacitive cathode materials for enhanced aqueous zinc-based batteries. Energy Storage Mater. 57, 334–345 (2023). https://doi.org/10.1016/j.ensm.2023.02.020
A. Wang, R. Ding, Y. Li, M. Liu, F. Yang et al., Redox electrolytes-assisting aqueous Zn-based batteries by pseudocapacitive multiple perovskite fluorides cathode and charge storage mechanisms. Small 19, 2302333 (2023). https://doi.org/10.1002/smll.202302333
R. Ding, X. Li, W. Shi, Q. Xu, X. Han et al., Perovskite KNi0.8Co0.2F3 nanocrystals for supercapacitors. J. Mater. Chem. A 5, 17822–17827 (2017). https://doi.org/10.1039/C7TA05209J
Q. Xu, R. Ding, W. Shi, D. Ying, Y. Huang et al., Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J. Mater. Chem. A 7, 8315–8326 (2019). https://doi.org/10.1039/C9TA00493A
D. Ying, R. Ding, Y. Huang, W. Shi, Q. Xu et al., Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids. J. Mater. Chem. A 7, 18257–18266 (2019). https://doi.org/10.1039/C9TA06438A
T. Yan, R. Ding, Y. Huang, D. Ying, C. Tan et al., A novel sodium-ion supercabattery based on vacancy defective Ni–Co–Mn ternary perovskite fluoride electrode materials. J. Mater. Chem. A 9, 14276–14284 (2021). https://doi.org/10.1039/D1TA02894D
D. Ying, Y. Li, R. Ding, W. Shi, Q. Xu et al., Nanosilver-promoted trimetallic Ni–Co–Mn perovskite fluorides for advanced aqueous supercabatteries with pseudocapacitive multielectrons phase conversion mechanisms. Adv. Funct. Mater. 31, 2101353 (2021). https://doi.org/10.1002/adfm.202101353
Z. Jia, R. Ding, W. Yu, Y. Li, A. Wang et al., Unraveling the charge storage and activity-enhancing mechanisms of zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries. Adv. Funct. Mater. 32, 2107674 (2022). https://doi.org/10.1002/adfm.202107674
F. Yang, R. Ding, Z. Jia, W. Yu, Y. Li et al., High specific energy and power sodium-based dual-ion supercabatteries by pseudocapacitive Ni–Zn–Mn ternary perovskite fluorides@reduced graphene oxides anodes with conversion-alloying-intercalation triple mechanisms. Energy Storage Mater. 53, 222–237 (2022). https://doi.org/10.1016/j.ensm.2022.08.049
H. Li, Practical evaluation of Li-ion batteries. Joule 3, 911–914 (2019). https://doi.org/10.1016/j.joule.2019.03.028
N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, 2107899 (2021). https://doi.org/10.1002/adma.202107899
W. Cao, J. Zhang, H. Li, Batteries with high theoretical energy densities. Energy Storage Mater. 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024
M. Ko, S. Chae, J. Ma, N. Kim, H.-W. Lee et al., Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016). https://doi.org/10.1038/nenergy.2016.113
Y. Zhang, X. Rui, Y. Tang, Y. Liu, J. Wei et al., Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 6, 1502409 (2016). https://doi.org/10.1002/aenm.201502409
D. Li, H. Wang, T. Zhou, W. Zhang, H.K. Liu et al., Unique structural design and strategies for germanium-based anode materials toward enhanced lithium storage. Adv. Energy Mater. 7, 1700488 (2017). https://doi.org/10.1002/aenm.201700488
J. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang et al., Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanop–graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014). https://doi.org/10.1021/nl501617j
Y. Zhang, H. Wang, Z. Luo, H.T. Tan, B. Li et al., An air-stable densely packed phosphorene–graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 6, 1600453 (2016). https://doi.org/10.1002/aenm.201600453
Q. Yao, C. Huang, Y. Yuan, Y. Liu, S. Liu et al., Theoretical prediction of phosphorene and nanoribbons as fast-charging li ion battery anode materials. J. Phys. Chem. C 119, 6923–6928 (2015). https://doi.org/10.1021/acs.jpcc.5b02130
H. Liu, Y. Du, Y. Deng, P.D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015). https://doi.org/10.1039/C4CS00257A
H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192 (2020). https://doi.org/10.1126/science.aav5842
Y. Zhang, L. Wang, H. Xu, J. Cao, D. Chen et al., 3D chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries. Adv. Funct. Mater. 30, 1909372 (2020). https://doi.org/10.1002/adfm.201909372
F. Xia, H. Wang, Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458
X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo et al., Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54, 3653–3657 (2015). https://doi.org/10.1002/anie.201409400
Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang et al., From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015). https://doi.org/10.1002/adfm.201502902
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 Mxene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
J. Sun, H.W. Lee, M. Pasta, H. Yuan, G. Zheng et al., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980–985 (2015). https://doi.org/10.1038/nnano.2015.194
X. Guo, W. Zhang, J. Zhang, D. Zhou, X. Tang et al., Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano 14, 3651–3659 (2020). https://doi.org/10.1021/acsnano.0c00177
W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu et al., Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 32(7), 1905795 (2020). https://doi.org/10.1002/adma.201905795
B.-S. Lee, J. Yoon, C. Jung, D.Y. Kim, S.-Y. Jeon et al., Silicon/carbon nanotube/BaTiO3 nanocomposite anode: evidence for enhanced lithium-ion mobility induced by the local piezoelectric potential. ACS Nano 10, 2617–2627 (2016). https://doi.org/10.1021/acsnano.5b07674
R. Li, G. Zhang, Y. Wang, Z. Lin, C. He et al., Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.106591
Y. Li, X. Dong, Z. Xu, M. Wang, R. Wang et al., Piezoelectric 1T phase MoSe2 nanoflowers and crystallographically textured electrodes for enhanced low-temperature zinc-ion storage. Adv. Mater. 35, 2208615 (2023). https://doi.org/10.1002/adma.202208615
L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen et al., Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 28, 510–517 (2016). https://doi.org/10.1002/adma.201503678
H. Liu, Y. Zou, L. Tao, Z. Ma, D. Liu et al., Sandwiched thin-film anode of chemically bonded black phosphorus/graphene hybrid for lithium-ion battery. Small 13, 1700758 (2017). https://doi.org/10.1002/smll.201700758
J. Zheng, L.A. Archer, Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem. Rev. 122, 14440–14470 (2022). https://doi.org/10.1021/acs.chemrev.2c00022
C. Huang, Q.M. Zhang, A. Jákli, Nematic anisotropic liquid-crystal gels—self-assembled nanocomposites with high electromechanical response. Adv. Funct. Mater. 13, 525–529 (2003). https://doi.org/10.1002/adfm.200304322
Y. Yan, L.D. Geng, H. Liu, H. Leng, X. Li, Y.U. Wang, S. Priya, Near-ideal electromechanical coupling in textured piezoelectric ceramics. Nat. Commun. 13, 3565 (2022). https://doi.org/10.1038/s41467-022-31165-y
X. Yue, J. Zhang, Y. Dong, Y. Chen, Z. Shi, X. Xu, X. Li, Z. Liang, Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries. Angew. Chem. Int. Ed. 62, e202302285 (2023). https://doi.org/10.1002/anie.202302285
M.K. Aslam, Y. Niu, M. Xu, Mxenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 2000681 (2021). https://doi.org/10.1002/aenm.202000681
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, M.P. Masquelier, First-principles study of boron diffusion in silicon. Phys. Rev. Lett. 83, 4345–4348 (1999). https://doi.org/10.1103/PhysRevLett.83.4345
W. Gao, Y. Zhou, X. Wu, Q. Shen, J. Ye, Z. Zou, State-of-the-art progress in diverse black phosphorus-based structures: basic properties, synthesis, stability, photo- and electrocatalysis-driven energy conversion. Adv. Funct. Mater. 31, 2005197 (2021). https://doi.org/10.1002/adfm.202005197
J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
S. Ge, L. Zhang, P. Wang, Y. Fang, Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Sci. Rep. 6, 27307 (2016). https://doi.org/10.1038/srep27307
S. Jana, S. Mukherjee, A. Ghorai, S.B.N. Bhaktha, S.K. Ray, Negative thermal quenching and size-dependent optical characteristics of highly luminescent phosphorene nanocrystals. Adv. Optical. Mater. 8, 2000180 (2020). https://doi.org/10.1002/adom.202000180
L.B. Drissi, S. Sadki, K. Sadki, Phosphorene under strain: electronic, mechanical and piezoelectric responses. J. Phys. Chem. Solids 112, 137–142 (2018). https://doi.org/10.1016/j.jpcs.2017.09.017
H. Li, P. Lian, Q. Lu, J. Chen, R. Hou et al., Excellent air and water stability of two-dimensional black phosphorene/mxene heterostructure. Mater. Res. Express. 6, 065504 (2019). https://doi.org/10.1088/2053-1591/ab0b84
F. Meng, M. Seredych, C. Chen, V. Gura, S. Mikhalovsky et al., Mxene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018). https://doi.org/10.1021/acsnano.8b06494
C. Zhang, Interfacial assembly of two-dimensional mxenes. J. Energy Chem. 60, 417–434 (2021). https://doi.org/10.1016/j.jechem.2020.12.036
Y.-F. Tian, G. Li, D.-X. Xu, Z.-Y. Lu, M.-Y. Yan et al., Micron-sized simgyox with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 34, 2200672 (2022). https://doi.org/10.1002/adma.202200672
J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, M.F. Toney, Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012). https://doi.org/10.1021/cr3001109
M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu et al., Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55, 5003–5007 (2016). https://doi.org/10.1002/anie.201512038
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi et al., Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 12, 89 (2020). https://doi.org/10.1007/s40820-020-00426-0
C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007). https://doi.org/10.1002/adma.200602592
Y. Li, K. Chang, E. Shangguan, D. Guo, W. Zhou et al., Powder exfoliated MoS2 nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale 11, 1887–1900 (2019). https://doi.org/10.1039/C8NR08511K
J. Lu, G. Xia, S. Gong, C. Wang, P. Jiang et al., Metallic 1T phase MoS2 nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage. J. Mater. Chem. A 6, 12613–12622 (2018). https://doi.org/10.1039/C8TA02716A
R. Zhao, Z. Qian, Z. Liu, D. Zhao, X. Hui et al., Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy 65, 104037 (2019). https://doi.org/10.1016/j.nanoen.2019.104037
Y. Li, K. Chang, H. Tang, B. Li, Y. Qin et al., Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance li-ion batteries. Electrochim. Acta 298, 640–649 (2019). https://doi.org/10.1016/j.electacta.2018.12.137
H. Huang, R. Xu, Y. Feng, S. Zeng, Y. Jiang et al., Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 32, 1904320 (2020). https://doi.org/10.1002/adma.201904320
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2, 30–37 (2019). https://doi.org/10.1002/eem2.12028
C.E.P. Villegas, A.R. Rocha, A. Marini, Anomalous temperature dependence of the band gap in black phosphorus. Nano Lett. 16, 5095–5101 (2016). https://doi.org/10.1021/acs.nanolett.6b02035
S. Huang, F. Wang, G. Zhang, C. Song, Y. Lei et al., From anomalous to normal: temperature dependence of the band gap in two-dimensional black phosphorus. Phys. Rev. Lett. 125, 156802 (2020). https://doi.org/10.1103/PhysRevLett.125.156802
X. Jiang, X. Zhang, Z. Hua, D. Han, W. Zhao et al., Ferromagnetic titanium doped black phosphorus. Phys. Lett. A 383, 2097–2101 (2019). https://doi.org/10.1016/j.physleta.2019.03.035
T. Ramireddy, T. Xing, M.M. Rahman, Y. Chen, Q. Dutercq et al., Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 3, 5572–5584 (2015). https://doi.org/10.1039/C4TA06186A
C. Marino, A. Debenedetti, B. Fraisse, F. Favier, L. Monconduit, Activated-phosphorus as new electrode material for li-ion batteries. Electrochem. Commun. 13, 346–349 (2011). https://doi.org/10.1016/j.elecom.2011.01.021
R. Amine, A. Daali, X. Zhou, X. Liu, Y. Liu et al., A practical phosphorus-based anode material for high-energy lithium-ion batteries. Nano Energy 74, 104849 (2020). https://doi.org/10.1016/j.nanoen.2020.104849
T. Ichitsubo, S. Yukitani, K. Hirai, S. Yagi, T. Uda et al., Mechanical-energy influences to electrochemical phenomena in lithium-ion batteries. J. Mater. Chem. 21, 2701–2708 (2011). https://doi.org/10.1039/C0JM02893B