3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density
Corresponding Author: Jingyu Sun
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 143
Abstract
Designing high-performance electrodes via 3D printing for advanced energy storage is appealing but remains challenging. In normal cases, light-weight carbonaceous materials harnessing excellent electrical conductivity have served as electrode candidates. However, they struggle with undermined areal and volumetric energy density of supercapacitor devices, thereby greatly impeding the practical applications. Herein, we demonstrate the in situ coupling of NiCoP bimetallic phosphide and Ti3C2 MXene to build up heavy NCPM electrodes affording tunable mass loading throughout 3D printing technology. The resolution of prints reaches 50 μm and the thickness of device electrodes is ca. 4 mm. Thus-printed electrode possessing robust open framework synergizes favorable capacitance of NiCoP and excellent conductivity of MXene, readily achieving a high areal and volumetric capacitance of 20 F cm−2 and 137 F cm−3 even at a high mass loading of ~ 46.3 mg cm−2. Accordingly, an asymmetric supercapacitor full cell assembled with 3D-printed NCPM as a positive electrode and 3D-printed activated carbon as a negative electrode harvests remarkable areal and volumetric energy density of 0.89 mWh cm−2 and 2.2 mWh cm−3, outperforming the most of state-of-the-art carbon-based supercapacitors. The present work is anticipated to offer a viable solution toward the customized construction of multifunctional architectures via 3D printing for high-energy-density energy storage systems.
Highlights:
1 Utilizing 3D printing allows the fine construction of electrodes with tailorable thickness and precise tuning of mass loading of active materials.
2 3D-printed NiCoP/MXene//AC asymmetrical supercapacitor full cells harvest a record-high areal/volumetric energy density of 0.89 mWh cm−2/2.2 mWh cm−3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.J. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu et al., 3D Printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019). https://doi.org/10.1002/adma.201902725
- S. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nüesch, C.J. Zhang, Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 32(17), 2000716 (2020). https://doi.org/10.1002/adma.202000716
- Z.D. Fan, C.H. Wei, L.H. Yu, Z. Xia, J.S. Cai et al., 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 14, 867–876 (2020). https://doi.org/10.1021/acsnano.9b08030
- X.J. Gao, Q. Sun, X.F. Yang, J.N. Liang, A. Koo et al., Toward a remarkable Li–S battery via 3D printing. Nano Energy 56, 595–603 (2019). https://doi.org/10.1016/j.nanoen.2018.12.001
- Y.Q. Jiang, Z. Xu, T.Q. Huang, Y.J. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018). https://doi.org/10.1002/adfm.201707024
- S.D. Lacey, D.J. Kirsch, Y.J. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018). https://doi.org/10.1002/adma.201705651
- Y.K. Pang, Y.T. Cao, Y.H. Chu, M.H. Liu, K. Snyder, D. MacKenzie, C.Y. Cao, Additive manufacturing of batteries. Adv. Funct. Mater. 29, 1906244 (2019). https://doi.org/10.1002/adfm.201906244
- L.H. Yu, Y.Y. Yi, T. Yao, Y.Z. Song, Y.R. Chen et al., All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 12, 331–338 (2019). https://doi.org/10.1007/s12274-018-2219-1
- B. Li, N.T. Hu, Y.J. Su, Z. Yang, F. Shao et al., Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Appl. Mater. Interfaces 11, 46044–46053 (2019). https://doi.org/10.1021/acsami.9b12225
- C.F. Zhang, M.P. Kremer, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506
- W.B. Li, Y.H. Li, M. Su, B.X. An, J. Liu et al., Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 5, 16281–16288 (2017). https://doi.org/10.1039/C7TA02041D
- T.T. Gao, Z. Zhou, J.Y. Yu, J. Zhao, G.L. Wang et al., 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 8, 1802578 (2018). https://doi.org/10.1002/aenm.201802578
- Y.Q. Liu, B.B. Zhang, Q. Xu, Y.Y. Hou, S.Y. Seyedin et al., Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018). https://doi.org/10.1002/adfm.201706592
- N. Wei, L.H. Yu, Z.T. Sun, Y.Z. Song, M.L. Wang et al., Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 13, 7517–7526 (2019). https://doi.org/10.1021/acsnano.9b03157
- J.W. Ding, K. Shen, Z.G. Du, B. Li, S.B. Yang, 3D-printed hierarchical porous frameworks for sodium storage. ACS Appl. Mater. Interfaces 9, 41871–41877 (2017). https://doi.org/10.1021/acsami.7b12892
- Z.N. Tian, X.L. Tong, G. Sheng, Y.L. Shao, L.H. Yu et al., Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat. Commun. 10, 4913 (2019). https://doi.org/10.1038/s41467-019-12900-4
- X.M. Zhang, A.P. Wu, X.W. Wang, C.G. Tian, R.Y. An, H.G. Fu, Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A 6, 17905–17914 (2018). https://doi.org/10.1039/c8ta05551c
- K. Shen, J.W. Ding, S.B. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8, 1800408 (2018). https://doi.org/10.1002/aenm.201800408
- J.X. Zhao, Y. Zhang, X.X. Zhao, R.T. Wang, J.X. Xie et al., Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Funct. Mater. 29, 1900809 (2019). https://doi.org/10.1002/adfm.201900809
- Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
- J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
- D. Zhao, M. Clites, G.B. Ying, S. Kota, J. Wang et al., Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun. 54, 4533–4536 (2018). https://doi.org/10.1039/c8cc00649k
- D.Y. Zhao, R.Z. Zhao, S.H. Dong, X.G. Miao, Z.W. Zhang, C.X. Wang, L.W. Yin, Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422–2432 (2019). https://doi.org/10.1039/c9ee00308h
- J. Yang, C. Yu, X.M. Fan, C.T. Zhao, J.S. Qiu, Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25, 2109–2116 (2015). https://doi.org/10.1002/adfm.201404019
- Y. Liu, N.Q. Fu, G.G. Zhang, M. Xu, W. Lu, L.M. Zhou, H.T. Huang, Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 27, 1605307 (2017). https://doi.org/10.1002/adfm.201605307
- Y. Lin, K. Sun, S.J. Liu, X.M. Chen, Y.S. Cheng et al., Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 9, 1901213 (2019). https://doi.org/10.1002/aenm.201901213
- H.Y. Liang, J.H. Lin, H.N. Jia, S.L. Chen, J.L. Qi et al., Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources 378, 248–254 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.046
- L.Y. Xiu, Z.Y. Wang, M.Z. Yu, X.H. Wu, J.S. Qiu, Aggregation-Resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12, 8017–8028 (2018). https://doi.org/10.1021/acsnano.8b02849
- L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun, Z.F. Liu, Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839
- C.X. Lu, A.R. Li, T.F. Zhai, C.R. Niu, H.P. Duan, L. Guo, W. Zhou, Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. 26, 472–482 (2020). https://doi.org/10.1016/j.ensm.2019.11.021
- S.R. Liu, X.L. Shi, X.R. Li, Y. Sun, J. Zhu, Q.B. Pei, J.J. Liang, Y.S. Chen, A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics. Nanoscale 10, 20096 (2018). https://doi.org/10.1039/c8nr06369a
- C. Sun, S.R. Liu, X.L. Shi, C. Lai, J.J. Liang, Y.S. Chen, 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 381, 122641 (2020). https://doi.org/10.1016/j.cej.2019.122641
- B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 1–12 (2019). https://doi.org/10.1016/j.joule.2018.09.020
- C.J. Chen, Y. Zhang, Y.J. Li, J.Q. Dai, J.W. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j
- J.H. Liu, X.Y. Xu, J.L. Yu, J.L. Hong, C. Liu et al., Facile construction of 3D porous carbon nanotubes/polypyrrole and reduced graphene oxide on carbon nanotube fiber for high-performance asymmetric supercapacitors. Electrochim. Acta 314, 9–19 (2019). https://doi.org/10.1016/j.electacta.2019.05.059
- Y. Song, T.Y. Liu, B. Yao, M.Y. Li, T.Y. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
- Y.J. Lin, Y. Gao, Z.Y. Fan, Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv. Mater. 29, 1701736 (2017). https://doi.org/10.1002/adma.201701736
- L.Z. Sheng, J. Chang, L.L. Jiang, Z.M. Jiang, Z. Liu, T. Wei, Z.J. Fan, Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28, 1800597 (2018). https://doi.org/10.1002/adfm.201800597
- S. Murali, N. Quarles, L.L. Zhang, J.R. Potts, Z.Q. Tan et al., Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2, 764–768 (2013). https://doi.org/10.1016/j.nanoen.2013.01.007
- M. Zhang, X.W. Yu, H.Y. Ma, W.C. Du, L.T. Qu, C. Li, G.Q. Shi, Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 11, 559–565 (2018). https://doi.org/10.1039/c7ee03349d
- Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
- Z. Qi, J.C. Ye, W. Chen, J. Biener, E.B. Duoss et al., 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018). https://doi.org/10.1002/admt.201800053
- H.H. Xu, X.L. Hu, H.L. Yang, Y.M. Sun, C.C. Hu, Y.H. Huang, Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv. Energy Mater. 4, 1401882 (2014). https://doi.org/10.1002/aenm.201401882
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
- X. Xiao, T.Q. Li, P.H. Yang, Y. Gao, H.Y. Jin et al., Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012). https://doi.org/10.1021/nn303530k
- C. Zhu, T.Y. Liu, F. Qian, T.Y.J. Han, E.B. Duoss et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
References
W.J. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu et al., 3D Printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019). https://doi.org/10.1002/adma.201902725
S. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nüesch, C.J. Zhang, Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 32(17), 2000716 (2020). https://doi.org/10.1002/adma.202000716
Z.D. Fan, C.H. Wei, L.H. Yu, Z. Xia, J.S. Cai et al., 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 14, 867–876 (2020). https://doi.org/10.1021/acsnano.9b08030
X.J. Gao, Q. Sun, X.F. Yang, J.N. Liang, A. Koo et al., Toward a remarkable Li–S battery via 3D printing. Nano Energy 56, 595–603 (2019). https://doi.org/10.1016/j.nanoen.2018.12.001
Y.Q. Jiang, Z. Xu, T.Q. Huang, Y.J. Liu, F. Guo et al., Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018). https://doi.org/10.1002/adfm.201707024
S.D. Lacey, D.J. Kirsch, Y.J. Li, J.T. Morgenstern, B.C. Zarket et al., Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018). https://doi.org/10.1002/adma.201705651
Y.K. Pang, Y.T. Cao, Y.H. Chu, M.H. Liu, K. Snyder, D. MacKenzie, C.Y. Cao, Additive manufacturing of batteries. Adv. Funct. Mater. 29, 1906244 (2019). https://doi.org/10.1002/adfm.201906244
L.H. Yu, Y.Y. Yi, T. Yao, Y.Z. Song, Y.R. Chen et al., All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 12, 331–338 (2019). https://doi.org/10.1007/s12274-018-2219-1
B. Li, N.T. Hu, Y.J. Su, Z. Yang, F. Shao et al., Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Appl. Mater. Interfaces 11, 46044–46053 (2019). https://doi.org/10.1021/acsami.9b12225
C.F. Zhang, M.P. Kremer, A. Seral-Ascaso, S.H. Park, N. McEvoy et al., Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 28, 1705506 (2018). https://doi.org/10.1002/adfm.201705506
W.B. Li, Y.H. Li, M. Su, B.X. An, J. Liu et al., Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 5, 16281–16288 (2017). https://doi.org/10.1039/C7TA02041D
T.T. Gao, Z. Zhou, J.Y. Yu, J. Zhao, G.L. Wang et al., 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 8, 1802578 (2018). https://doi.org/10.1002/aenm.201802578
Y.Q. Liu, B.B. Zhang, Q. Xu, Y.Y. Hou, S.Y. Seyedin et al., Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018). https://doi.org/10.1002/adfm.201706592
N. Wei, L.H. Yu, Z.T. Sun, Y.Z. Song, M.L. Wang et al., Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 13, 7517–7526 (2019). https://doi.org/10.1021/acsnano.9b03157
J.W. Ding, K. Shen, Z.G. Du, B. Li, S.B. Yang, 3D-printed hierarchical porous frameworks for sodium storage. ACS Appl. Mater. Interfaces 9, 41871–41877 (2017). https://doi.org/10.1021/acsami.7b12892
Z.N. Tian, X.L. Tong, G. Sheng, Y.L. Shao, L.H. Yu et al., Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units. Nat. Commun. 10, 4913 (2019). https://doi.org/10.1038/s41467-019-12900-4
X.M. Zhang, A.P. Wu, X.W. Wang, C.G. Tian, R.Y. An, H.G. Fu, Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A 6, 17905–17914 (2018). https://doi.org/10.1039/c8ta05551c
K. Shen, J.W. Ding, S.B. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8, 1800408 (2018). https://doi.org/10.1002/aenm.201800408
J.X. Zhao, Y. Zhang, X.X. Zhao, R.T. Wang, J.X. Xie et al., Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv. Funct. Mater. 29, 1900809 (2019). https://doi.org/10.1002/adfm.201900809
Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang et al., Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f
D. Zhao, M. Clites, G.B. Ying, S. Kota, J. Wang et al., Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chem. Commun. 54, 4533–4536 (2018). https://doi.org/10.1039/c8cc00649k
D.Y. Zhao, R.Z. Zhao, S.H. Dong, X.G. Miao, Z.W. Zhang, C.X. Wang, L.W. Yin, Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422–2432 (2019). https://doi.org/10.1039/c9ee00308h
J. Yang, C. Yu, X.M. Fan, C.T. Zhao, J.S. Qiu, Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25, 2109–2116 (2015). https://doi.org/10.1002/adfm.201404019
Y. Liu, N.Q. Fu, G.G. Zhang, M. Xu, W. Lu, L.M. Zhou, H.T. Huang, Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors. Adv. Funct. Mater. 27, 1605307 (2017). https://doi.org/10.1002/adfm.201605307
Y. Lin, K. Sun, S.J. Liu, X.M. Chen, Y.S. Cheng et al., Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 9, 1901213 (2019). https://doi.org/10.1002/aenm.201901213
H.Y. Liang, J.H. Lin, H.N. Jia, S.L. Chen, J.L. Qi et al., Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. J. Power Sources 378, 248–254 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.046
L.Y. Xiu, Z.Y. Wang, M.Z. Yu, X.H. Wu, J.S. Qiu, Aggregation-Resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12, 8017–8028 (2018). https://doi.org/10.1021/acsnano.8b02849
L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun, Z.F. Liu, Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9, 1901839 (2019). https://doi.org/10.1002/aenm.201901839
C.X. Lu, A.R. Li, T.F. Zhai, C.R. Niu, H.P. Duan, L. Guo, W. Zhou, Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. 26, 472–482 (2020). https://doi.org/10.1016/j.ensm.2019.11.021
S.R. Liu, X.L. Shi, X.R. Li, Y. Sun, J. Zhu, Q.B. Pei, J.J. Liang, Y.S. Chen, A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics. Nanoscale 10, 20096 (2018). https://doi.org/10.1039/c8nr06369a
C. Sun, S.R. Liu, X.L. Shi, C. Lai, J.J. Liang, Y.S. Chen, 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem. Eng. J. 381, 122641 (2020). https://doi.org/10.1016/j.cej.2019.122641
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 1–12 (2019). https://doi.org/10.1016/j.joule.2018.09.020
C.J. Chen, Y. Zhang, Y.J. Li, J.Q. Dai, J.W. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j
J.H. Liu, X.Y. Xu, J.L. Yu, J.L. Hong, C. Liu et al., Facile construction of 3D porous carbon nanotubes/polypyrrole and reduced graphene oxide on carbon nanotube fiber for high-performance asymmetric supercapacitors. Electrochim. Acta 314, 9–19 (2019). https://doi.org/10.1016/j.electacta.2019.05.059
Y. Song, T.Y. Liu, B. Yao, M.Y. Li, T.Y. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
Y.J. Lin, Y. Gao, Z.Y. Fan, Printable fabrication of nanocoral-structured electrodes for high-performance flexible and planar supercapacitor with artistic design. Adv. Mater. 29, 1701736 (2017). https://doi.org/10.1002/adma.201701736
L.Z. Sheng, J. Chang, L.L. Jiang, Z.M. Jiang, Z. Liu, T. Wei, Z.J. Fan, Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 28, 1800597 (2018). https://doi.org/10.1002/adfm.201800597
S. Murali, N. Quarles, L.L. Zhang, J.R. Potts, Z.Q. Tan et al., Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2, 764–768 (2013). https://doi.org/10.1016/j.nanoen.2013.01.007
M. Zhang, X.W. Yu, H.Y. Ma, W.C. Du, L.T. Qu, C. Li, G.Q. Shi, Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy Environ. Sci. 11, 559–565 (2018). https://doi.org/10.1039/c7ee03349d
Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770
Z. Qi, J.C. Ye, W. Chen, J. Biener, E.B. Duoss et al., 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3, 1800053 (2018). https://doi.org/10.1002/admt.201800053
H.H. Xu, X.L. Hu, H.L. Yang, Y.M. Sun, C.C. Hu, Y.H. Huang, Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv. Energy Mater. 4, 1401882 (2014). https://doi.org/10.1002/aenm.201401882
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744
X. Xiao, T.Q. Li, P.H. Yang, Y. Gao, H.Y. Jin et al., Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012). https://doi.org/10.1021/nn303530k
C. Zhu, T.Y. Liu, F. Qian, T.Y.J. Han, E.B. Duoss et al., Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965