Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 208
Abstract
The last several years have witnessed the prosperous development of zinc-ion batteries (ZIBs), which are considered as a promising competitor of energy storage systems thanks to their low cost and high safety. However, the reversibility and availability of this system are blighted by problems such as uncontrollable dendritic growth, hydrogen evolution, and corrosion passivation on anode side. A functionally and structurally well-designed anode current collectors (CCs) is believed as a viable solution for those problems, with a lack of summarization according to its working mechanisms. Herein, this review focuses on the challenges of zinc anode and the mechanisms of modified anode CCs, which can be divided into zincophilic modification, structural design, and steering the preferred crystal facet orientation. The possible prospects and directions on zinc anode research and design are proposed at the end to hopefully promote the practical application of ZIBs.
Highlights:
1 The mechanisms of the surface modification and structure design of zinc anode current collectors were summarized.
2 The recent advances of high-performance zinc anode current collectors were reviewed and categorized according to their working mechanisms.
3 The possible prospects and directions of zinc anode research were discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15(3), 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
- W.B. Hawley, J. Li, Electrode manufacturing for lithium-ion batteries—analysis of current and next generation processing. J. Energy Storage 25, 100862 (2019). https://doi.org/10.1016/j.est.2019.100862
- D. Zhao, S. Ge-Zhang, Z. Zhang, H. Tang, Y. Xu et al., Three-dimensional honeycomb-like carbon as sulfur host for sodium–sulfur batteries without the shuttle effect. ACS Appl. Mater. Interfaces 14(49), 54662–54669 (2022). https://doi.org/10.1021/acsami.2c13862
- Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2022). https://doi.org/10.1038/s41578-022-00511-3
- D. Zhao, S. Jiang, S. Yu, J. Ren, Z. Zhang et al., Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 201, 864–870 (2023). https://doi.org/10.1016/j.carbon.2022.09.075
- R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, Molecular-level heterostructures assembled from titanium carbide mxene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 3(1), 132–140 (2017). https://doi.org/10.1021/acsenergylett.7b01063
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- T. Wang, J. Sun, Y. Hua, B.N.V. Krishna, Q. Xi et al., Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 53, 273–304 (2022). https://doi.org/10.1016/j.ensm.2022.08.046
- M. Yan, H. Ni, H. Pan, Rechargeable mild aqueous zinc batteries for grid storage. Adv. Energ. Sust. Res. 1(1), 2000026 (2020). https://doi.org/10.1002/aesr.202000026
- J. Liu, C. Zhao, J. Wang, D. Ren, B. Li et al., A brief history of zinc–air batteries: 140 years of epic adventures. Energ. Environ. Sci. 15(11), 4542–4553 (2022). https://doi.org/10.1039/d2ee02440c
- T. Shoji, M. Hishinuma, T. Yamamoto, Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell. J. Appl. Electrochem. 18(4), 521–526 (1988). https://doi.org/10.1007/BF01022245
- Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 31(3), 2005092 (2021). https://doi.org/10.1002/adfm.202005092
- H. Luo, B. Wang, F. Wu, J. Jian, K. Yang et al., Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy 81, 105601 (2021). https://doi.org/10.1016/j.nanoen.2020.105601
- F. Gao, B. Mei, X. Xu, J. Ren, D. Zhao et al., Rational design of ZnMn2O4 nanops on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 448, 137742 (2022). https://doi.org/10.1016/j.cej.2022.137742
- H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35(1), e2208237 (2023). https://doi.org/10.1002/adma.202208237
- M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62(8), e202215552 (2023). https://doi.org/10.1002/anie.202215552
- Y. Zhao, Y. Lu, H. Li, Y. Zhu, Y. Meng et al., Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nat. Commun. 13(1), 752 (2022). https://doi.org/10.1038/s41467-022-28380-y
- H. Luo, B. Wang, F. Wang, J. Yang, F. Wu et al., Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 14(6), 7328–7337 (2020). https://doi.org/10.1021/acsnano.0c02658
- H. Luo, B. Wang, J. Jian, F. Wu, L. Peng et al., Stress-release design for high-capacity and long-time lifespan aqueous zinc-ion batteries. Mater. Today Energy 21, 10799 (2021). https://doi.org/10.1016/j.mtener.2021.100799
- Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu et al., Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021). https://doi.org/10.1016/j.mtener.2021.100692
- X. Zhang, J. Hu, N. Fu, W. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022). https://doi.org/10.1002/inf2.12306
- C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
- D. Kundu, P. Oberholzer, C. Glaros, A. Bouzid, E. Tervoort et al., Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 30(11), 3874–3881 (2018). https://doi.org/10.1021/acs.chemmater.8b01317
- T. Li, Y. Lim, X. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12(15), 2103231 (2022). https://doi.org/10.1002/aenm.202103231
- L. Faulkner, A. Bard, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, 2002), pp.69–75
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), e2001854 (2020). https://doi.org/10.1002/adma.202001854
- C. Li, L. Wang, J. Zhang, D. Zhang, J. Du et al., Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater. 44, 104–135 (2022). https://doi.org/10.1016/j.ensm.2021.10.020
- J. Shin, J. Lee, Y. Park, J. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energ. Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
- Z. Hou, Y. Gao, R. Zhou, B. Zhang, Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32(7), 2107584 (2022). https://doi.org/10.1002/adfm.202107584
- B. Cui, X. Han, W. Hu, Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Struct. 2(6), 2000128 (2021). https://doi.org/10.1002/sstr.202000128
- J. Henry, On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Proc. Phys. Soc. London 17(1), 496 (1899). https://doi.org/10.1088/1478-7814/17/1/332
- J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42(12), 7355–7367 (1990). https://doi.org/10.1103/PhysRevA.42.7355
- V. Fleury, J. Chazalviel, M. Rosso, B. Sapoval, The role of the anions in the growth speed of fractal electrodeposits. J. Electroanalytical Chem. Interfacial Electrochem. 290(1), 249–255 (1990). https://doi.org/10.1016/0022-0728(90)87434-L
- M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H(2)O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62(8), e202215552 (2023). https://doi.org/10.1002/anie.202215552
- Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn(2+) solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144(40), 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
- J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei et al., Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22(3), 1017–1023 (2022). https://doi.org/10.1021/acs.nanolett.1c03917
- H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
- Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energ. Environ. Sci. 15(12), 5017–5038 (2022). https://doi.org/10.1039/d2ee02416k
- Q. Liu, L. Zhang, H. Sun, L. Geng, Y. Li et al., In situ observation of sodium dendrite growth and concurrent mechanical property measurements using an environmental transmission electron microscopy–atomic force microscopy (ETEM-AFM) platform. ACS Energy Lett. 5(8), 2546–2559 (2020). https://doi.org/10.1021/acsenergylett.0c01214
- M. Xia, T. Jiao, G. Liu, Y. Chen, J. Gao et al., Rational design of electrolyte solvation structure for stable cycling and fast charging lithium metal batteries. J. Power Sources 548, 232106 (2022). https://doi.org/10.1016/j.jpowsour.2022.232106
- C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energ. Environ. Sci. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
- W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
- W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu et al., Design strategies toward high-performance Zn metal anode. Small Methods (2023). https://doi.org/10.1002/smtd.202201572
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6(5), 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
- J. Wang, Z. Cai, R. Xiao, Y. Ou, R. Zhan et al., A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12(20), 23028–23034 (2020). https://doi.org/10.1021/acsami.0c05661
- S. Higashi, S. Lee, J. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
- S. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
- H. Ji, Q. Zhang, Y. Li, H. Li, H. Wang, Anode current collector for aqueous zinc-ion batteries: issues and design strategies. Acta Chim. Sinica 81(1), 29–41 (2023). https://doi.org/10.6023/a22100413
- C. Kao, C. Ye, J. Hao, J. Shan, H. Li et al., Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries. ACS Nano 17(4), 3948–3957 (2023). https://doi.org/10.1021/acsnano.2c12587
- C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32(47), 2207732 (2022). https://doi.org/10.1002/adfm.202207732
- J. Yang, J. Li, J. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34(27), e2202382 (2022). https://doi.org/10.1002/adma.202202382
- L. Geng, X. Wang, K. Han, P. Hu, L. Zhou et al., Eutectic electrolytes in advanced metal-ion batteries. ACS Energy Lett. 7(1), 247–260 (2021). https://doi.org/10.1021/acsenergylett.1c02088
- N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu et al., A review on 3d zinc anodes for zinc ion batteries. Small Methods 6(9), e2200597 (2022). https://doi.org/10.1002/smtd.202200597
- Q. Li, Y. Wang, F. Mo, D. Wang, G. Liang et al., Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11(14), 2003931 (2021). https://doi.org/10.1002/aenm.202003931
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- Y. Zhu, J. Yin, X. Zheng, A. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energ. Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
- W. Zhang, G. He, Solid-electrolyte interphase chemistries towards high-performance aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(13), e202218466 (2023). https://doi.org/10.1002/anie.202218466
- H. Sun, Y. Huyan, N. Li, D. Lei, H. Liu et al., A seamless metal-organic framework interphase with boosted Zn(2+) flux and deposition kinetics for long-living rechargeable zn batteries. Nano Lett. 23(5), 1726–1734 (2023). https://doi.org/10.1021/acs.nanolett.2c04410
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu et al., Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energ. Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energ. Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- R. Zhao, A. Elzatahry, D. Chao, D. Zhao, Making mxenes more energetic in aqueous battery. Matter 5(1), 8–10 (2022). https://doi.org/10.1016/j.matt.2021.12.005
- Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
- H. Liu, Q. Zhou, Q. Xia, Y. Lei, X. Huang et al., Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 77, 642–659 (2023). https://doi.org/10.1016/j.jechem.2022.11.028
- J. Li, Q. Lin, Z. Zheng, L. Cao, W. Lv et al., How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries? ACS Appl. Mater. Interfaces 14(10), 12323–12330 (2022). https://doi.org/10.1021/acsami.2c00344
- Q. Ni, B. Kim, C. Wu, K. Kang, Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34(20), e2108206 (2022). https://doi.org/10.1002/adma.202108206
- C. Lamiel, I. Hussain, X. Ma, K. Zhang et al., Properties, functions, and challenges: current collectors. Mater. Today Chem. 26, 101152 (2022). https://doi.org/10.1016/j.mtchem.2022.101152
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3d-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous zn ion batteries. Adv. Energy Mater. 11(19), 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- C. Xie, H. Ji, Q. Zhang, Z. Yang, C. Hu et al., High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode. Adv. Energy Mater. 13(3), 2203203 (2022). https://doi.org/10.1002/aenm.202203203
- Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34(37), e2203835 (2022). https://doi.org/10.1002/adma.202203835
- Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO(2) battery. Nano Lett. 21(3), 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
- D.G. Mackanic, M. Kao, Z. Bao, Enabling deformable and stretchable batteries. Adv. Energy Mater. 10(29), 2001424 (2020). https://doi.org/10.1002/aenm.202001424
- Y. Qian, C. Meng, J. He, X. Dong, A lightweight 3d Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J. Power Sources 480, 228871 (2020). https://doi.org/10.1016/j.jpowsour.2020.228871
- D. Lin, Y. Liu, Z. Liang, H. Lee, J. Sun et al., Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11(7), 626–632 (2016). https://doi.org/10.1038/nnano.2016.32
- R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202209288
- H. Li, C. Guo, T. Zhang, P. Xue, R. Zhao et al., Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 22(10), 4223–4231 (2022). https://doi.org/10.1021/acs.nanolett.2c01235
- Y. Zhang, J. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous zn batteries. ACS Energy Lett. 6(2), 404–412 (2021). https://doi.org/10.1021/acsenergylett.0c02343
- J. Zheng, Y. Deng, W. Li, J. Yin, P. West et al., Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries. Sci. Adv. 8(44), eabq6321 (2022). https://doi.org/10.1126/sciadv.abq6321
- J. Yin, Y. Wang, Y. Zhu, J. Jin, C. Chen et al., Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy 99, 107331 (2022). https://doi.org/10.1016/j.nanoen.2022.107331
- Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li et al., Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J. 416, 128062 (2021). https://doi.org/10.1016/j.cej.2020.128062
- Y. Zeng, P. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), e2200342 (2022). https://doi.org/10.1002/adma.202200342
- L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61(31), e202206717 (2022). https://doi.org/10.1002/anie.202206717
- M. Tribbia, J. Glenneberg, G. Zampardi, F. La Mantia, Highly efficient, dendrite-free zinc electrodeposition in mild aqueous zinc-ion batteries through indium-based substrates. Batteries Supercaps 5(5), 2100381 (2022). https://doi.org/10.1002/batt.202100381
- R. Li, Y. Du, Y. Li, Z. He, L. Dai et al., Alloying strategy for high-performance zinc metal anodes. ACS Energ Lett. 8(1), 457–476 (2022). https://doi.org/10.1021/acsenergylett.2c01960
- C. Xie, Z. Yang, Q. Zhang, H. Ji, Y. Li et al., Designing zinc deposition substrate with fully preferred orientation to elude the interfacial inhomogeneous dendrite growth. Research (2022). https://doi.org/10.34133/2022/9841343
- X. Li, G. Yang, S. Zhang, Z. Wang, L. Chen et al., Improved lithium deposition on silver plated carbon fiber paper. Nano Energy 66, 104144 (2019). https://doi.org/10.1016/j.nanoen.2019.104144
- Q. Ren, X. Tang, X. Zhao, Y. Wang, C. Li et al., A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy 109, 108306 (2023). https://doi.org/10.1016/j.nanoen.2023.108306
- H. Wang, Y. Wu, S. Liu, Y. Jiang, D. Shen et al., 3d Ag@C cloth for stable anode free sodium metal batteries. Small Methods 5(4), 2001050 (2021). https://doi.org/10.1002/smtd.202001050
- L. Zolin, J.R. Nair, D. Beneventi, F. Bella, M. Destro et al., A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon 107, 811–822 (2016). https://doi.org/10.1016/j.carbon.2016.06.076
- S. Yang, Y. Li, H. Du, Y. Liu, Y. Xiang et al., Copper nanop-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode. ACS Sustain. Chem. Eng. 10(38), 12630–12641 (2022). https://doi.org/10.1021/acssuschemeng.2c03328
- J. Kim, O. Chae, G. Kim, W. Jung, S. Choi et al., Spatial control of lithium deposition by controlling the lithiophilicity with copper(I) oxide boundaries. Energy Environ. Matter. 2, 12392 (2022). https://doi.org/10.1002/eem2.12392
- F. Pei, A. Fu, W. Ye, J. Peng, X. Fang et al., Robust lithium metal anodes realized by lithiophilic 3d porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 13(7), 8337–8346 (2019). https://doi.org/10.1021/acsnano.9b03784
- W. Zhou, T. Wu, M. Chen, Q. Tian, X. Han et al., Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Mater. 51, 286–293 (2022). https://doi.org/10.1016/j.ensm.2022.06.056
- P. Xue, C. Guo, N. Wang, K. Zhu, S. Jing et al., Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3d hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn–metal composite anodes. Adv. Funct. Mater. 31(50), 2106417 (2021). https://doi.org/10.1002/adfm.202106417
- M. Zhou, G. Sun, S. Zang, Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. J. Energy Chem. 69, 76–83 (2022). https://doi.org/10.1016/j.jechem.2021.12.040
- R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang et al., Self-assembled Ti3C2 MXene and n-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13(1), 246–257 (2020). https://doi.org/10.1039/c9ee03250a
- P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu et al., Ultra-highly stable zinc metal anode via 3d-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 403, 126425 (2021). https://doi.org/10.1016/j.cej.2020.126425
- Y. An, Y. Tian, Y. Li, C. Wei, Y. Tao et al., Heteroatom-doped 3d porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 400, 125843 (2020). https://doi.org/10.1016/j.cej.2020.125843
- Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
- W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang et al., Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy R 4(3), 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6
- P. Liu, X. Fan, B. Ouyang, Y. Huang, R. Hao et al., A zn ion hybrid capacitor with enhanced energy density for anode-free. J. Power Sources 518, 230740 (2022). https://doi.org/10.1016/j.jpowsour.2021.230740
- X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14(1), 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
- L. Zhou, Y. Yang, J. Yang, P. Ye, T. Ali et al., Achieving fast Zn-ion storage kinetics by confining nitrogen-enriched carbon nanofragments in a honeycomb-like matrix. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154526
- T. Wu, Y. Zhang, Z. Althouse, N. Liu et al., Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 6, 100032 (2019). https://doi.org/10.1016/j.mtnano.2019.100032
- G. Zhou, E. Paek, G. Hwang, A. Manthiram, Long-life li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015). https://doi.org/10.1038/ncomms8760
- G. Zhou, A. Yang, G. Gao, X. Yu, J. Xu et al., Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance li-s batteries. Sci. Adv. 6(21), eaay5098 (2020). https://doi.org/10.1126/sciadv.aay5098
- J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
- S. Chang, J. Fang, K. Liu, Z. Shen, L. Zhu et al., Molecular-layer-deposited zincone films induce the formation of lif-rich interphase for lithium metal anodes. Adv. Energy Mater. 13(12), 2204002 (2023). https://doi.org/10.1002/aenm.202204002
- Y. Yu, W. Xu, X. Liu, X. Lu et al., Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: recent progress and future perspectives. Adv. Sustain. Syst. 4(9), 2000082 (2020). https://doi.org/10.1002/adsu.202000082
- V. Caldeira, J. Thiel, F. Lacoste, L. Dubau, M. Chatenet, Improving zinc porous electrode for secondary alkaline batteries: toward a simple design of optimized 3d conductive network current collector. J. Power Sources 450, 227668 (2020). https://doi.org/10.1016/j.jpowsour.2019.227668
- Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu et al., 3d confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A 8(23), 11719–11727 (2020). https://doi.org/10.1039/d0ta02791j
- L. Li, W. Liu, H. Dong, Q. Gui, Z. Hu et al., Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 33(13), e2004959 (2021). https://doi.org/10.1002/adma.202004959
- X. Shi, G. Xu, S. Liang, C. Li, S. Guo et al., Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain. Chem. Eng. 7(21), 17737–17746 (2019). https://doi.org/10.1021/acssuschemeng.9b04085
- Q. Jian, Z. Guo, L. Zhang, M. Wu, T. Zhao et al., A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J. 425, 130643 (2021). https://doi.org/10.1016/j.cej.2021.130643
- R. Xue, J. Kong, Y. Wu, Y. Wang, X. Kong et al., Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. J. Mater. Chem. A 10(18), 10043–10050 (2022). https://doi.org/10.1039/d2ta00326k
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), e1903675 (2019). https://doi.org/10.1002/adma.201903675
- J. Fu, Z. Cano, M. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
- G. Feng, J. Guo, H. Tian, Z. Li, Y. Shi et al., Probe the localized electrochemical environment effects and electrode reaction dynamics for metal batteries using in situ 3d microscopy. Adv. Energy Mater. 12(3), 2103484 (2022). https://doi.org/10.1002/aenm.202103484
- L. Lu, J. Ge, J. Yang, S. Chen, H. Yao et al., Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16(7), 4431–4437 (2016). https://doi.org/10.1021/acs.nanolett.6b01581
- T. Li, S. Gu, L. Chen, L. Zhang, X. Qin et al., Bidirectional lithiophilic gradients modification of ultralight 3d carbon nanofiber host for stable lithium metal anode. Small 18(33), 2203273 (2022). https://doi.org/10.1002/smll.202203273
- Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou et al., 3d porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7(3), 3364–3371 (2019). https://doi.org/10.1021/acssuschemeng.8b05568
- B. Liu, S. Wang, Z. Wang, H. Lei, Z. Chen et al., Novel 3d nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 16(22), e2001323 (2020). https://doi.org/10.1002/smll.202001323
- H. Meng, Q. Ran, T. Dai, H. Shi, S. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- S. Wang, Q. Ran, R. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- M. Idrees, S. Batool, M. Din, M. Javed, S. Ahmed et al., Material-structure-property integrated additive manufacturing of batteries. Nano Energy 109, 108247 (2023). https://doi.org/10.1016/j.nanoen.2023.108247
- M. Browne, E. Redondo, M. Pumera et al., 3d printing for electrochemical energy applications. Chem. Rev. 120(5), 2783–2810 (2020). https://doi.org/10.1021/acs.chemrev.9b00783
- Y. Jiang, Q. Lv, C. Bao, B. Wang, P. Ren et al., Seamless alloying stabilizes solid-electrolyte interphase for highly reversible lithium metal anode. Cell Rep. Phys. Sci. 3(3), 100785 (2022). https://doi.org/10.1016/j.xcrp.2022.100785
- L. Zeng, H. He, H. Chen, D. Luo, J. He et al., 3d printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv. Energy Mater. 12(12), 2103708 (2022). https://doi.org/10.1002/aenm.202103708
- S. Zhang, W. Deng, X. Zhou, B. He, J. Liang et al., Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation toward high-areal-capacity lithium metal anode. Mater. Today Energy 21, 100770 (2021). https://doi.org/10.1016/j.mtener.2021.100770
- H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li et al., Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 9(1), 3729 (2018). https://doi.org/10.1038/s41467-018-06126-z
- H. Park, J. Um, H. Choi, W. Yoon, Y. Sung et al., Hierarchical micro-lamella-structured 3d porous copper current collector coated with tin for advanced lithium-ion batteries. Appl. Surf. Sci. 399, 132–138 (2017). https://doi.org/10.1016/j.apsusc.2016.12.043
- J. Pu, J. Li, K. Zhang, T. Zhang, C. Li et al., Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 10(1), 1896 (2019). https://doi.org/10.1038/s41467-019-09932-1
- S. Zhou, C. Fu, Z. Chang, Y. Zhang, D. Xu et al., Conductivity gradient modulator induced highly reversible li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Mater. 47, 482–490 (2022). https://doi.org/10.1016/j.ensm.2022.02.033
- G. Liang, J. Zhu, B. Yan, Q. Li, A. Chen, Z. Chen et al., Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energ. Environ. Sci. 15(3), 1086–1096 (2022). https://doi.org/10.1039/d1ee03749h
- Z. Shen, L. Luo, C. Li, J. Pu, J. Xie et al., Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11(16), 2100214 (2021). https://doi.org/10.1002/aenm.202100214
- Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu et al., Stable Zn anodes with triple gradients. Adv. Mater. 35(6), e2207573 (2023). https://doi.org/10.1002/adma.202207573
- P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai et al., Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ. Sci. 10(10), 2056–2080 (2017). https://doi.org/10.1039/c7ee01913k
- L. Wang, W. Huang, W. Guo, Z. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2021). https://doi.org/10.1002/adfm.202108533
- H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
- Z. Wei, H. Zhang, A. Li, F. Cheng, Y. Wang et al., Construction of in-plane 3d network electrode strategy for promoting zinc ion storage capacity. Energy Storage Mater. 55, 754–762 (2023). https://doi.org/10.1016/j.ensm.2022.12.036
- Y. Liu, M. Pharr, G. Salvatore et al., Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
- H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
- S. Pu, C. Gong, Y. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34(28), e2202552 (2022). https://doi.org/10.1002/adma.202202552
- Y. Song, J. Hu, J. Tang, W. Gu, L. He et al., Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications. ACS Appl. Mater. Interfaces 8(46), 32031–32040 (2016). https://doi.org/10.1021/acsami.6b11098
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), e2008424 (2021). https://doi.org/10.1002/adma.202008424
- H. Lu, Q. Jin, X. Jiang, Z. Dang, D. Zhang et al., Vertical crystal plane matching between AgZn(3) (002) and Zn (002) achieving a dendrite-free zinc anode. Small 18(16), e2200131 (2022). https://doi.org/10.1002/smll.202200131
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
- X. Chen, W. Li, S. Hu, N. Akhmedov, D. Reed et al., Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 98, 107269 (2022). https://doi.org/10.1016/j.nanoen.2022.107269
- M. Qiu, P. Sun, A. Qin, G. Cui, W. Mai, Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Mater. 49, 463–470 (2022). https://doi.org/10.1016/j.ensm.2022.04.018
- A. Romanov, T. Wagner, M. Rühle, Coherent to incoherent transition in mismatched interfaces. Scripta Mater. 38(6), 869–875 (1998). https://doi.org/10.1016/S1359-6462(97)00570-8
- E. Romanov, T. Wagner, On the universal misfit parameter at mismatched interfaces. Scripta Mater. 45(3), 325–331 (2001). https://doi.org/10.1016/S1359-6462(01)01035-1
- Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang et al., Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Mater. 47, 98–104 (2022). https://doi.org/10.1016/j.ensm.2022.01.059
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- T. Foroozan, V. Yurkiv, S. Sharifi-Asl, R. Rojaee, F. Mashayek et al., Non-dendritic zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11(47), 44077–44089 (2019). https://doi.org/10.1021/acsami.9b13174
- Y. Yan, C. Shu, T. Zeng, X. Wen, S. Liu et al., Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano 16(6), 9150–9162 (2022). https://doi.org/10.1021/acsnano.2c01380
- Z. Xu, S. Jin, N. Zhang, W. Deng, M. Seo et al., Efficient Zn metal anode enabled by O,N-codoped carbon microflowers. Nano Lett. 22(3), 1350–1357 (2022). https://doi.org/10.1021/acs.nanolett.1c04709
- M. Wang, W. Wang, Y. Meng, Y. Xu, J. Sun et al., Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries. Energy Storage Mater. 56, 424–431 (2023). https://doi.org/10.1016/j.ensm.2023.01.026
- Q. Lv, Y. Song, B. Wang, S. Wang, B. Wu et al., Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries. J. Energy Chem. 81, 613–622 (2023). https://doi.org/10.1016/j.jechem.2023.02.040
- J. Wang, C. Eng, Y. Chen-Wiegart, J. Wang, Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat. Commun. 6, 7496 (2015). https://doi.org/10.1038/ncomms8496
- Z. Hong, Z. Ahmad, V. Viswanathan, Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes. ACS Energy Lett. 5(8), 2466–2474 (2020). https://doi.org/10.1021/acsenergylett.0c01235
References
D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15(3), 170–180 (2020). https://doi.org/10.1038/s41565-020-0657-x
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2021). https://doi.org/10.1007/s40820-021-00758-5
W.B. Hawley, J. Li, Electrode manufacturing for lithium-ion batteries—analysis of current and next generation processing. J. Energy Storage 25, 100862 (2019). https://doi.org/10.1016/j.est.2019.100862
D. Zhao, S. Ge-Zhang, Z. Zhang, H. Tang, Y. Xu et al., Three-dimensional honeycomb-like carbon as sulfur host for sodium–sulfur batteries without the shuttle effect. ACS Appl. Mater. Interfaces 14(49), 54662–54669 (2022). https://doi.org/10.1021/acsami.2c13862
Y. Liang, Y. Yao, Designing modern aqueous batteries. Nat. Rev. Mater. 8(2), 109–122 (2022). https://doi.org/10.1038/s41578-022-00511-3
D. Zhao, S. Jiang, S. Yu, J. Ren, Z. Zhang et al., Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 201, 864–870 (2023). https://doi.org/10.1016/j.carbon.2022.09.075
R. Zhao, M. Wang, D. Zhao, H. Li, C. Wang, L. Yin, Molecular-level heterostructures assembled from titanium carbide mxene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Lett. 3(1), 132–140 (2017). https://doi.org/10.1021/acsenergylett.7b01063
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
T. Wang, J. Sun, Y. Hua, B.N.V. Krishna, Q. Xi et al., Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 53, 273–304 (2022). https://doi.org/10.1016/j.ensm.2022.08.046
M. Yan, H. Ni, H. Pan, Rechargeable mild aqueous zinc batteries for grid storage. Adv. Energ. Sust. Res. 1(1), 2000026 (2020). https://doi.org/10.1002/aesr.202000026
J. Liu, C. Zhao, J. Wang, D. Ren, B. Li et al., A brief history of zinc–air batteries: 140 years of epic adventures. Energ. Environ. Sci. 15(11), 4542–4553 (2022). https://doi.org/10.1039/d2ee02440c
T. Shoji, M. Hishinuma, T. Yamamoto, Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell. J. Appl. Electrochem. 18(4), 521–526 (1988). https://doi.org/10.1007/BF01022245
Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 31(3), 2005092 (2021). https://doi.org/10.1002/adfm.202005092
H. Luo, B. Wang, F. Wu, J. Jian, K. Yang et al., Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy 81, 105601 (2021). https://doi.org/10.1016/j.nanoen.2020.105601
F. Gao, B. Mei, X. Xu, J. Ren, D. Zhao et al., Rational design of ZnMn2O4 nanops on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 448, 137742 (2022). https://doi.org/10.1016/j.cej.2022.137742
H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35(1), e2208237 (2023). https://doi.org/10.1002/adma.202208237
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62(8), e202215552 (2023). https://doi.org/10.1002/anie.202215552
Y. Zhao, Y. Lu, H. Li, Y. Zhu, Y. Meng et al., Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nat. Commun. 13(1), 752 (2022). https://doi.org/10.1038/s41467-022-28380-y
H. Luo, B. Wang, F. Wang, J. Yang, F. Wu et al., Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 14(6), 7328–7337 (2020). https://doi.org/10.1021/acsnano.0c02658
H. Luo, B. Wang, J. Jian, F. Wu, L. Peng et al., Stress-release design for high-capacity and long-time lifespan aqueous zinc-ion batteries. Mater. Today Energy 21, 10799 (2021). https://doi.org/10.1016/j.mtener.2021.100799
Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu et al., Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021). https://doi.org/10.1016/j.mtener.2021.100692
X. Zhang, J. Hu, N. Fu, W. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022). https://doi.org/10.1002/inf2.12306
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
D. Kundu, P. Oberholzer, C. Glaros, A. Bouzid, E. Tervoort et al., Organic cathode for aqueous Zn-ion batteries: taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 30(11), 3874–3881 (2018). https://doi.org/10.1021/acs.chemmater.8b01317
T. Li, Y. Lim, X. Li, S. Luo, C. Lin et al., A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 12(15), 2103231 (2022). https://doi.org/10.1002/aenm.202103231
L. Faulkner, A. Bard, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, 2002), pp.69–75
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), e2001854 (2020). https://doi.org/10.1002/adma.202001854
C. Li, L. Wang, J. Zhang, D. Zhang, J. Du et al., Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater. 44, 104–135 (2022). https://doi.org/10.1016/j.ensm.2021.10.020
J. Shin, J. Lee, Y. Park, J. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/d0sc00022a
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energ. Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
Z. Hou, Y. Gao, R. Zhou, B. Zhang, Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32(7), 2107584 (2022). https://doi.org/10.1002/adfm.202107584
B. Cui, X. Han, W. Hu, Micronanostructured design of dendrite-free zinc anodes and their applications in aqueous zinc-based rechargeable batteries. Small Struct. 2(6), 2000128 (2021). https://doi.org/10.1002/sstr.202000128
J. Henry, On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Proc. Phys. Soc. London 17(1), 496 (1899). https://doi.org/10.1088/1478-7814/17/1/332
J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42(12), 7355–7367 (1990). https://doi.org/10.1103/PhysRevA.42.7355
V. Fleury, J. Chazalviel, M. Rosso, B. Sapoval, The role of the anions in the growth speed of fractal electrodeposits. J. Electroanalytical Chem. Interfacial Electrochem. 290(1), 249–255 (1990). https://doi.org/10.1016/0022-0728(90)87434-L
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H(2)O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62(8), e202215552 (2023). https://doi.org/10.1002/anie.202215552
Q. Zhang, Y. Ma, Y. Lu, Y. Ni, L. Lin et al., Halogenated Zn(2+) solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 144(40), 18435–18443 (2022). https://doi.org/10.1021/jacs.2c06927
J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei et al., Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22(3), 1017–1023 (2022). https://doi.org/10.1021/acs.nanolett.1c03917
H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energ. Environ. Sci. 15(12), 5017–5038 (2022). https://doi.org/10.1039/d2ee02416k
Q. Liu, L. Zhang, H. Sun, L. Geng, Y. Li et al., In situ observation of sodium dendrite growth and concurrent mechanical property measurements using an environmental transmission electron microscopy–atomic force microscopy (ETEM-AFM) platform. ACS Energy Lett. 5(8), 2546–2559 (2020). https://doi.org/10.1021/acsenergylett.0c01214
M. Xia, T. Jiao, G. Liu, Y. Chen, J. Gao et al., Rational design of electrolyte solvation structure for stable cycling and fast charging lithium metal batteries. J. Power Sources 548, 232106 (2022). https://doi.org/10.1016/j.jpowsour.2022.232106
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energ. Environ. Sci. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu et al., Design strategies toward high-performance Zn metal anode. Small Methods (2023). https://doi.org/10.1002/smtd.202201572
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6(5), 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
J. Wang, Z. Cai, R. Xiao, Y. Ou, R. Zhan et al., A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12(20), 23028–23034 (2020). https://doi.org/10.1021/acsami.0c05661
S. Higashi, S. Lee, J. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
S. Pu, B. Hu, Z. Li, Y. Yuan, C. Gong et al., Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule 7(2), 366–379 (2023). https://doi.org/10.1016/j.joule.2023.01.010
H. Ji, Q. Zhang, Y. Li, H. Li, H. Wang, Anode current collector for aqueous zinc-ion batteries: issues and design strategies. Acta Chim. Sinica 81(1), 29–41 (2023). https://doi.org/10.6023/a22100413
C. Kao, C. Ye, J. Hao, J. Shan, H. Li et al., Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries. ACS Nano 17(4), 3948–3957 (2023). https://doi.org/10.1021/acsnano.2c12587
C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32(47), 2207732 (2022). https://doi.org/10.1002/adfm.202207732
J. Yang, J. Li, J. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34(27), e2202382 (2022). https://doi.org/10.1002/adma.202202382
L. Geng, X. Wang, K. Han, P. Hu, L. Zhou et al., Eutectic electrolytes in advanced metal-ion batteries. ACS Energy Lett. 7(1), 247–260 (2021). https://doi.org/10.1021/acsenergylett.1c02088
N. Guo, W. Huo, X. Dong, Z. Sun, Y. Lu et al., A review on 3d zinc anodes for zinc ion batteries. Small Methods 6(9), e2200597 (2022). https://doi.org/10.1002/smtd.202200597
Q. Li, Y. Wang, F. Mo, D. Wang, G. Liang et al., Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11(14), 2003931 (2021). https://doi.org/10.1002/aenm.202003931
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
Y. Zhu, J. Yin, X. Zheng, A. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energ. Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
W. Zhang, G. He, Solid-electrolyte interphase chemistries towards high-performance aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(13), e202218466 (2023). https://doi.org/10.1002/anie.202218466
H. Sun, Y. Huyan, N. Li, D. Lei, H. Liu et al., A seamless metal-organic framework interphase with boosted Zn(2+) flux and deposition kinetics for long-living rechargeable zn batteries. Nano Lett. 23(5), 1726–1734 (2023). https://doi.org/10.1021/acs.nanolett.2c04410
A. Bayaguud, X. Luo, Y. Fu, C. Zhu et al., Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energ. Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energ. Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
R. Zhao, A. Elzatahry, D. Chao, D. Zhao, Making mxenes more energetic in aqueous battery. Matter 5(1), 8–10 (2022). https://doi.org/10.1016/j.matt.2021.12.005
Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
H. Liu, Q. Zhou, Q. Xia, Y. Lei, X. Huang et al., Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 77, 642–659 (2023). https://doi.org/10.1016/j.jechem.2022.11.028
J. Li, Q. Lin, Z. Zheng, L. Cao, W. Lv et al., How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries? ACS Appl. Mater. Interfaces 14(10), 12323–12330 (2022). https://doi.org/10.1021/acsami.2c00344
Q. Ni, B. Kim, C. Wu, K. Kang, Non-electrode components for rechargeable aqueous zinc batteries: electrolytes, solid-electrolyte-interphase, current collectors, binders, and separators. Adv. Mater. 34(20), e2108206 (2022). https://doi.org/10.1002/adma.202108206
C. Lamiel, I. Hussain, X. Ma, K. Zhang et al., Properties, functions, and challenges: current collectors. Mater. Today Chem. 26, 101152 (2022). https://doi.org/10.1016/j.mtchem.2022.101152
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3d-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous zn ion batteries. Adv. Energy Mater. 11(19), 2003927 (2021). https://doi.org/10.1002/aenm.202003927
C. Xie, H. Ji, Q. Zhang, Z. Yang, C. Hu et al., High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode. Adv. Energy Mater. 13(3), 2203203 (2022). https://doi.org/10.1002/aenm.202203203
Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34(37), e2203835 (2022). https://doi.org/10.1002/adma.202203835
Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO(2) battery. Nano Lett. 21(3), 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
D.G. Mackanic, M. Kao, Z. Bao, Enabling deformable and stretchable batteries. Adv. Energy Mater. 10(29), 2001424 (2020). https://doi.org/10.1002/aenm.202001424
Y. Qian, C. Meng, J. He, X. Dong, A lightweight 3d Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries. J. Power Sources 480, 228871 (2020). https://doi.org/10.1016/j.jpowsour.2020.228871
D. Lin, Y. Liu, Z. Liang, H. Lee, J. Sun et al., Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11(7), 626–632 (2016). https://doi.org/10.1038/nnano.2016.32
R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202209288
H. Li, C. Guo, T. Zhang, P. Xue, R. Zhao et al., Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 22(10), 4223–4231 (2022). https://doi.org/10.1021/acs.nanolett.2c01235
Y. Zhang, J. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous zn batteries. ACS Energy Lett. 6(2), 404–412 (2021). https://doi.org/10.1021/acsenergylett.0c02343
J. Zheng, Y. Deng, W. Li, J. Yin, P. West et al., Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries. Sci. Adv. 8(44), eabq6321 (2022). https://doi.org/10.1126/sciadv.abq6321
J. Yin, Y. Wang, Y. Zhu, J. Jin, C. Chen et al., Regulating the redox reversibility of zinc anode toward stable aqueous zinc batteries. Nano Energy 99, 107331 (2022). https://doi.org/10.1016/j.nanoen.2022.107331
Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li et al., Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J. 416, 128062 (2021). https://doi.org/10.1016/j.cej.2020.128062
Y. Zeng, P. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), e2200342 (2022). https://doi.org/10.1002/adma.202200342
L. Geng, J. Meng, X. Wang, C. Han, K. Han et al., Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61(31), e202206717 (2022). https://doi.org/10.1002/anie.202206717
M. Tribbia, J. Glenneberg, G. Zampardi, F. La Mantia, Highly efficient, dendrite-free zinc electrodeposition in mild aqueous zinc-ion batteries through indium-based substrates. Batteries Supercaps 5(5), 2100381 (2022). https://doi.org/10.1002/batt.202100381
R. Li, Y. Du, Y. Li, Z. He, L. Dai et al., Alloying strategy for high-performance zinc metal anodes. ACS Energ Lett. 8(1), 457–476 (2022). https://doi.org/10.1021/acsenergylett.2c01960
C. Xie, Z. Yang, Q. Zhang, H. Ji, Y. Li et al., Designing zinc deposition substrate with fully preferred orientation to elude the interfacial inhomogeneous dendrite growth. Research (2022). https://doi.org/10.34133/2022/9841343
X. Li, G. Yang, S. Zhang, Z. Wang, L. Chen et al., Improved lithium deposition on silver plated carbon fiber paper. Nano Energy 66, 104144 (2019). https://doi.org/10.1016/j.nanoen.2019.104144
Q. Ren, X. Tang, X. Zhao, Y. Wang, C. Li et al., A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy 109, 108306 (2023). https://doi.org/10.1016/j.nanoen.2023.108306
H. Wang, Y. Wu, S. Liu, Y. Jiang, D. Shen et al., 3d Ag@C cloth for stable anode free sodium metal batteries. Small Methods 5(4), 2001050 (2021). https://doi.org/10.1002/smtd.202001050
L. Zolin, J.R. Nair, D. Beneventi, F. Bella, M. Destro et al., A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon 107, 811–822 (2016). https://doi.org/10.1016/j.carbon.2016.06.076
S. Yang, Y. Li, H. Du, Y. Liu, Y. Xiang et al., Copper nanop-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode. ACS Sustain. Chem. Eng. 10(38), 12630–12641 (2022). https://doi.org/10.1021/acssuschemeng.2c03328
J. Kim, O. Chae, G. Kim, W. Jung, S. Choi et al., Spatial control of lithium deposition by controlling the lithiophilicity with copper(I) oxide boundaries. Energy Environ. Matter. 2, 12392 (2022). https://doi.org/10.1002/eem2.12392
F. Pei, A. Fu, W. Ye, J. Peng, X. Fang et al., Robust lithium metal anodes realized by lithiophilic 3d porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 13(7), 8337–8346 (2019). https://doi.org/10.1021/acsnano.9b03784
W. Zhou, T. Wu, M. Chen, Q. Tian, X. Han et al., Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Mater. 51, 286–293 (2022). https://doi.org/10.1016/j.ensm.2022.06.056
P. Xue, C. Guo, N. Wang, K. Zhu, S. Jing et al., Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3d hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn–metal composite anodes. Adv. Funct. Mater. 31(50), 2106417 (2021). https://doi.org/10.1002/adfm.202106417
M. Zhou, G. Sun, S. Zang, Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. J. Energy Chem. 69, 76–83 (2022). https://doi.org/10.1016/j.jechem.2021.12.040
R. Zhao, H. Di, X. Hui, D. Zhao, R. Wang et al., Self-assembled Ti3C2 MXene and n-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 13(1), 246–257 (2020). https://doi.org/10.1039/c9ee03250a
P. Liu, Z. Zhang, R. Hao, Y. Huang, W. Liu et al., Ultra-highly stable zinc metal anode via 3d-printed g-C3N4 modulating interface for long life energy storage systems. Chem. Eng. J. 403, 126425 (2021). https://doi.org/10.1016/j.cej.2020.126425
Y. An, Y. Tian, Y. Li, C. Wei, Y. Tao et al., Heteroatom-doped 3d porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries. Chem. Eng. J. 400, 125843 (2020). https://doi.org/10.1016/j.cej.2020.125843
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang et al., Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy R 4(3), 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6
P. Liu, X. Fan, B. Ouyang, Y. Huang, R. Hao et al., A zn ion hybrid capacitor with enhanced energy density for anode-free. J. Power Sources 518, 230740 (2022). https://doi.org/10.1016/j.jpowsour.2021.230740
X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14(1), 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
L. Zhou, Y. Yang, J. Yang, P. Ye, T. Ali et al., Achieving fast Zn-ion storage kinetics by confining nitrogen-enriched carbon nanofragments in a honeycomb-like matrix. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154526
T. Wu, Y. Zhang, Z. Althouse, N. Liu et al., Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 6, 100032 (2019). https://doi.org/10.1016/j.mtnano.2019.100032
G. Zhou, E. Paek, G. Hwang, A. Manthiram, Long-life li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015). https://doi.org/10.1038/ncomms8760
G. Zhou, A. Yang, G. Gao, X. Yu, J. Xu et al., Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance li-s batteries. Sci. Adv. 6(21), eaay5098 (2020). https://doi.org/10.1126/sciadv.aay5098
J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
S. Chang, J. Fang, K. Liu, Z. Shen, L. Zhu et al., Molecular-layer-deposited zincone films induce the formation of lif-rich interphase for lithium metal anodes. Adv. Energy Mater. 13(12), 2204002 (2023). https://doi.org/10.1002/aenm.202204002
Y. Yu, W. Xu, X. Liu, X. Lu et al., Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: recent progress and future perspectives. Adv. Sustain. Syst. 4(9), 2000082 (2020). https://doi.org/10.1002/adsu.202000082
V. Caldeira, J. Thiel, F. Lacoste, L. Dubau, M. Chatenet, Improving zinc porous electrode for secondary alkaline batteries: toward a simple design of optimized 3d conductive network current collector. J. Power Sources 450, 227668 (2020). https://doi.org/10.1016/j.jpowsour.2019.227668
Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu et al., 3d confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A 8(23), 11719–11727 (2020). https://doi.org/10.1039/d0ta02791j
L. Li, W. Liu, H. Dong, Q. Gui, Z. Hu et al., Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 33(13), e2004959 (2021). https://doi.org/10.1002/adma.202004959
X. Shi, G. Xu, S. Liang, C. Li, S. Guo et al., Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain. Chem. Eng. 7(21), 17737–17746 (2019). https://doi.org/10.1021/acssuschemeng.9b04085
Q. Jian, Z. Guo, L. Zhang, M. Wu, T. Zhao et al., A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes. Chem. Eng. J. 425, 130643 (2021). https://doi.org/10.1016/j.cej.2021.130643
R. Xue, J. Kong, Y. Wu, Y. Wang, X. Kong et al., Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. J. Mater. Chem. A 10(18), 10043–10050 (2022). https://doi.org/10.1039/d2ta00326k
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), e1903675 (2019). https://doi.org/10.1002/adma.201903675
J. Fu, Z. Cano, M. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
G. Feng, J. Guo, H. Tian, Z. Li, Y. Shi et al., Probe the localized electrochemical environment effects and electrode reaction dynamics for metal batteries using in situ 3d microscopy. Adv. Energy Mater. 12(3), 2103484 (2022). https://doi.org/10.1002/aenm.202103484
L. Lu, J. Ge, J. Yang, S. Chen, H. Yao et al., Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16(7), 4431–4437 (2016). https://doi.org/10.1021/acs.nanolett.6b01581
T. Li, S. Gu, L. Chen, L. Zhang, X. Qin et al., Bidirectional lithiophilic gradients modification of ultralight 3d carbon nanofiber host for stable lithium metal anode. Small 18(33), 2203273 (2022). https://doi.org/10.1002/smll.202203273
Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou et al., 3d porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7(3), 3364–3371 (2019). https://doi.org/10.1021/acssuschemeng.8b05568
B. Liu, S. Wang, Z. Wang, H. Lei, Z. Chen et al., Novel 3d nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 16(22), e2001323 (2020). https://doi.org/10.1002/smll.202001323
H. Meng, Q. Ran, T. Dai, H. Shi, S. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
S. Wang, Q. Ran, R. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
M. Idrees, S. Batool, M. Din, M. Javed, S. Ahmed et al., Material-structure-property integrated additive manufacturing of batteries. Nano Energy 109, 108247 (2023). https://doi.org/10.1016/j.nanoen.2023.108247
M. Browne, E. Redondo, M. Pumera et al., 3d printing for electrochemical energy applications. Chem. Rev. 120(5), 2783–2810 (2020). https://doi.org/10.1021/acs.chemrev.9b00783
Y. Jiang, Q. Lv, C. Bao, B. Wang, P. Ren et al., Seamless alloying stabilizes solid-electrolyte interphase for highly reversible lithium metal anode. Cell Rep. Phys. Sci. 3(3), 100785 (2022). https://doi.org/10.1016/j.xcrp.2022.100785
L. Zeng, H. He, H. Chen, D. Luo, J. He et al., 3d printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries. Adv. Energy Mater. 12(12), 2103708 (2022). https://doi.org/10.1002/aenm.202103708
S. Zhang, W. Deng, X. Zhou, B. He, J. Liang et al., Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation toward high-areal-capacity lithium metal anode. Mater. Today Energy 21, 100770 (2021). https://doi.org/10.1016/j.mtener.2021.100770
H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li et al., Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat. Commun. 9(1), 3729 (2018). https://doi.org/10.1038/s41467-018-06126-z
H. Park, J. Um, H. Choi, W. Yoon, Y. Sung et al., Hierarchical micro-lamella-structured 3d porous copper current collector coated with tin for advanced lithium-ion batteries. Appl. Surf. Sci. 399, 132–138 (2017). https://doi.org/10.1016/j.apsusc.2016.12.043
J. Pu, J. Li, K. Zhang, T. Zhang, C. Li et al., Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 10(1), 1896 (2019). https://doi.org/10.1038/s41467-019-09932-1
S. Zhou, C. Fu, Z. Chang, Y. Zhang, D. Xu et al., Conductivity gradient modulator induced highly reversible li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Mater. 47, 482–490 (2022). https://doi.org/10.1016/j.ensm.2022.02.033
G. Liang, J. Zhu, B. Yan, Q. Li, A. Chen, Z. Chen et al., Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energ. Environ. Sci. 15(3), 1086–1096 (2022). https://doi.org/10.1039/d1ee03749h
Z. Shen, L. Luo, C. Li, J. Pu, J. Xie et al., Stratified zinc-binding strategy toward prolonged cycling and flexibility of aqueous fibrous zinc metal batteries. Adv. Energy Mater. 11(16), 2100214 (2021). https://doi.org/10.1002/aenm.202100214
Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu et al., Stable Zn anodes with triple gradients. Adv. Mater. 35(6), e2207573 (2023). https://doi.org/10.1002/adma.202207573
P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai et al., Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives. Energy Environ. Sci. 10(10), 2056–2080 (2017). https://doi.org/10.1039/c7ee01913k
L. Wang, W. Huang, W. Guo, Z. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2021). https://doi.org/10.1002/adfm.202108533
H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
Z. Wei, H. Zhang, A. Li, F. Cheng, Y. Wang et al., Construction of in-plane 3d network electrode strategy for promoting zinc ion storage capacity. Energy Storage Mater. 55, 754–762 (2023). https://doi.org/10.1016/j.ensm.2022.12.036
Y. Liu, M. Pharr, G. Salvatore et al., Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11(10), 9614–9635 (2017). https://doi.org/10.1021/acsnano.7b04898
H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
S. Pu, C. Gong, Y. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34(28), e2202552 (2022). https://doi.org/10.1002/adma.202202552
Y. Song, J. Hu, J. Tang, W. Gu, L. He et al., Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications. ACS Appl. Mater. Interfaces 8(46), 32031–32040 (2016). https://doi.org/10.1021/acsami.6b11098
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), e2008424 (2021). https://doi.org/10.1002/adma.202008424
H. Lu, Q. Jin, X. Jiang, Z. Dang, D. Zhang et al., Vertical crystal plane matching between AgZn(3) (002) and Zn (002) achieving a dendrite-free zinc anode. Small 18(16), e2200131 (2022). https://doi.org/10.1002/smll.202200131
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
X. Chen, W. Li, S. Hu, N. Akhmedov, D. Reed et al., Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano Energy 98, 107269 (2022). https://doi.org/10.1016/j.nanoen.2022.107269
M. Qiu, P. Sun, A. Qin, G. Cui, W. Mai, Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Mater. 49, 463–470 (2022). https://doi.org/10.1016/j.ensm.2022.04.018
A. Romanov, T. Wagner, M. Rühle, Coherent to incoherent transition in mismatched interfaces. Scripta Mater. 38(6), 869–875 (1998). https://doi.org/10.1016/S1359-6462(97)00570-8
E. Romanov, T. Wagner, On the universal misfit parameter at mismatched interfaces. Scripta Mater. 45(3), 325–331 (2001). https://doi.org/10.1016/S1359-6462(01)01035-1
Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang et al., Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Mater. 47, 98–104 (2022). https://doi.org/10.1016/j.ensm.2022.01.059
J. Zheng, Q. Zhao, T. Tang, J. Yin, C. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
T. Foroozan, V. Yurkiv, S. Sharifi-Asl, R. Rojaee, F. Mashayek et al., Non-dendritic zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11(47), 44077–44089 (2019). https://doi.org/10.1021/acsami.9b13174
Y. Yan, C. Shu, T. Zeng, X. Wen, S. Liu et al., Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano 16(6), 9150–9162 (2022). https://doi.org/10.1021/acsnano.2c01380
Z. Xu, S. Jin, N. Zhang, W. Deng, M. Seo et al., Efficient Zn metal anode enabled by O,N-codoped carbon microflowers. Nano Lett. 22(3), 1350–1357 (2022). https://doi.org/10.1021/acs.nanolett.1c04709
M. Wang, W. Wang, Y. Meng, Y. Xu, J. Sun et al., Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries. Energy Storage Mater. 56, 424–431 (2023). https://doi.org/10.1016/j.ensm.2023.01.026
Q. Lv, Y. Song, B. Wang, S. Wang, B. Wu et al., Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries. J. Energy Chem. 81, 613–622 (2023). https://doi.org/10.1016/j.jechem.2023.02.040
J. Wang, C. Eng, Y. Chen-Wiegart, J. Wang, Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography. Nat. Commun. 6, 7496 (2015). https://doi.org/10.1038/ncomms8496
Z. Hong, Z. Ahmad, V. Viswanathan, Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes. ACS Energy Lett. 5(8), 2466–2474 (2020). https://doi.org/10.1021/acsenergylett.0c01235