2D Undulated Metal Hydrogen-Bonded Organic Frameworks with Self-Adaption Interlayered Sites for Highly Efficient C–C Coupling in the Electrocatalytic CO2 Reduction
Corresponding Author: Pengfei Li
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 162
Abstract
The hydrogen-bonded organic frameworks (HOFs) as a new type of porous framework materials have been widely studied in various areas. However, the lack of appropriate active sites, low intrinsic conductivity, and poor stability limited their performance in the field of electrocatalysis. Herein, we designed two 2D metal hydrogen-bonded organic frameworks (2D–M–HOF, M = Cu2+ or Ni2+) with coordination compounds based on 2,3,6,7,14,15-hexahydroxyl cyclotricatechylene and transition metal ions (Cu2+ and Ni2+), respectively. The crystal structure of 2D–Cu–HOF is determined by continuous rotation electron diffraction, indicating an undulated 2D hydrogen-bond network with interlayered π-π stacking. The flexible structure of 2D–M–HOF leads to the formation of self-adaption interlayered sites, resulting in superior activity and selectivity in the electrocatalytic conversion of CO2 to C2 products, achieving a total Faradaic efficiency exceeding 80% due to the high-efficiency C–C coupling. The experimental results and density functional calculations verify that the undulated 2D–M–HOF enables the energetically favorable formation of *OCCHO intermediate. This work provides a promising strategy for designing HOF catalysts in electrocatalysis and related processes.
Highlights:
1 Highly crystalline 2D metal hydrogen-bonded organic frameworks (2D-M-HOFs) including 2D-Cu-HOF and 2D-Ni-HOF were designed and synthesized.
2 The 2D-M-HOF with flexible ligands leads to the formation of the self-adaption interlayered sites, which facilitate the C–C couple and overcome the limitations of the coadsorption of multiple intermediates in the electrocatalytic CO2 reduction reaction.
3 The undulated 2D-Cu-HOF exhibits outstanding activity and selectivity for electrocatalytic reduction of CO2 to C2 products with a total Faradaic efficiency of 82.1% (48.2% for C2H5OH and 33.9% for C2H4) at −1.2 V vs. RHE.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. He, S. Xiang, B. Chen, A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011). https://doi.org/10.1021/ja2066016
- M. Mastalerz, I.M. Oppel, Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012). https://doi.org/10.1002/anie.201201174
- I. Hisaki, Y. Suzuki, E. Gomez, B. Cohen, N. Tohnai et al., Docking strategy to construct thermostable, single-crystalline, hydrogen-bonded organic framework with high surface area. Angew. Chem. Int. Ed. 57, 12650–12655 (2018). https://doi.org/10.1002/anie.201805472
- D. Yu, H. Zhang, J. Ren, X. Qu, Hydrogen-bonded organic frameworks: new horizons in biomedical applications. Chem. Soc. Rev. 52, 7504–7523 (2023). https://doi.org/10.1039/d3cs00408b
- C. Chen, L. Shen, H. Lin, D. Zhao, B. Li et al., Hydrogen-bonded organic frameworks for membrane separation. Chem. Soc. Rev. 53, 2738–2760 (2024). https://doi.org/10.1039/d3cs00866e
- Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15, 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
- Y. Zou, H.-X. Liu, L. Cai, Y.-H. Li, J.-S. Hu et al., Strategy to efficient photodynamic therapy for antibacterium: donor-acceptor structure in hydrogen-bonded organic framework. Adv. Mater. 36, e2406026 (2024). https://doi.org/10.1002/adma.202406026
- Z. Xiong, S. Xiang, Y. Lv, B. Chen, Z. Zhang, Hydrogen-bonded organic frameworks as an appealing platform for luminescent sensing. Adv. Funct. Mater. 34, 2470144 (2024). https://doi.org/10.1002/adfm.202470144
- Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao et al., Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933–939 (2021). https://doi.org/10.1038/s41557-021-00740-z
- M.C. Das, S.C. Pal, B. Chen, Emerging microporous HOF materials to address global energy challenges. Joule 6, 22–27 (2022). https://doi.org/10.1016/j.joule.2021.12.005
- M. Yang, Y. Zhang, R. Zhu, J. Tan, J. Liu et al., Two-dimensional conjugated metal-organic frameworks with a ring-in-ring topology and high electrical conductance. Angew. Chem. Int. Ed. 63, e202405333 (2024). https://doi.org/10.1002/anie.202405333
- M.-Y. Yang, S.-B. Zhang, M. Zhang, Z.-H. Li, Y.-F. Liu et al., Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation. J. Am. Chem. Soc. 146, 3396–3404 (2024). https://doi.org/10.1021/jacs.3c12724
- S.C. Pal, D. Mukherjee, R. Sahoo, S. Mondal, M.C. Das, Proton-conducting hydrogen-bonded organic frameworks. ACS Energy Lett. 6, 4431–4453 (2021). https://doi.org/10.1021/acsenergylett.1c02045
- C. Guo, Y. Cao, Y. Gao, C. Zhi, Y.-X. Wang et al., Cobalt single-atom electrocatalysts enhanced by hydrogen-bonded organic frameworks for long-lasting zinc-iodine batteries. Adv. Funct. Mater. 34, 2314189 (2024). https://doi.org/10.1002/adfm.202314189
- G. Chen, S. Huang, Y. Shen, X. Kou, X. Ma et al., Protein-directed, hydrogen-bonded biohybrid framework. Chem 7, 2722–2742 (2021). https://doi.org/10.1016/j.chempr.2021.07.003
- L. Tong, Y. Lin, X. Kou, Y. Shen, Y. Shen et al., Pore-environment-dependent photoresponsive oxidase-like activity in hydrogen-bonded organic frameworks. Angew. Chem. Int. Ed. 62, e202218661 (2023). https://doi.org/10.1002/anie.202218661
- W. Yan, X. Yu, T. Yan, D. Wu, E. Ning et al., A triptycene-based porous hydrogen-bonded organic framework for guest incorporation with tailored fitting. Chem. Commun. 53, 3677–3680 (2017). https://doi.org/10.1039/c7cc00557a
- H. Wang, Z. Bao, H. Wu, R.-B. Lin, W. Zhou et al., Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chem. Commun. 53, 11150–11153 (2017). https://doi.org/10.1039/C7CC06187K
- M. Khanpour, W.-Z. Deng, Z.-B. Fang, Y.-L. Li, Q. Yin et al., Radiochromic hydrogen-bonded organic frameworks for X-ray detection. Chemistry 27, 10957–10965 (2021). https://doi.org/10.1002/chem.202101061
- M. Vicent-Morales, M. Esteve-Rochina, J. Calbo, E. Ortí, I.J. Vitórica-Yrezábal et al., Semiconductor porous hydrogen-bonded organic frameworks based on tetrathiafulvalene derivatives. J. Am. Chem. Soc. 144, 9074–9082 (2022). https://doi.org/10.1021/jacs.2c01957
- B. Wang, R.-B. Lin, Z. Zhang, S. Xiang, B. Chen, Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142, 14399–14416 (2020). https://doi.org/10.1021/jacs.0c06473
- X. Zhao, Q. Yin, X. Mao, C. Cheng, L. Zhang et al., Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 13, 2721 (2022). https://doi.org/10.1038/s41467-022-30523-0
- C.-J. Lu, W.-J. Shi, Y.-N. Gong, J.-H. Zhang, Y.-C. Wang et al., Modulating the microenvironments of robust metal hydrogen-bonded organic frameworks for boosting photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 63, e202405451 (2024). https://doi.org/10.1002/anie.202405451
- B. Han, H. Wang, C. Wang, H. Wu, W. Zhou et al., Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J. Am. Chem. Soc. 141, 8737–8740 (2019). https://doi.org/10.1021/jacs.9b03766
- Y. Wang, K. Ma, J. Bai, T. Xu, W. Han et al., Chemically engineered porous molecular coatings as reactive oxygen species generators and reservoirs for long-lasting self-cleaning textiles. Angew. Chem. Int. Ed. 61, e202115956 (2022). https://doi.org/10.1002/anie.202115956
- F.Q. Liu, J.W. Liu, Z. Gao, L. Wang, X.-Z. Fu et al., Constructing bimetal-complex based hydrogen-bonded framework for highly efficient electrocatalytic water splitting. Appl. Catal. B Environ. 258, 117973 (2019). https://doi.org/10.1016/j.apcatb.2019.117973
- C. Wang, Z. Lv, Y. Liu, R. Liu, C. Sun et al., Hydrogen-bonded organic framework supporting atomic Bi-N2O2 sites for high-efficiency electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63, e202404015 (2024). https://doi.org/10.1002/anie.202404015
- W. Xia, Y. Xie, S. Jia, S. Han, R. Qi et al., Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023). https://doi.org/10.1021/jacs.3c04612
- Y.-X. Zhang, S. Zhang, H. Huang, X. Liu, B. Li et al., General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 145, 4819–4827 (2023). https://doi.org/10.1021/jacs.2c13886
- X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
- M. Chhetri, M. Wan, Z. Jin, J. Yeager, C. Sandor et al., Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction. Nat. Commun. 14, 3075 (2023). https://doi.org/10.1038/s41467-023-38777-y
- X. Gong, Y. Shu, Z. Jiang, L. Lu, X. Xu et al., Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326–5331 (2020). https://doi.org/10.1002/anie.201915537
- X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 143, 7242–7246 (2021). https://doi.org/10.1021/jacs.1c01466
- J. Li, H. Huang, W. Xue, K. Sun, X. Song et al., Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719–729 (2021). https://doi.org/10.1038/s41929-021-00665-3
- W. Chen, P. Chen, G. Zhang, G. Xing, Y. Feng et al., Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem. Soc. Rev. 50, 11684–11714 (2021). https://doi.org/10.1039/d1cs00545f
- P.T. Lee, J.E. Thomson, A. Karina, C. Salter, C. Johnston et al., Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 140, 236–242 (2015). https://doi.org/10.1039/C4AN01835D
- J.J. Loughrey, C.A. Kilner, M.J. Hardie, M.A. Halcrow, Six new crystalline clathrates of cyclotricatechylene (CTC) including two donor–acceptor complexes. Supramol. Chem. 24(1), 2–13 (2012). https://doi.org/10.1080/10610278.2011.611246
- J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage. J. Mater. Chem. 22, 5369–5373 (2012). https://doi.org/10.1039/C2JM15159F
- X. Ouyang, R. Liang, Y. Hu, G. Li, C. Hu et al., Hollow tube covalent organic framework for syringe filter-based extraction of ultraviolet stabilizer in food contact materials. J. Chromatogr. A 1656, 462538 (2021). https://doi.org/10.1016/j.chroma.2021.462538
- A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010). https://doi.org/10.1039/C0EE00071J
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- M. Jiang, H. Wang, M. Zhu, X. Luo, Y. He et al., Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chem. Soc. Rev. 53, 5149–5189 (2024). https://doi.org/10.1039/d3cs00857f
- P. Chen, X. Su, C. Wang, G. Zhang, T. Zhang et al., Two-dimensional conjugated metal-organic frameworks with large pore apertures and high surface areas for NO2 selective chemiresistive sensing. Angew. Chem. Int. Ed. 62, e202306224 (2023). https://doi.org/10.1002/anie.202306224
- S. Huang, J.Y. Choi, Q. Xu, Y. Jin, J. Park et al., Carbazolylene-ethynylene macrocycle based conductive covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202303538 (2023). https://doi.org/10.1002/anie.202303538
- L.S. Xie, G. Skorupskii, M. Dincă, Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020). https://doi.org/10.1021/acs.chemrev.9b00766
- L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
- H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
- Y. Kim, S. Park, S.-J. Shin, W. Choi, B.K. Min et al., Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020). https://doi.org/10.1039/D0EE01690J
- X. Xie, X. Zhang, M. Xie, L. Xiong, H. Sun et al., Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 13, 63 (2022). https://doi.org/10.1038/s41467-021-27768-6
- Y. Jia, Y. Ding, T. Song, Y. Xu, Y. Li et al., Dynamic surface reconstruction of amphoteric metal (Zn, Al) doped Cu2O for efficient electrochemical CO2 reduction to C2+ products. Adv. Sci. 10, e2303726 (2023). https://doi.org/10.1002/advs.202303726
References
Y. He, S. Xiang, B. Chen, A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011). https://doi.org/10.1021/ja2066016
M. Mastalerz, I.M. Oppel, Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012). https://doi.org/10.1002/anie.201201174
I. Hisaki, Y. Suzuki, E. Gomez, B. Cohen, N. Tohnai et al., Docking strategy to construct thermostable, single-crystalline, hydrogen-bonded organic framework with high surface area. Angew. Chem. Int. Ed. 57, 12650–12655 (2018). https://doi.org/10.1002/anie.201805472
D. Yu, H. Zhang, J. Ren, X. Qu, Hydrogen-bonded organic frameworks: new horizons in biomedical applications. Chem. Soc. Rev. 52, 7504–7523 (2023). https://doi.org/10.1039/d3cs00408b
C. Chen, L. Shen, H. Lin, D. Zhao, B. Li et al., Hydrogen-bonded organic frameworks for membrane separation. Chem. Soc. Rev. 53, 2738–2760 (2024). https://doi.org/10.1039/d3cs00866e
Y. Wang, Y. Ren, Y. Cao, X. Liang, G. He et al., Engineering HOF-based mixed-matrix membranes for efficient CO2 separation. Nano-Micro Lett. 15, 50 (2023). https://doi.org/10.1007/s40820-023-01020-w
Y. Zou, H.-X. Liu, L. Cai, Y.-H. Li, J.-S. Hu et al., Strategy to efficient photodynamic therapy for antibacterium: donor-acceptor structure in hydrogen-bonded organic framework. Adv. Mater. 36, e2406026 (2024). https://doi.org/10.1002/adma.202406026
Z. Xiong, S. Xiang, Y. Lv, B. Chen, Z. Zhang, Hydrogen-bonded organic frameworks as an appealing platform for luminescent sensing. Adv. Funct. Mater. 34, 2470144 (2024). https://doi.org/10.1002/adfm.202470144
Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao et al., Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933–939 (2021). https://doi.org/10.1038/s41557-021-00740-z
M.C. Das, S.C. Pal, B. Chen, Emerging microporous HOF materials to address global energy challenges. Joule 6, 22–27 (2022). https://doi.org/10.1016/j.joule.2021.12.005
M. Yang, Y. Zhang, R. Zhu, J. Tan, J. Liu et al., Two-dimensional conjugated metal-organic frameworks with a ring-in-ring topology and high electrical conductance. Angew. Chem. Int. Ed. 63, e202405333 (2024). https://doi.org/10.1002/anie.202405333
M.-Y. Yang, S.-B. Zhang, M. Zhang, Z.-H. Li, Y.-F. Liu et al., Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation. J. Am. Chem. Soc. 146, 3396–3404 (2024). https://doi.org/10.1021/jacs.3c12724
S.C. Pal, D. Mukherjee, R. Sahoo, S. Mondal, M.C. Das, Proton-conducting hydrogen-bonded organic frameworks. ACS Energy Lett. 6, 4431–4453 (2021). https://doi.org/10.1021/acsenergylett.1c02045
C. Guo, Y. Cao, Y. Gao, C. Zhi, Y.-X. Wang et al., Cobalt single-atom electrocatalysts enhanced by hydrogen-bonded organic frameworks for long-lasting zinc-iodine batteries. Adv. Funct. Mater. 34, 2314189 (2024). https://doi.org/10.1002/adfm.202314189
G. Chen, S. Huang, Y. Shen, X. Kou, X. Ma et al., Protein-directed, hydrogen-bonded biohybrid framework. Chem 7, 2722–2742 (2021). https://doi.org/10.1016/j.chempr.2021.07.003
L. Tong, Y. Lin, X. Kou, Y. Shen, Y. Shen et al., Pore-environment-dependent photoresponsive oxidase-like activity in hydrogen-bonded organic frameworks. Angew. Chem. Int. Ed. 62, e202218661 (2023). https://doi.org/10.1002/anie.202218661
W. Yan, X. Yu, T. Yan, D. Wu, E. Ning et al., A triptycene-based porous hydrogen-bonded organic framework for guest incorporation with tailored fitting. Chem. Commun. 53, 3677–3680 (2017). https://doi.org/10.1039/c7cc00557a
H. Wang, Z. Bao, H. Wu, R.-B. Lin, W. Zhou et al., Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. Chem. Commun. 53, 11150–11153 (2017). https://doi.org/10.1039/C7CC06187K
M. Khanpour, W.-Z. Deng, Z.-B. Fang, Y.-L. Li, Q. Yin et al., Radiochromic hydrogen-bonded organic frameworks for X-ray detection. Chemistry 27, 10957–10965 (2021). https://doi.org/10.1002/chem.202101061
M. Vicent-Morales, M. Esteve-Rochina, J. Calbo, E. Ortí, I.J. Vitórica-Yrezábal et al., Semiconductor porous hydrogen-bonded organic frameworks based on tetrathiafulvalene derivatives. J. Am. Chem. Soc. 144, 9074–9082 (2022). https://doi.org/10.1021/jacs.2c01957
B. Wang, R.-B. Lin, Z. Zhang, S. Xiang, B. Chen, Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142, 14399–14416 (2020). https://doi.org/10.1021/jacs.0c06473
X. Zhao, Q. Yin, X. Mao, C. Cheng, L. Zhang et al., Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 13, 2721 (2022). https://doi.org/10.1038/s41467-022-30523-0
C.-J. Lu, W.-J. Shi, Y.-N. Gong, J.-H. Zhang, Y.-C. Wang et al., Modulating the microenvironments of robust metal hydrogen-bonded organic frameworks for boosting photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 63, e202405451 (2024). https://doi.org/10.1002/anie.202405451
B. Han, H. Wang, C. Wang, H. Wu, W. Zhou et al., Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J. Am. Chem. Soc. 141, 8737–8740 (2019). https://doi.org/10.1021/jacs.9b03766
Y. Wang, K. Ma, J. Bai, T. Xu, W. Han et al., Chemically engineered porous molecular coatings as reactive oxygen species generators and reservoirs for long-lasting self-cleaning textiles. Angew. Chem. Int. Ed. 61, e202115956 (2022). https://doi.org/10.1002/anie.202115956
F.Q. Liu, J.W. Liu, Z. Gao, L. Wang, X.-Z. Fu et al., Constructing bimetal-complex based hydrogen-bonded framework for highly efficient electrocatalytic water splitting. Appl. Catal. B Environ. 258, 117973 (2019). https://doi.org/10.1016/j.apcatb.2019.117973
C. Wang, Z. Lv, Y. Liu, R. Liu, C. Sun et al., Hydrogen-bonded organic framework supporting atomic Bi-N2O2 sites for high-efficiency electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 63, e202404015 (2024). https://doi.org/10.1002/anie.202404015
W. Xia, Y. Xie, S. Jia, S. Han, R. Qi et al., Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023). https://doi.org/10.1021/jacs.3c04612
Y.-X. Zhang, S. Zhang, H. Huang, X. Liu, B. Li et al., General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 145, 4819–4827 (2023). https://doi.org/10.1021/jacs.2c13886
X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
M. Chhetri, M. Wan, Z. Jin, J. Yeager, C. Sandor et al., Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction. Nat. Commun. 14, 3075 (2023). https://doi.org/10.1038/s41467-023-38777-y
X. Gong, Y. Shu, Z. Jiang, L. Lu, X. Xu et al., Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326–5331 (2020). https://doi.org/10.1002/anie.201915537
X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 143, 7242–7246 (2021). https://doi.org/10.1021/jacs.1c01466
J. Li, H. Huang, W. Xue, K. Sun, X. Song et al., Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 4, 719–729 (2021). https://doi.org/10.1038/s41929-021-00665-3
W. Chen, P. Chen, G. Zhang, G. Xing, Y. Feng et al., Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem. Soc. Rev. 50, 11684–11714 (2021). https://doi.org/10.1039/d1cs00545f
P.T. Lee, J.E. Thomson, A. Karina, C. Salter, C. Johnston et al., Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 140, 236–242 (2015). https://doi.org/10.1039/C4AN01835D
J.J. Loughrey, C.A. Kilner, M.J. Hardie, M.A. Halcrow, Six new crystalline clathrates of cyclotricatechylene (CTC) including two donor–acceptor complexes. Supramol. Chem. 24(1), 2–13 (2012). https://doi.org/10.1080/10610278.2011.611246
J.-T. Yu, Z. Chen, J. Sun, Z.-T. Huang, Q.-Y. Zheng, Cyclotricatechylene based porous crystalline material: synthesis and applications in gas storage. J. Mater. Chem. 22, 5369–5373 (2012). https://doi.org/10.1039/C2JM15159F
X. Ouyang, R. Liang, Y. Hu, G. Li, C. Hu et al., Hollow tube covalent organic framework for syringe filter-based extraction of ultraviolet stabilizer in food contact materials. J. Chromatogr. A 1656, 462538 (2021). https://doi.org/10.1016/j.chroma.2021.462538
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010). https://doi.org/10.1039/C0EE00071J
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
M. Jiang, H. Wang, M. Zhu, X. Luo, Y. He et al., Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chem. Soc. Rev. 53, 5149–5189 (2024). https://doi.org/10.1039/d3cs00857f
P. Chen, X. Su, C. Wang, G. Zhang, T. Zhang et al., Two-dimensional conjugated metal-organic frameworks with large pore apertures and high surface areas for NO2 selective chemiresistive sensing. Angew. Chem. Int. Ed. 62, e202306224 (2023). https://doi.org/10.1002/anie.202306224
S. Huang, J.Y. Choi, Q. Xu, Y. Jin, J. Park et al., Carbazolylene-ethynylene macrocycle based conductive covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202303538 (2023). https://doi.org/10.1002/anie.202303538
L.S. Xie, G. Skorupskii, M. Dincă, Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020). https://doi.org/10.1021/acs.chemrev.9b00766
L. Sun, M.G. Campbell, M. Dincă, Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). https://doi.org/10.1002/anie.201506219
H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
Y. Kim, S. Park, S.-J. Shin, W. Choi, B.K. Min et al., Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020). https://doi.org/10.1039/D0EE01690J
X. Xie, X. Zhang, M. Xie, L. Xiong, H. Sun et al., Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 13, 63 (2022). https://doi.org/10.1038/s41467-021-27768-6
Y. Jia, Y. Ding, T. Song, Y. Xu, Y. Li et al., Dynamic surface reconstruction of amphoteric metal (Zn, Al) doped Cu2O for efficient electrochemical CO2 reduction to C2+ products. Adv. Sci. 10, e2303726 (2023). https://doi.org/10.1002/advs.202303726