Atomically Dispersed Metal Atoms: Minimizing Interfacial Charge Transport Barrier for Efficient Carbon-Based Perovskite Solar Cells
Corresponding Author: Yantao Shi
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 125
Abstract
Carbon-based perovskite solar cells (C-PSCs) exhibit notable stability and durability. However, the power conversion efficiency (PCE) is significantly hindered by energy level mismatches, which result in interfacial charge transport barriers at the electrode-related interfaces. Herein, we report a back electrode that utilizes atomically dispersed metallic cobalt (Co) in carbon nanosheets (Co1/CN) to adjust the interfacial energy levels. The electrons in the d-orbitals of Co atoms disrupt the electronic symmetry of the carbon nanosheets (CN), inducing a redistribution of the electronic density of states that leads to a downward shift in the Fermi level and a significantly reduced interfacial energy barrier. As a result, the C-PSCs using Co1/CN as back electrodes achieve a notable PCE of 22.61% with exceptional long-term stability, maintaining 94.4% of their initial efficiency after 1000 h of continuous illumination without encapsulation. This work provides a promising universal method to regulate the energy level of carbon electrodes for C-PSCs and paves the way for more efficient, stable, and scalable solar technologies toward commercialization.
Highlights:
1 Atomically dispersed metal atoms effectively enhance energy level alignment and reduce energy losses at the electrode interfaces.
2 The optimized carbon-based perovskite solar cells achieve a power conversion efficiency (PCE) of 22.61% and maintain 94.4% of their initial PCE after 1000 h under continuous illumination without encapsulation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Liu, M.M.S. Almutairi, J. Ma, A. Stewart, Z. Xing et al., Solution-processed thin film transparent photovoltaics: Present challenges and future development. Nano-Micro Lett. 17, 49 (2025). https://doi.org/10.1007/s40820-024-01547-6
- Y. Wang, W. Li, Y. Yin, M. Wang, W. Cai et al., Defective MWCNT enabled dual interface coupling for carbon-based perovskite solar cells with efficiency exceeding 22%. Adv. Funct. Mater. 32(31), 2204831 (2022). https://doi.org/10.1002/adfm.202204831
- H. Ma, M. Wang, Y. Wang, Q. Dong, J. Liu et al., Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chem. Eng. J. 442, 136291 (2022). https://doi.org/10.1016/j.cej.2022.136291
- M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics (). Nano-Micro Lett. 17, 39 (2025). https://doi.org/10.1007/s40820-024-01538-7
- J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells (review). Nano-Micro Lett. 15, 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
- M. Forouzandeh, M. Heidariramsheh, H.R. Heydarnezhad, H. Nikbakht, M. Stefanelli et al., Enhanced carbon-based back contact electrodes for perovskite solar cells: Effect of carbon paste composition on performance and stability. Carbon 229, 119450 (2024). https://doi.org/10.1016/j.carbon.2024.119450
- Y. Ren, K. Zhang, Z. Lin, X. Wei, M. Xu et al., Long-chain gemini surfactant-assisted blade coating enables large-area carbon-based perovskite solar modules with record performance. Nano-Micro Lett. 15, 182 (2023). https://doi.org/10.1007/s40820-023-01155-w
- C. Dong, B. Xu, D. Liu, E.G. Moloney, F. Tan et al., Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency. Mater. Today 50, 239–258 (2021). https://doi.org/10.1016/j.mattod.2021.05.016
- D. Bogachuk, S. Zouhair, K. Wojciechowski, B. Yang, V. Babu, A. Hagfeldt, A. Hinsch et al., Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13(11), 3880–3916 (2020). https://doi.org/10.1039/D0EE02175J
- J. Cheng, H. Ma, Y. Shi, L. Liu, W. Shang et al., Single-atom Ti decorated carbon black and carbon nanotubes: modular dual-carbon electrode for optimizing the charge transport kinetics of perovskite solar cells. Adv. Funct. Mater. 34, 2409533 (2024). https://doi.org/10.1002/adfm.202409533
- S. Zhang, Y. Wang, S. Li, Z. Wang, H. Chen et al., Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 14(1), 4822 (2023). https://doi.org/10.1038/s41467-023-40563-9
- J. Büttner, T. Berestok, S. Burger, M. Schmitt, M. Daub et al., Are halide-perovskites suitable materials for battery and solar-battery applications–fundamental reconsiderations on solubility, lithium intercalation, and photo-corrosion. Adv. Funct. Mater. 32(49), 2206958 (2022). https://doi.org/10.1002/adfm.202206958
- D. Kong, C. Dong, X. Wei, C. Man, X. Lei et al., Size matching effect between anion vacancies and halide ions in passive film breakdown on copper. Electrochim. Acta 292, 817–827 (2018). https://doi.org/10.1016/j.electacta.2018.10.004
- D. Li, X. Dong, P. Cheng, L. Song, Z. Wu et al., Metal halide perovskite/electrode contacts in charge-transporting-layer-free devices. Adv. Sci. 9(36), 2203683 (2022). https://doi.org/10.1002/advs.202203683
- Y. Jiang, S.-C. Yang, Q. Jeangros, S. Pisoni, T. Moser et al., Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4(5), 1087–1103 (2020). https://doi.org/10.1016/j.joule.2020.03.017
- S.P. Dunfield, L. Bliss, F. Zhang, J.M. Luther, K. Zhu et al., From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10(26), 1904054 (2020). https://doi.org/10.1002/aenm.201904054
- K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3(1), 61–67 (2018). https://doi.org/10.1038/s41560-017-0060-5
- N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee et al., Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7(1), 13422 (2016). https://doi.org/10.1038/ncomms13422
- Q. Wang, D. Zheng, K. Wang, Q. Yang, X. Zhu et al., Versatile charge collection materials in perovskite photovoltaics. Nano Energy 128, 109892 (2024). https://doi.org/10.1016/j.nanoen.2024.109892
- L. Perrin, E. Planes, T. Shioki, R. Tsuji, J.-C. Honore et al., How ammonium valeric acid iodide additive can lead to more efficient and stable carbon-based perovskite solar cells: Role of microstructure and interfaces? Sol. RRL 8(17), 2400393 (2024). https://doi.org/10.1002/solr.202400393
- H. Kim, K.R. Pyun, M.-T. Lee, H.B. Lee, S.H. Ko et al., Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures. Adv. Funct. Mater. 32(16), 2110535 (2022). https://doi.org/10.1002/adfm.202110535
- L. Ma, Z. Bi, W. Zhang, Z. Zhang, Y. Xiao et al., Synthesis of a three-dimensional interconnected oxygen-, boron-, nitrogen-, and phosphorus tetratomic-doped porous carbon network as electrode material for the construction of a superior flexible supercapacitor. ACS Appl. Mater. Interfaces 12(41), 46170–46180 (2020). https://doi.org/10.1021/acsami.0c13454
- L.K. Putri, B.-J. Ng, W.-J. Ong, H.W. Lee, W.S. Chang et al., Engineering nanoscale p–n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 6(7), 3181–3194 (2018). https://doi.org/10.1039/C7TA09723A
- H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang et al., Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 8(11), 5421–5441 (2020). https://doi.org/10.1039/D0TA00416B
- J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013). https://doi.org/10.1039/C3EE4144B
- X. Zheng, H. Chen, Q. Li, Y. Yang, Z. Wei et al., Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17(4), 2496–2505 (2017). https://doi.org/10.1021/acs.nanolett.7b00200
- C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu et al., Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy 53, 160–167 (2018). https://doi.org/10.1016/j.nanoen.2018.08.050
- T. Yin, L. Long, X. Tang, M. Qiu, W. Liang et al., Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. 7(19), 2001431 (2020). https://doi.org/10.1002/advs.202001431
- C. Zhang, S. Liang, W. Liu, F.T. Eickemeyer, X. Cai et al., Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6(12), 1154–1163 (2021). https://doi.org/10.1038/s41560-021-00944-0
- M. Guo, C. Wei, C. Liu, K. Zhang, H. Su et al., Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Mater. Des. 209, 109972 (2021). https://doi.org/10.1016/j.matdes.2021.109972
- Z. Wei, Y. Liu, J. Ding, Q. He, Q. Zhang et al., Promoting electrocatalytic CO2 reduction to CO via sulfur-doped Co-N-C single-atom catalyst. Chin. J. Chem. 41(24), 3553–3559 (2023). https://doi.org/10.1002/cjoc.202300372
- Y. Tang, J. Chen, Z. Mao, C. Roth, D. Wang, Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial Coulombic efficiency of lithium-ion batteries. Carbon Energy 5(2), e257 (2023). https://doi.org/10.1002/cey2.257
- M. Liu, X. Zhu, Y. Song, G. Huang, J. Wei et al., Bifunctional edge-rich nitrogen doped porous carbon for activating oxygen and sulfur. Adv. Funct. Mater. 33(11), 2213395 (2023). https://doi.org/10.1002/adfm.202213395
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co Nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1(1), 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- Q. Zheng, F. Cao, Y. Wang, A. Tong, S. Wang et al., Synergistic effect of ionic liquid-doped spiro-OMeTAD: simultaneous management of energy level alignment and interfacial traps in perovskite solar cells. Inorg. Chem. Front. 11(19), 6627–6637 (2024). https://doi.org/10.1039/D4QI01459F
References
T. Liu, M.M.S. Almutairi, J. Ma, A. Stewart, Z. Xing et al., Solution-processed thin film transparent photovoltaics: Present challenges and future development. Nano-Micro Lett. 17, 49 (2025). https://doi.org/10.1007/s40820-024-01547-6
Y. Wang, W. Li, Y. Yin, M. Wang, W. Cai et al., Defective MWCNT enabled dual interface coupling for carbon-based perovskite solar cells with efficiency exceeding 22%. Adv. Funct. Mater. 32(31), 2204831 (2022). https://doi.org/10.1002/adfm.202204831
H. Ma, M. Wang, Y. Wang, Q. Dong, J. Liu et al., Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells. Chem. Eng. J. 442, 136291 (2022). https://doi.org/10.1016/j.cej.2022.136291
M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang et al., Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics (). Nano-Micro Lett. 17, 39 (2025). https://doi.org/10.1007/s40820-024-01538-7
J. Zhuang, J. Wang, F. Yan, Review on chemical stability of lead halide perovskite solar cells (review). Nano-Micro Lett. 15, 84 (2023). https://doi.org/10.1007/s40820-023-01046-0
M. Forouzandeh, M. Heidariramsheh, H.R. Heydarnezhad, H. Nikbakht, M. Stefanelli et al., Enhanced carbon-based back contact electrodes for perovskite solar cells: Effect of carbon paste composition on performance and stability. Carbon 229, 119450 (2024). https://doi.org/10.1016/j.carbon.2024.119450
Y. Ren, K. Zhang, Z. Lin, X. Wei, M. Xu et al., Long-chain gemini surfactant-assisted blade coating enables large-area carbon-based perovskite solar modules with record performance. Nano-Micro Lett. 15, 182 (2023). https://doi.org/10.1007/s40820-023-01155-w
C. Dong, B. Xu, D. Liu, E.G. Moloney, F. Tan et al., Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency. Mater. Today 50, 239–258 (2021). https://doi.org/10.1016/j.mattod.2021.05.016
D. Bogachuk, S. Zouhair, K. Wojciechowski, B. Yang, V. Babu, A. Hagfeldt, A. Hinsch et al., Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13(11), 3880–3916 (2020). https://doi.org/10.1039/D0EE02175J
J. Cheng, H. Ma, Y. Shi, L. Liu, W. Shang et al., Single-atom Ti decorated carbon black and carbon nanotubes: modular dual-carbon electrode for optimizing the charge transport kinetics of perovskite solar cells. Adv. Funct. Mater. 34, 2409533 (2024). https://doi.org/10.1002/adfm.202409533
S. Zhang, Y. Wang, S. Li, Z. Wang, H. Chen et al., Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 14(1), 4822 (2023). https://doi.org/10.1038/s41467-023-40563-9
J. Büttner, T. Berestok, S. Burger, M. Schmitt, M. Daub et al., Are halide-perovskites suitable materials for battery and solar-battery applications–fundamental reconsiderations on solubility, lithium intercalation, and photo-corrosion. Adv. Funct. Mater. 32(49), 2206958 (2022). https://doi.org/10.1002/adfm.202206958
D. Kong, C. Dong, X. Wei, C. Man, X. Lei et al., Size matching effect between anion vacancies and halide ions in passive film breakdown on copper. Electrochim. Acta 292, 817–827 (2018). https://doi.org/10.1016/j.electacta.2018.10.004
D. Li, X. Dong, P. Cheng, L. Song, Z. Wu et al., Metal halide perovskite/electrode contacts in charge-transporting-layer-free devices. Adv. Sci. 9(36), 2203683 (2022). https://doi.org/10.1002/advs.202203683
Y. Jiang, S.-C. Yang, Q. Jeangros, S. Pisoni, T. Moser et al., Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4(5), 1087–1103 (2020). https://doi.org/10.1016/j.joule.2020.03.017
S.P. Dunfield, L. Bliss, F. Zhang, J.M. Luther, K. Zhu et al., From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10(26), 1904054 (2020). https://doi.org/10.1002/aenm.201904054
K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3(1), 61–67 (2018). https://doi.org/10.1038/s41560-017-0060-5
N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee et al., Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7(1), 13422 (2016). https://doi.org/10.1038/ncomms13422
Q. Wang, D. Zheng, K. Wang, Q. Yang, X. Zhu et al., Versatile charge collection materials in perovskite photovoltaics. Nano Energy 128, 109892 (2024). https://doi.org/10.1016/j.nanoen.2024.109892
L. Perrin, E. Planes, T. Shioki, R. Tsuji, J.-C. Honore et al., How ammonium valeric acid iodide additive can lead to more efficient and stable carbon-based perovskite solar cells: Role of microstructure and interfaces? Sol. RRL 8(17), 2400393 (2024). https://doi.org/10.1002/solr.202400393
H. Kim, K.R. Pyun, M.-T. Lee, H.B. Lee, S.H. Ko et al., Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures. Adv. Funct. Mater. 32(16), 2110535 (2022). https://doi.org/10.1002/adfm.202110535
L. Ma, Z. Bi, W. Zhang, Z. Zhang, Y. Xiao et al., Synthesis of a three-dimensional interconnected oxygen-, boron-, nitrogen-, and phosphorus tetratomic-doped porous carbon network as electrode material for the construction of a superior flexible supercapacitor. ACS Appl. Mater. Interfaces 12(41), 46170–46180 (2020). https://doi.org/10.1021/acsami.0c13454
L.K. Putri, B.-J. Ng, W.-J. Ong, H.W. Lee, W.S. Chang et al., Engineering nanoscale p–n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 6(7), 3181–3194 (2018). https://doi.org/10.1039/C7TA09723A
H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang et al., Recent advances in doping engineering of black phosphorus. J. Mater. Chem. A 8(11), 5421–5441 (2020). https://doi.org/10.1039/D0TA00416B
J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839–2855 (2013). https://doi.org/10.1039/C3EE4144B
X. Zheng, H. Chen, Q. Li, Y. Yang, Z. Wei et al., Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17(4), 2496–2505 (2017). https://doi.org/10.1021/acs.nanolett.7b00200
C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu et al., Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy 53, 160–167 (2018). https://doi.org/10.1016/j.nanoen.2018.08.050
T. Yin, L. Long, X. Tang, M. Qiu, W. Liang et al., Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. 7(19), 2001431 (2020). https://doi.org/10.1002/advs.202001431
C. Zhang, S. Liang, W. Liu, F.T. Eickemeyer, X. Cai et al., Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6(12), 1154–1163 (2021). https://doi.org/10.1038/s41560-021-00944-0
M. Guo, C. Wei, C. Liu, K. Zhang, H. Su et al., Composite electrode based on single-atom Ni doped graphene for planar carbon-based perovskite solar cells. Mater. Des. 209, 109972 (2021). https://doi.org/10.1016/j.matdes.2021.109972
Z. Wei, Y. Liu, J. Ding, Q. He, Q. Zhang et al., Promoting electrocatalytic CO2 reduction to CO via sulfur-doped Co-N-C single-atom catalyst. Chin. J. Chem. 41(24), 3553–3559 (2023). https://doi.org/10.1002/cjoc.202300372
Y. Tang, J. Chen, Z. Mao, C. Roth, D. Wang, Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial Coulombic efficiency of lithium-ion batteries. Carbon Energy 5(2), e257 (2023). https://doi.org/10.1002/cey2.257
M. Liu, X. Zhu, Y. Song, G. Huang, J. Wei et al., Bifunctional edge-rich nitrogen doped porous carbon for activating oxygen and sulfur. Adv. Funct. Mater. 33(11), 2213395 (2023). https://doi.org/10.1002/adfm.202213395
P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co Nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1(1), 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
Q. Zheng, F. Cao, Y. Wang, A. Tong, S. Wang et al., Synergistic effect of ionic liquid-doped spiro-OMeTAD: simultaneous management of energy level alignment and interfacial traps in perovskite solar cells. Inorg. Chem. Front. 11(19), 6627–6637 (2024). https://doi.org/10.1039/D4QI01459F