MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications
Corresponding Author: Andreas Rosenkranz
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 135
Abstract
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human–machine interfaces. One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials. MXenes, a new family of 2D nanomaterials, have been drawing attention since the last decade due to their high electronic conductivity, processability, mechanical robustness and chemical tunability. In this review, we encompass the fabrication of MXene-based polymeric nanocomposites, their structure–property relationship, and applications in the flexible sensor domain. Moreover, our discussion is not only limited to sensor design, their mechanism, and various modes of sensing platform, but also their future perspective and market throughout the world. With our article, we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
Highlights:
1 MXenes, a new family of 2D nanomaterials, have been drawing notable attention due to their high electrical conductivity, processability, mechanical robustness and chemical tunability.
2 Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human–machine interfaces.
3 With our article, we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. He, X. Sun, H. Zhang, C. Yuan, Y. Wei et al., Preparation strategies and applications of MXene-polymer composites: a review. Macromol. Rapid Commun. 42, e2100324 (2021). https://doi.org/10.1002/marc.202100324
- S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30, 1910504 (2020). https://doi.org/10.1002/adfm.201910504
- X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang et al., Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 425, 131523 (2021). https://doi.org/10.1016/j.cej.2021.131523
- R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12, 46446–46454 (2020). https://doi.org/10.1021/acsami.0c11715
- X. Sun, K. Shao, T. Wang, Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 408, 2759–2780 (2016). https://doi.org/10.1007/s00216-015-9200-6
- Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16, 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
- W. Huang, J. Zhu, M. Wang, L. Hu, Y. Tang et al., Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater. 31, 2007584 (2021). https://doi.org/10.1002/adfm.202007584
- W. Huang, M. Wang, L. Hu, C. Wang, Z. Xie et al., Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. 30, 2003301 (2020). https://doi.org/10.1002/adfm.202003301
- X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15, 149 (2023). https://doi.org/10.1007/s40820-023-01107-4
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
- M. Xin, J. Li, Z. Ma, L. Pan, Y. Shi, MXenes and their applications in wearable sensors. Front. Chem. 8, 297 (2020). https://doi.org/10.3389/fchem.2020.00297
- K. Khazukov, V. Shepelev, T. Karpeta, S. Shabiev, I. Slobodin et al., Real-time monitoring of traffic parameters. J. Big Data 7, 84 (2020). https://doi.org/10.1186/s40537-020-00358-x
- Q. An, S. Gan, J. Xu, Y. Bao, T. Wu et al., A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 107, 106553 (2019). https://doi.org/10.1016/j.elecom.2019.106553
- M.R. Khosravani, T. Reinicke, 3D-printed sensors: current progress and future challenges. Sens. Actuat. A Phys. 305, 111916 (2020). https://doi.org/10.1016/j.sna.2020.111916
- H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi et al., CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59, 1472–1479 (2012). https://doi.org/10.1109/TBME.2012.2190288
- C. Pang, G.-Y. Lee, T.-I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
- C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
- P. Das, S. Banerjee, N.C. Das, Polymer-Graphene Composite in Aerospace Engineering (Elsevier, Amsterdam, 2022), United Kingdom, pp.683–711. https://doi.org/10.1016/B978-0-12-821639-2.00001-X
- P. Das, A. Gupta, M. Maruthapandi, A. Saravanan, S. Srinivasan et al., Polymer Composites for Biosensors (Elsevier, Amsterdam, 2023), United Kingdom, pp.323–342. https://doi.org/10.1016/B978-0-323-98830-8.00010-2
- S. Ganguly, P. Das, P.P. Maity, S. Mondal, S. Ghosh et al., Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J. Phys. Chem. B 122, 7201–7218 (2018). https://doi.org/10.1021/acs.jpcb.8b02919
- P. Das, S. Ganguly, S.R. Ahmed, M. Sherazee, S. Margel et al., Carbon dot biopolymer-based flexible functional films for antioxidant and food monitoring applications. ACS Appl. Polym. Mater. 4, 9323–9340 (2022). https://doi.org/10.1021/acsapm.2c01579
- S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren et al., Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater. Res. Express 4, 105039 (2017). https://doi.org/10.1088/2053-1591/aa9032
- S.R. Ahmed, M. Sherazee, P. Das, J. Dondapati, S. Srinivasan et al., Borophene quantum dots with enhanced nanozymatic activity for the detection of H2O2 and cardiac biomarkers. ACS Appl. Nano Mater. 6, 19939–19946 (2023). https://doi.org/10.1021/acsanm.3c03745
- L. Sheng, Y. Liang, L. Jiang, Q. Wang, T. Wei et al., Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25, 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960
- P. Das, S. Ganguly, I. Perelshtein, S. Margel, A. Gedanken, Acoustic green synthesis of graphene-Gallium nanops and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl. Nano Mater. 5, 1644–1655 (2022). https://doi.org/10.1021/acsanm.1c04425
- S. Mondal, S. Ganguly, P. Das, P. Bhawal, T.K. Das et al., High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose 24, 5117–5131 (2017). https://doi.org/10.1007/s10570-017-1441-4
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- W. Huang, C. Ma, C. Li, Y. Zhang, L. Hu et al., Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 9, 2577–2585 (2020). https://doi.org/10.1515/nanoph-2020-0134
- J. Zhu, S. Wei, J. Tang, Y. Hu, X. Dai et al., MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6, 13629–13636 (2023). https://doi.org/10.1021/acsanm.3c02317
- M. Wang, Y. Hu, J. Pu, Y. Zi, W. Huang, Emerging Xene-based single-atom catalysts: theory, synthesis, and catalytic applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202303492
- C. Wang, J. Xu, Y. Wang, Y. Song, J. Guo et al., MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64, 259–265 (2021). https://doi.org/10.1007/s40843-020-1409-7
- S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38, 3936–3950 (2022). https://doi.org/10.1021/acs.langmuir.2c00278
- P. Das, S. Ganguly, A. Rosenkranz, B. Wang, J. Yu et al., MXene/0D nanocomposite architectures: design, properties and emerging applications. Mater. Today Nano 24, 100428 (2023). https://doi.org/10.1016/j.mtnano.2023.100428
- C.J. Zhang, B. Anasori, A. Seral-Aso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
- M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Z. Li, Y. Cui, Z. Wu, C. Milligan, L. Zhou et al., Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018). https://doi.org/10.1038/s41929-018-0067-8
- S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
- A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2d titanium carbide (MXene) for wireless communication. Sci. Adv. 4, Eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
- N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018). https://doi.org/10.1021/acsnano.8b06014
- P. Das, S. Srinivasan, A.R. Rajabzadeh, Electromagnetic interference shielding behavior of MXenes, in MXene Nanocomposites (CRC Press, Boca Raton, 2023), pp. 137–152. https://doi.org/10.1201/9781003281511-7
- W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang, Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 30, 2005223 (2020). https://doi.org/10.1002/adfm.202005223
- Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang et al., Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1, 183–195 (2018). https://doi.org/10.1002/eem2.12023
- X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
- Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang et al., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 119, 11980–12031 (2019). https://doi.org/10.1021/acs.chemrev.9b00348
- L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2013). https://doi.org/10.1126/science.aag2421
- W. He, M. Sohn, R. Ma, D.J. Kang, Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy 78, 105383 (2020). https://doi.org/10.1016/j.nanoen.2020.105383
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- S. Ganguly, N. Kanovsky, P. Das, A. Gedanken, S. Margel, Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non-contact heating applications. Adv. Mater. Interfaces 8, 2101255 (2021). https://doi.org/10.1002/admi.202101255
- S. Seyedin, J.M. Razal, P.C. Innis, A. Jeiranikhameneh, S. Beirne et al., Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 7, 21150–21158 (2015). https://doi.org/10.1021/acsami.5b04892
- S. Seyedin, J.M. Razal, P.C. Innis, G.G. Wallace, A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Mater. Struct. 25, 035015 (2016). https://doi.org/10.1088/0964-1726/25/3/035015
- M.Z. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Achieving outstanding mechanical performance in reinforced elastomeric composite fibers using large sheets of graphene oxide. Adv. Funct. Mater. 25, 94–104 (2015). https://doi.org/10.1002/adfm.201402167
- S. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Compositional effects of large graphene oxide sheets on the spinnability and properties of polyurethane composite fibers. Adv. Mater. Interfaces 3, 1500672 (2016). https://doi.org/10.1002/admi.201500672
- S. Ghosh, S. Ganguly, P. Das, T.K. Das, M. Bose et al., Fabrication of reduced graphene oxide/silver nanops decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fibres. Polym. 20, 1161–1171 (2019). https://doi.org/10.1007/s12221-019-1001-7
- S. Ganguly, S. Mondal, P. Das, P. Bhawal, T.K. Das et al., An insight into the physico-mechanical signatures of silylated graphene oxide in poly(ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol. Res. 27, 268–281 (2019). https://doi.org/10.1007/s13233-019-7039-y
- S. Ganguly, D. Ray, P. Das, P.P. Maity, S. Mondal et al., Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason. Sonochem. 42, 212–227 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.028
- S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25, 3114–3121 (2015). https://doi.org/10.1002/adfm.201500628
- Y. Lu, J. Jiang, S. Yoon, K.-S. Kim, J.-H. Kim et al., High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning. ACS Appl. Mater. Interfaces 10, 2093–2104 (2018). https://doi.org/10.1021/acsami.7b16022
- S. Ghosh, P. Das, S. Ganguly, S. Remanan, T.K. Das et al., 3D-enhanced, high-performing, super-hydrophobic and electromagnetic-interference shielding fabrics based on silver paint and their use in antibacterial applications. ChemistrySelect 4, 11748–11754 (2019). https://doi.org/10.1002/slct.201901738
- S. Ganguly, P. Das, M. Bose, T.K. Das, S. Mondal et al., Sonochemical green reduction to prepare Ag nanops decorated graphene sheets for catalytic performance and antibacterial application. Ultrason. Sonochem. 39, 577–588 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.005
- P. Das, M. Sherazee, P.K. Marvi, S.R. Ahmed, A. Gedanken et al., Waste-derived sustainable fluorescent nanocarbon-coated breathable functional fabric for antioxidant and antimicrobial applications. ACS Appl. Mater. Interfaces 15, 29425–29439 (2023). https://doi.org/10.1021/acsami.3c03778
- P. Das, S. Ganguly, A. Saravanan, S. Margel, A. Gedanken et al., Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release. ACS Appl. Bio Mater. 5, 5617–5633 (2022). https://doi.org/10.1021/acsabm.2c00664
- S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
- S. Ganguly, P. Bhawal, A. Choudhury, S. Mondal, P. Das et al., Preparation and properties of halloysite nanotubes/poly(ethylene methyl acrylate)-based nanocomposites by variation of mixing methods. Polym. Plast. Technol. Eng. 57, 997–1014 (2018). https://doi.org/10.1080/03602559.2017.1370106
- S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6, 219–249 (2019). https://doi.org/10.1039/C8MH01062E
- M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C (2017). https://doi.org/10.1039/C7TC00140A
- Z. Wu, L. Wei, S. Tang, Y. Xiong, X. Qin et al., Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano 15, 18880–18894 (2021). https://doi.org/10.1021/acsnano.1c08239
- M. Liu, Y. Zhuo, A. Sarycheva, Y. Gogotsi, M.A. Bissett et al., Deformation of and interfacial stress transfer in Ti3C2 MXene–polymer composites. ACS Appl. Mater. Interfaces 14, 10681–10690 (2022). https://doi.org/10.1021/acsami.1c21611
- C.B. Hatter, J. Shah, B. Anasori, Y. Gogotsi, Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Compos. Part B Eng. 182, 107603 (2020). https://doi.org/10.1016/j.compositesb.2019.107603
- S. Tu, Q. Jiang, X. Zhang, H.N. Alshareef, Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 12, 3369–3377 (2018). https://doi.org/10.1021/acsnano.7b08895
- H. Aghamohammadi, N. Amousa, R. Eslami-Farsani, Recent advances in developing the MXene/polymer nanocomposites with multiple properties: a review study. Synth. Met. 273, 116695 (2021). https://doi.org/10.1016/j.synthmet.2020.116695
- V. Kumar, P. Yeole, A. Majed, C. Park, K. Li et al., MXene reinforced thermosetting composite for lightning strike protection of carbon fiber reinforced polymer. Adv. Mater. Interfaces 8, 2100803 (2021). https://doi.org/10.1002/admi.202100803
- J.-H. Pu, X. Zhao, X.-J. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7, 15913–15923 (2019). https://doi.org/10.1039/c9ta04352g
- X.-P. Li, Y. Li, X. Li, D. Song, P. Min et al., Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 542, 54–62 (2019). https://doi.org/10.1016/j.jcis.2019.01.123
- M. Sajid, H.B. Kim, G.U. Siddiqui, K.H. Na, K.H. Choi, Linear bi-layer humidity sensor with tunable response using combinations of molybdenum carbide with polymers. Sens. Actuat. A Phys. 262, 68–77 (2017). https://doi.org/10.1016/j.sna.2017.05.029
- F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO2 nanop modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015). https://doi.org/10.1016/j.bios.2015.08.004
- R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6, 36422 (2016). https://doi.org/10.1038/srep36422
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12, 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672
- X. Wu, B. Huang, R. Lv, Q. Wang, Y. Wang, Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing deized conjugated polymer chains with MXene. Chem. Eng. J. 378, 122246 (2019). https://doi.org/10.1016/j.cej.2019.122246
- K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov et al., Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017). https://doi.org/10.1038/s41598-017-01714-3
- X. Gao, Z.-K. Li, J. Xue, Y. Qian, L.-Z. Zhang et al., Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. J. Membr. Sci. 586, 162–169 (2019). https://doi.org/10.1016/j.memsci.2019.05.058
- X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
- S. Liu, L. Wang, X. Wang, L. Liu, A. Zhou et al., Preparation, mechanical and thermal characteristics of d-Ti3C2/PVA film. Mater. Today Commun. 22, 100799 (2020). https://doi.org/10.1016/j.mtcomm.2019.100799
- Y. Pan, L. Fu, Q. Zhou, Z. Wen, C.-T. Lin et al., Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene). Polym. Compos. 41, 210–218 (2020). https://doi.org/10.1002/pc.25361
- S. Mazhar, A. Ali Qarni, Y. Ul Haq, Z. Ul Haq, I. Murtaza, Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 46, 12593–12605 (2020). https://doi.org/10.1016/j.ceramint.2020.02.023
- Y. Shi, C. Liu, L. Liu, L. Fu, B. Yu et al., Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 378, 122267 (2019). https://doi.org/10.1016/j.cej.2019.122267
- W. Zhi, S. Xiang, R. Bian, R. Lin, K. Wu et al., Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Compos. Sci. Techn. 168, 404–411 (2018). https://doi.org/10.1016/j.compscitech.2018.10.026
- H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
- D. Hu, X. Huang, S. Li, P. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
- X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- X. Sheng, Y. Zhao, L. Zhang, X. Lu. Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos. Sci. Technol. 181, 107710 (2019). https://doi.org/10.1016/j.compscitech.2019.107710
- J.-Q. Luo, S. Zhao, H.-B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
- Y. Dong, C. Zhang, G. Zhao, Y. Guan, A. Gao et al., Constitutive equation and processing maps of an Al–Mg–Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater. Des. 92, 983–997 (2016). https://doi.org/10.1016/j.matdes.2015.12.113
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- B. Wang, Y. Wang, S. Du, J. Zhu, S. Ma, Upcycling of thermosetting polymers into high-value materials. Mater. Horiz. 10, 41–51 (2023). https://doi.org/10.1039/D2MH01128J
- K. Urdl, A. Kandelbauer, W. Kern, U. Müller, M. Thebault et al., Self-healing of densely crosslinked thermoset polymers—a critical review. Prog. Org. Coat. 104, 232–249 (2017). https://doi.org/10.1016/j.porgcoat.2016.11.010
- R. Alexander-Katz, Handbook of Polymer Synthesis, Characterization, and Processing (Wiley, 2013), pp.519–533
- A. Kausar, Role of thermosetting polymer in structural composite. Am. J. Polym. Sci. Eng. 5(1), 1–12 (2017)
- B. Suresha, G. Chandramohan, N.M. Renukappa, H. Siddaramaiah, Mechanical and tribological properties of glass–epoxy composites with and without graphite particulate filler. J. Appl. Polym. Sci. 103, 2472–2480 (2007). https://doi.org/10.1002/app.25413
- G. Zhang, T. Burkhart, B. Wetzel, Tribological behavior of epoxy composites under diesel-lubricated conditions. Wear 307, 174–181 (2013). https://doi.org/10.1016/j.wear.2013.08.014
- N.W. Khun, H. Zhang, L.H. Lim, C.Y. Yue, X. Hu et al., Tribological properties of short carbon fibers reinforced epoxy composites. Friction 2, 226–239 (2014). https://doi.org/10.1007/s40544-014-0043-5
- J. Zhang, M. de Souza, C. Creighton, R.J. Varley, New approaches to bonding thermoplastic and thermoset polymer composites. Compos. Part A Appl. Sci. Manuf. 133, 105870 (2020). https://doi.org/10.1016/j.compositesa.2020.105870
- S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, Polymer nanocomposites for electromagnetic interference shielding: a review. J. Nanosci. Nanotechnol. 18, 7641–7669 (2018). https://doi.org/10.1166/jnn.2018.15828
- J. Luo, Z. Demchuk, X. Zhao, T. Saito, M. Tian et al., Elastic vitrimers: beyond thermoplastic and thermoset elastomers. Matter 5, 1391–1422 (2022). https://doi.org/10.1016/j.matt.2022.04.007
- H. Zhang, L. Wang, A. Zhou, C. Shen, Y. Dai et al., Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. RSC Adv. 6, 87341–87352 (2016). https://doi.org/10.1039/C6RA14560D
- P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
- L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293–300 (2019). https://doi.org/10.1016/j.compositesa.2019.05.030
- L. Wang, P. Song, C.-T. Lin, J. Kong, J. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
- L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
- Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528–26534 (2021). https://doi.org/10.1002/anie.202111823
- S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
- L. Zhao, L. Wang, Y. Zheng, S. Zhao, W. Wei et al., Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 84, 105921 (2021). https://doi.org/10.1016/j.nanoen.2021.105921
- Y. Tang, J. Yan, J. Wang, Y. Liu, J. Gao, MXene based flexible Janus nanofibrous membrane composite for unidirectional water transportation. Compos. Sci. Technol. 239, 110032 (2023). https://doi.org/10.1016/j.compscitech.2023.110032
- M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B Biointerfaces 214, 112482 (2022). https://doi.org/10.1016/j.colsurfb.2022.112482
- Z. Liu, R. Zhang, H. Xiong, L. Zhang, J. Li et al., Swelling-induced structural transformation strategy: controllable synthesis of 2D porous polypyrrole/MXene heterostructures with tunable pore structures. Adv. Mater. Interfaces 10, 2202501 (2023). https://doi.org/10.1002/admi.202202501
- Z. Qin, X. Chen, Y. Lv, B. Zhao, X. Fang et al., Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel. Chem. Eng. J. 451, 138586 (2023). https://doi.org/10.1016/j.cej.2022.138586
- X. Wang, N. Li, J. Yin, X. Wang, L. Xu et al., Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Sci. China Mater. 66, 272–283 (2023). https://doi.org/10.1007/s40843-022-2105-6
- H. Zhang, L. Wang, Q. Chen, P. Li, A. Zhou et al., Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 92, 682–689 (2016). https://doi.org/10.1016/j.matdes.2015.12.084
- P. Das, S. Ganguly, A. Saha, M. Noked, S. Margel et al., Carbon-dots-initiated photopolymerization: an In situ synthetic approach for MXene/poly(norepinephrine)/copper hybrid and its application for mitigating water pollution. ACS Appl. Mater. Interfaces 13, 31038–31050 (2021). https://doi.org/10.1021/acsami.1c08111
- P. Das, A. Rosenkranz, S. Ganguly, MXene Nanocomposites: Design, Fabrication, and Shielding Applications, 1st edn. (CRC Press, Boca Raton, 2023), p.18. https://doi.org/10.1201/9781003281511
- R. Liu, W. Li, High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3, 2609–2617 (2018). https://doi.org/10.1021/acsomega.7b02001
- W. Chen, P. Liu, Y. Liu, Z. Liu, Recent advances in two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.137239
- X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- O.B. Seo, S. Saha, N.H. Kim, J.H. Lee, Preparation of functionalized MXene-stitched-graphene oxide/poly(ethylene-co-acrylic acid) nanocomposite with enhanced hydrogen gas barrier properties. J. Membr. Sci. 640, 119839 (2021). https://doi.org/10.1016/j.memsci.2021.119839
- S. Tang, Z. Wu, X. Li, F. Xie, D. Ye et al., Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films with high strength and superior gas barrier properties. Carbohydr. Polym. 299, 120204 (2023). https://doi.org/10.1016/j.carbpol.2022.120204
- X. Wang, X. Li, L. Cui, Y. Liu, S. Fan, Improvement of gas barrier properties for biodegradable poly(butylene adipate-co-terephthalate) nanocomposites with MXene nanosheets via biaxial stretching. Polymers 14, 480 (2022). https://doi.org/10.3390/polym14030480
- M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133–137 (2012). https://doi.org/10.1557/mrc.2012.25
- J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
- M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
- R. Niu, R. Han, Y. Wang, L. Zhang, Q. Qiao et al., MXene-based porous and robust 2D/2D hybrid architectures with dispersed Li3Ti2(PO4)3 as superior anodes for lithium-ion battery. Chem. Eng. J. 405, 127049 (2021). https://doi.org/10.1002/adfm.201202502
- X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
- J. Jimmy, B. Kandasubramanian, Mxene functionalized polymer composites: synthesis and applications. Eur. Polym. J. 122, 109367 (2020). https://doi.org/10.1016/j.eurpolymj.2019.109367
- K. Khan, A.K. Tareen, M. Iqbal, Z. Ye, Z. Xie et al., Recent progress in emerging novel MXenes based materials and their fascinating sensing applications. Small 19, e2206147 (2023). https://doi.org/10.1002/smll.202206147
- C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31, 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- M.T. Rahman, S.M. Sohel Rana, M. Salauddin, M. Abu Zahed, S. Lee et al., Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy 100, 107454 (2022). https://doi.org/10.1016/j.nanoen.2022.107454
- S. Iravani, Role of MXenes in advancing soft robotics. Soft Matter 19, 6196–6212 (2023). https://doi.org/10.1039/d3sm00756a
- S. Chen, W. Huang, A review related to MXene preparation and its sensor arrays of electronic skins. Analyst 148, 435–453 (2023). https://doi.org/10.1039/d2an01143c
- H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987–45994 (2021). https://doi.org/10.1021/acsami.1c12991
- Q. Yu, J. Jiang, Z. Chen, C. Han, X. Zhang et al., A multilevel fluorometric biosensor based on boric acid embedded in carbon dots to detect intracellular and serum glucose. Sens. Actuat. B Chem. 350, 130898 (2022). https://doi.org/10.1016/j.snb.2021.130898
- K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020). https://doi.org/10.1021/acsami.0c13653
- Y. Xiang, L. Fang, F. Wu, S. Zhang, H. Ruan et al., 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range. Adv. Mater. Technol. 6, 2001157 (2021). https://doi.org/10.1002/admt.202001157
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
- V. Chugh, A. Basu, A. Kaushik, A.K. Basu, E-skin—based advanced wearable technology for Health Management. Curr. Res. Biotechnol. 5, 100129 (2023). https://doi.org/10.1016/j.crbiot.2023.100129
- D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv. Mater. 34, e2110608 (2022). https://doi.org/10.1002/adma.202110608
- Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
- B. Xu, F. Ye, R. Chen, X. Luo, G. Chang et al., A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram. Int. 48, 10220–10226 (2022). https://doi.org/10.1016/j.ceramint.2021.12.235
- X. Li, G. Shan, R. Ma, C.-H. Shek, H. Zhao et al., Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide orption applications. Front. Phys. 17, 63501 (2022). https://doi.org/10.1007/s11467-022-1181-2
- W. Yuan, X. Qu, Y. Lu, W. Zhao, Y. Ren et al., MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chin. Chem. Lett. 32, 2021–2026 (2021). https://doi.org/10.1016/j.cclet.2020.12.003
- K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 (2022). https://doi.org/10.1016/j.colsurfa.2022.128897
- Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
- Y. Bai, S. Bi, W. Wang, N. Ding, Y. Lu et al., Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20, 444–454 (2022). https://doi.org/10.1080/1539445x.2022.2081580
- K.H. Lee, Y.-Z. Zhang, H. Kim, Y. Lei, S. Hong et al., Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods 5, 2100819 (2021). https://doi.org/10.1002/smtd.202100819
- S.-N. Li, Z.-R. Yu, B.-F. Guo, K.-Y. Guo, Y. Li et al., Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 90, 106502 (2021). https://doi.org/10.1016/j.nanoen.2021.106502
- Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao et al., Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J. 401, 126129 (2020). https://doi.org/10.1016/j.cej.2020.126129
- Y. Liu, D. Xu, Y. Ding, X. Lv, T. Huang et al., A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@ chitosan assembly for highly stretchable and sensitive wearable skin. J. Mater. Chem. B 9(42), 8862–8870 (2021). https://doi.org/10.1039/D1TB01798E
- D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1
- X. Wang, X. Wang, J. Yin, N. Li, Z. Zhang et al., Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 241, 110052 (2022). https://doi.org/10.1016/j.compositesb.2022.110052
- G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15, 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
- H. Wang, J. Xiang, X. Wen, X. Du, Y. Wang et al., Multifunctional skin-inspired resilient MXene-embedded nanocomposite hydrogels for wireless wearable electronics. Compos. Part A Appl. Sci. Manuf. 155, 106835 (2022). https://doi.org/10.1016/j.compositesa.2022.106835
- S. He, X. Sun, Z. Qin, X. Dong, H. Zhang et al., Non-swelling and anti-fouling MXene nanocomposite hydrogels for underwater strain sensing. Adv. Mater. Technol. 7, 2101343 (2022). https://doi.org/10.1002/admt.202101343
- M. Jian, Y. Zhang, Z. Liu, Natural biopolymers for flexible sensing and energy devices. Chin. J. Polym. Sci. 38, 459–490 (2020). https://doi.org/10.1007/s10118-020-2379-9
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
- T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). https://doi.org/10.1016/j.nanoen.2021.106151
- J. Yang, H. Li, J. Cheng, T. He, J. Li et al., Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J. Mater. Sci. 56, 13859–13873 (2021). https://doi.org/10.1007/s10853-021-05909-y
- H. Huang, Y. Dong, S. Wan, J. Shen, C. Li et al., A transient dual-type sensor based on MXene/cellulose nanofibers composite for intelligent sedentary and sitting postures monitoring. Carbon 200, 327–336 (2022). https://doi.org/10.1016/j.carbon.2022.08.070
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
- M. Bandar Abadi, R. Weissing, M. Wilhelm, Y. Demidov, J. Auer et al., Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 13, 34996–35007 (2021). https://doi.org/10.1021/acsami.1c09675
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- M. Paolieri, Z. Chen, F. Babu Kadumudi, M. Alehosseini, M. Zorrón et al., Biomimetic flexible electronic materials from silk fibroin-MXene composites developed via mussel-inspired chemistry as wearable pressure sensors. ACS Appl. Nano Mater. 6, 5211–5223 (2023). https://doi.org/10.1021/acsanm.2c05140
- Y. Yang, W. Song, B. Murugesan, X. Cheng, M. Jiang et al., Oriented Ti3C2Tx MXene-doped silk fibroin/hyaluronic acid hydrogels for sensitive compression strain monitoring with a wide resilience range and high cycling stability. Colloids Surf. A Physicochem. Eng. Aspects 665, 131221 (2023). https://doi.org/10.1016/j.colsurfa.2023.131221
- M.I. Shekh, G. Zhu, W. Xiong, W. Wu, F.J. Stadler et al., Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: chitosan based multi-networked elastomeric hydrogels for physical motion detection. Int. J. Biol. Macromol. 224, 604–620 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.150
- Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14, 2788–2797 (2020). https://doi.org/10.1021/acsnano.9b09802
- N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim et al., 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019). https://doi.org/10.1002/advs.201900344
- X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14, 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3
- Q. Chen, Q. Gao, X. Wang, D.W. Schubert, X. Liu, Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine/MXene foam for piezoresistive sensors and motion monitoring. Composites Part A: Appl. Sci. Manuf. 155, 106838 (2022). https://doi.org/10.1016/j.compositesa.2022.106838
- H. Dong, J. Sun, X. Liu, X. Jiang, S. Lu, Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 14, 15504–15516 (2022). https://doi.org/10.1021/acsami.1c23567
- H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15, 9690–9700 (2021). https://doi.org/10.1021/acsnano.1c00259
- Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022). https://doi.org/10.1016/j.nanoen.2022.107511
- J.S. Meena, S. Bin Choi, S.-B. Jung, J.-W. Kim, Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Appl. Mater. Today 29, 101612 (2022). https://doi.org/10.1016/j.apmt.2022.101612
- L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- W.-T. Cao, C. Ma, D.-S. Mao, J. Zhang, M.-G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29, 1905898 (2019). https://doi.org/10.1002/adfm.201905898
- T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7, 1022–1027 (2019). https://doi.org/10.1039/C8TC04893B
- J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898
- Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
- S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015 (2019). https://doi.org/10.1002/adfm.201905015
- D. Tan, C. Jiang, N. Sun, J. Huang, Z. Zhang et al., Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy 90, 106528 (2021). https://doi.org/10.1016/j.nanoen.2021.106528
- Q. Zhao, L. Yang, Y. Ma, H. Huang, H. He et al., Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement. J. Alloys Compd. 886, 161069 (2021). https://doi.org/10.1016/j.jallcom.2021.161069
- S. Wang, H.-Q. Shao, Y. Liu, C.-Y. Tang, X. Zhao et al., Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos. Sci. Technol. 202, 108600 (2021). https://doi.org/10.1016/j.compscitech.2020.108600
- S. Tremmel, X. Luo, B. Rothammer, A. Seynstahl, B. Wang et al., Evaluation of DLC, MoS2, and Ti3C2T thin films for triboelectric nanogenerators. Nano Energy 97, 107185 (2022). https://doi.org/10.1016/j.nanoen.2022.107185
- M. Salauddin, S.M. Sohel Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32, 2107143 (2022). https://doi.org/10.1002/adfm.202107143
- D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang et al., An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Adv. Funct. Mater. 32, 2108856 (2022). https://doi.org/10.1002/adfm.202108856
- T. Beduk, C. Durmus, S.B. Hanoglu, D. Beduk, K.N. Salama et al., Breath as the mirror of our body is the answer really blowing in the wind? Recent technologies in exhaled breath analysis systems as non-invasive sensing platforms. Trac Trends Anal. Chem. 143, 116329 (2021). https://doi.org/10.1016/j.trac.2021.116329
- S. Das, M. Pal, Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167, 037562 (2020). https://doi.org/10.1149/1945-7111/ab67a6
- D. Yang, X. Fan, D. Zhao, Y. An, Y. Hu et al., Sc2Co2 and Mn-doped Sc2Co2 as gas sensor materials to no and co: a first-principles study. Phys. E 111, 84–90 (2019). https://doi.org/10.1016/j.physe.2019.02.019
- Y. Zhang, Y. Jiang, Z. Duan, Q. Huang, Y. Wu et al., Highly sensitive and selective NO2 sensor of alkalized V2CT MXene driven by interlayer swelling. Sens. Actuat. B Chem. 344, 130150 (2021). https://doi.org/10.1016/j.snb.2021.130150
- J.L. Kelley, M. Tobler, D. Beck, I. Sadler-Riggleman, C.R. Quackenbush et al., Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide–rich springs. Proc. Natl. Acad. Sci. U.S.A. 118, 14929118 (2021). https://doi.org/10.1073/pnas.2014929118
- Q. Xu, B. Zong, Q. Li, X. Fang, S. Mao et al., H2S sensing under various humidity conditions with Ag nanop functionalized Ti3C2Tx MXene field-effect transistors. J. Hazard. Mater. 424, 127492 (2022). https://doi.org/10.1016/j.jhazmat.2021.127492
- E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.J. Kim, Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 4, 1603–1611 (2019). https://doi.org/10.1021/acssensors.9b00303
- J. Daniels, S. Wadekar, K. DeCubellis, G.W. Jackson, A.S. Chiu et al., A mask-based diagnostic platform for point-of-care screening of Covid-19. Biosens. Bioelectron. 192, 113486 (2021). https://doi.org/10.1016/j.bios.2021.113486
- Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6, 470–506 (2019). https://doi.org/10.1039/c8mh01365a
- L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022). https://doi.org/10.1038/s41378-022-00414-x
- K. Sung Bum, S. Amit, J. Myeong Hoon, B. Jeong Min, C. Kyoung Jin, Heterogeneous stacking of reduced graphene oxide on ZnO nanowires for NO2 gas sensors with dramatically improved response and high sensitivity. Sensors Actuat. B Chem. 379, 133196 (2023). https://doi.org/10.1016/j.snb.2022.133196
- N. Goel, M. Kumar, Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors. J. Mater. Chem. C 9, 1537–1549 (2021). https://doi.org/10.1039/d0tc05855f
- S. Alwarappan, N. Nesakumar, D. Sun, T.Y. Hu, C.-Z. Li, 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 205, 113943 (2022). https://doi.org/10.1016/j.bios.2021.113943
- A. Hermawan, T. Amrillah, A. Riapanitra, W.-J. Ong, S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv. Healthc. Mater. 10, e2100970 (2021). https://doi.org/10.1002/adhm.202100970
- X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li et al., Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7, 13707–13713 (2015). https://doi.org/10.1021/acsami.5b03737
- B. Xiao, Y.-C. Li, X.-F. Yu, J.-B. Cheng, MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuat. B Chem. 235, 103–109 (2016). https://doi.org/10.1016/j.snb.2016.05.062
- K. Dixit, S. Fardindoost, A. Ravishankara, N. Tasnim, M. Hoorfar, Exhaled breath analysis for diabetes diagnosis and monitoring: relevance, challenges and possibilities. Biosensors 11, 476 (2021). https://doi.org/10.3390/bios11120476
- R.F. Del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah et al., Volatile biomarkers in breath associated with liver cirrhosis—comparisons of pre- and post-liver transplant breath samples. EBioMedicine 2, 1243–1250 (2015). https://doi.org/10.1016/j.ebiom.2015.07.027
- A.M. Peel, M. Wilkinson, A. Sinha, Y.K. Loke, S.J. Fowler et al., Volatile organic compounds associated with diagnosis and disease characteristics in asthma—a systematic review. Respir. Med. 169, 105984 (2020). https://doi.org/10.1016/j.rmed.2020.105984
- Y. Sakumura, Y. Koyama, H. Tokutake, T. Hida, K. Sato et al., Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors 17, 287 (2017). https://doi.org/10.3390/s17020287
- V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C.-P. Liu et al., Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8, 12 (2018). https://doi.org/10.3390/diagnostics8010012
- L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
- W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 6, 18116–18124 (2018). https://doi.org/10.1039/C8TA06928J
- J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30, 2003998 (2020). https://doi.org/10.1002/adfm.202003998
- R. Zhang, L. Yang, G. Liu, F. Yin, W. Yuan et al., Polydopamine functionalized MXene for chemiresistive gas sensing: partial oxidation and optimized chemical state pinning. Sensors Actuat. B: Chem. 386, 133760 (2023). https://doi.org/10.1016/j.snb.2023.133760
- P.P. Ricci, O.J. Gregory, Sensors for the detection of ammonia as a potential biomarker for health screening. Sci. Rep. 11, 7185 (2021). https://doi.org/10.1038/s41598-021-86686-1
- P. Španěl, D. Smith, What is the real utility of breath ammonia concentration measurements in medicine and physiology? J. Breath Res. 12, 027102 (2018). https://doi.org/10.1088/1752-7163/aa907f
- A.A. Shahzad, S. Mushtaq, A. Waris, S.O. Gilani, M.A. Alnuwaiser et al., A low-cost device for measurement of exhaled breath for the detection of obstructive lung disease. Biosensors 12, 409 (2022). https://doi.org/10.3390/bios12060409
- H.-Y. Li, C.-S. Lee, D.H. Kim, J.-H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10, 27858–27867 (2018). https://doi.org/10.1021/acsami.8b09169
- E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
- J. Zhou, S.H. Hosseini Shokouh, H.-P. Komsa, L. Rieppo, L. Cui et al., MXene-polymer hybrid for high-performance gas sensor prepared by microwave-assisted in-situ intercalation. Adv. Mater. Technol. 7, 2101565 (2022). https://doi.org/10.1002/admt.202101565
- Y. Cai, Y. Wang, X. Wen, J. Xiong, H. Song et al., Ti3C2Tx MXene/urchin-like PANI hollow nanosphere composite for high performance flexible ammonia gas sensor. Anal. Chim. Acta 1225, 340256 (2022). https://doi.org/10.1016/j.aca.2022.340256
- X. Wen, Y. Cai, X. Nie, J. Xiong, Y. Wang et al., PSS-doped PANI nanop/Ti3C2Tx composites for conductometric flexible ammonia gas sensors operated at room temperature. Sens. Actuat. B Chem. 374, 132788 (2023). https://doi.org/10.1016/j.snb.2022.132788
- L. Jin, C. Wu, K. Wei, L. He, H. Gao et al., Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071–12079 (2020). https://doi.org/10.1021/acsanm.0c02577
- S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang et al., PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sens. Actuat. B Chem. 327, 128923 (2021). https://doi.org/10.1016/j.snb.2020.128923
- L. Zhao, Y. Zheng, K. Wang, C. Lv, W. Wei et al., Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5, 2000248 (2020). https://doi.org/10.1002/admt.202000248
- S. Hajian, P. Khakbaz, M. Moshayedi, D. Maddipatla, B.B. Narakathu et al., Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti3C2Tx MXene as ammonia sensor: a first-principles study, in 2018 IEEE SENSORS. New Delhi, India (IEEE, 2018), pp. 1–4
- J. Zhou, S.H.H. Shokouh, L. Cui, T. Järvinen, O. Pitkänen et al., An ultra-sensitive NH3 gas sensor enabled by an ion-in-conjugated polycroconaine/Ti3C2Tx core-shell composite. Nanoscale Horiz. 8, 794–802 (2023). https://doi.org/10.1039/d2nh00591c
- G.D. Banik, A. De, S. Som, S. Jana, S.B. Daschakraborty et al., Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J. Breath Res. 10, 026010 (2016). https://doi.org/10.1088/1752-7155/10/2/026010
- S.H. Hosseini-Shokouh, J. Zhou, E. Berger, Z.-P. Lv, X. Hong et al., Highly selective H2S gas sensor based on Ti3C2Tx MXene–organic composites. ACS Appl. Mater. Interfaces 15, 7063–7073 (2023). https://doi.org/10.1021/acsami.2c19883
- B. Sun, H. Lv, Z. Liu, J. Wang, X. Bai et al., Co3O4@PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit. J. Mater. Chem. A 9, 6335–6344 (2021). https://doi.org/10.1039/d0ta11392a
- Y.L. Pham, J. Beauchamp, Breath biomarkers in diagnostic applications. Molecules 26, 5514 (2021). https://doi.org/10.3390/molecules26185514
- Y. Zhou, Y. Wang, Y. Wang, X. Li, Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti3C2Tx MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets. Anal. Chem. 92, 16033–16042 (2020). https://doi.org/10.1021/acs.analchem.0c03664
- Z.H. Endre, J.W. Pickering, M.K. Storer, W.-P. Hu, K.T. Moorhead et al., Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol. Meas. 32, 115–130 (2011). https://doi.org/10.1088/0967-3334/32/1/008
- X. Li, L. Jin, A. Ni, L. Zhang, L. He et al., Tough and antifreezing MXene@Au hydrogel for low-temperature trimethylamine gas sensing. ACS Appl. Mater. Interfaces 14, 30182–30191 (2022). https://doi.org/10.1021/acsami.2c06749
- S.V. Rana, A. Malik, Hydrogen breath tests in gastrointestinal diseases. Indian J. Clin. Biochem. 29, 398–405 (2014). https://doi.org/10.1007/s12291-014-0426-4
- S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915–2924 (2020). https://doi.org/10.1021/acssensors.0c01287
- P. Chakraborty, T. Das, D. Nafday, T. Saha-Dasgupta, Manipulating the mechanical properties of Ti2C MXene: effect of substitutional doping. Phys. Rev. B 95(18), 184106 (2017). https://doi.org/10.1103/PhysRevB.95.184106
- D.H. Ho, Y.Y. Choi, S.B. Jo, J.M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33, e2005846 (2021). https://doi.org/10.1002/adma.202005846
- M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, e2103393 (2021). https://doi.org/10.1002/adma.202103393
- M. Carey, M.W. Barsoum, MXene polymer nanocomposites: a review. Mater. Today Adv. 9, 100120 (2021). https://doi.org/10.1016/j.mtadv.2020.100120
- V. Chaudhary, A. Gautam, Y.K. Mishra, A. Kaushik, Emerging MXene-polymer hybrid nanocomposites for high-performance ammonia sensing and monitoring. Nanomaterials 11, 2496 (2021). https://doi.org/10.3390/nano11102496
- S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: materials and technologies. Sens. Int. 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
- R. Zeng, W. Wang, M. Chen, Q. Wan, C. Wang et al., CRISPR-12a-driven MXene-PEDOT: PSS piezoresistive wireless biosensor. Nano Energy 82, 105711 (2021). https://doi.org/10.1016/j.nanoen.2020.105711
References
S. He, X. Sun, H. Zhang, C. Yuan, Y. Wei et al., Preparation strategies and applications of MXene-polymer composites: a review. Macromol. Rapid Commun. 42, e2100324 (2021). https://doi.org/10.1002/marc.202100324
S. Seyedin, S. Uzun, A. Levitt, B. Anasori, G. Dion et al., MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 30, 1910504 (2020). https://doi.org/10.1002/adfm.201910504
X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang et al., Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 425, 131523 (2021). https://doi.org/10.1016/j.cej.2021.131523
R. Liu, J. Li, M. Li, Q. Zhang, G. Shi et al., MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl. Mater. Interfaces 12, 46446–46454 (2020). https://doi.org/10.1021/acsami.0c11715
X. Sun, K. Shao, T. Wang, Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 408, 2759–2780 (2016). https://doi.org/10.1007/s00216-015-9200-6
Y. Wang, Y. Yue, F. Cheng, Y. Cheng, B. Ge et al., Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 16, 1734–1758 (2022). https://doi.org/10.1021/acsnano.1c09925
W. Huang, J. Zhu, M. Wang, L. Hu, Y. Tang et al., Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Adv. Funct. Mater. 31, 2007584 (2021). https://doi.org/10.1002/adfm.202007584
W. Huang, M. Wang, L. Hu, C. Wang, Z. Xie et al., Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Adv. Funct. Mater. 30, 2003301 (2020). https://doi.org/10.1002/adfm.202003301
X. Chen, L. Kong, J.A. Mehrez, C. Fan, W. Quan et al., Outstanding humidity chemiresistors based on imine-linked covalent organic framework films for human respiration monitoring. Nano-Micro Lett. 15, 149 (2023). https://doi.org/10.1007/s40820-023-01107-4
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
Y. Lu, G. Yang, Y. Shen, H. Yang, K. Xu, Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett. 14, 150 (2022). https://doi.org/10.1007/s40820-022-00895-5
M. Xin, J. Li, Z. Ma, L. Pan, Y. Shi, MXenes and their applications in wearable sensors. Front. Chem. 8, 297 (2020). https://doi.org/10.3389/fchem.2020.00297
K. Khazukov, V. Shepelev, T. Karpeta, S. Shabiev, I. Slobodin et al., Real-time monitoring of traffic parameters. J. Big Data 7, 84 (2020). https://doi.org/10.1186/s40537-020-00358-x
Q. An, S. Gan, J. Xu, Y. Bao, T. Wu et al., A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 107, 106553 (2019). https://doi.org/10.1016/j.elecom.2019.106553
M.R. Khosravani, T. Reinicke, 3D-printed sensors: current progress and future challenges. Sens. Actuat. A Phys. 305, 111916 (2020). https://doi.org/10.1016/j.sna.2020.111916
H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi et al., CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59, 1472–1479 (2012). https://doi.org/10.1109/TBME.2012.2190288
C. Pang, G.-Y. Lee, T.-I. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
P. Das, S. Banerjee, N.C. Das, Polymer-Graphene Composite in Aerospace Engineering (Elsevier, Amsterdam, 2022), United Kingdom, pp.683–711. https://doi.org/10.1016/B978-0-12-821639-2.00001-X
P. Das, A. Gupta, M. Maruthapandi, A. Saravanan, S. Srinivasan et al., Polymer Composites for Biosensors (Elsevier, Amsterdam, 2023), United Kingdom, pp.323–342. https://doi.org/10.1016/B978-0-323-98830-8.00010-2
S. Ganguly, P. Das, P.P. Maity, S. Mondal, S. Ghosh et al., Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: rheological, physicomechanical, and electrical evaluations. J. Phys. Chem. B 122, 7201–7218 (2018). https://doi.org/10.1021/acs.jpcb.8b02919
P. Das, S. Ganguly, S.R. Ahmed, M. Sherazee, S. Margel et al., Carbon dot biopolymer-based flexible functional films for antioxidant and food monitoring applications. ACS Appl. Polym. Mater. 4, 9323–9340 (2022). https://doi.org/10.1021/acsapm.2c01579
S. Mondal, S. Ghosh, S. Ganguly, P. Das, R. Ravindren et al., Highly conductive and flexible nano-structured carbon-based polymer nanocomposites with improved electromagnetic-interference-shielding performance. Mater. Res. Express 4, 105039 (2017). https://doi.org/10.1088/2053-1591/aa9032
S.R. Ahmed, M. Sherazee, P. Das, J. Dondapati, S. Srinivasan et al., Borophene quantum dots with enhanced nanozymatic activity for the detection of H2O2 and cardiac biomarkers. ACS Appl. Nano Mater. 6, 19939–19946 (2023). https://doi.org/10.1021/acsanm.3c03745
L. Sheng, Y. Liang, L. Jiang, Q. Wang, T. Wei et al., Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25, 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960
P. Das, S. Ganguly, I. Perelshtein, S. Margel, A. Gedanken, Acoustic green synthesis of graphene-Gallium nanops and PEDOT: PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl. Nano Mater. 5, 1644–1655 (2022). https://doi.org/10.1021/acsanm.1c04425
S. Mondal, S. Ganguly, P. Das, P. Bhawal, T.K. Das et al., High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding. Cellulose 24, 5117–5131 (2017). https://doi.org/10.1007/s10570-017-1441-4
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
W. Huang, C. Ma, C. Li, Y. Zhang, L. Hu et al., Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics 9, 2577–2585 (2020). https://doi.org/10.1515/nanoph-2020-0134
J. Zhu, S. Wei, J. Tang, Y. Hu, X. Dai et al., MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Appl. Nano Mater. 6, 13629–13636 (2023). https://doi.org/10.1021/acsanm.3c02317
M. Wang, Y. Hu, J. Pu, Y. Zi, W. Huang, Emerging Xene-based single-atom catalysts: theory, synthesis, and catalytic applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202303492
C. Wang, J. Xu, Y. Wang, Y. Song, J. Guo et al., MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser. Sci. China Mater. 64, 259–265 (2021). https://doi.org/10.1007/s40843-020-1409-7
S. Ganguly, P. Das, A. Saha, M. Noked, A. Gedanken et al., Mussel-inspired polynorepinephrine/MXene-based magnetic nanohybrid for electromagnetic interference shielding in X-band and strain-sensing performance. Langmuir 38, 3936–3950 (2022). https://doi.org/10.1021/acs.langmuir.2c00278
P. Das, S. Ganguly, A. Rosenkranz, B. Wang, J. Yu et al., MXene/0D nanocomposite architectures: design, properties and emerging applications. Mater. Today Nano 24, 100428 (2023). https://doi.org/10.1016/j.mtnano.2023.100428
C.J. Zhang, B. Anasori, A. Seral-Aso, S.H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017). https://doi.org/10.1002/adma.201702678
M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Z. Li, Y. Cui, Z. Wu, C. Milligan, L. Zhou et al., Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018). https://doi.org/10.1038/s41929-018-0067-8
S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018). https://doi.org/10.1021/acsnano.7b07460
A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2d titanium carbide (MXene) for wireless communication. Sci. Adv. 4, Eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920
N. Driscoll, A.G. Richardson, K. Maleski, B. Anasori, O. Adewole et al., Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12, 10419–10429 (2018). https://doi.org/10.1021/acsnano.8b06014
P. Das, S. Srinivasan, A.R. Rajabzadeh, Electromagnetic interference shielding behavior of MXenes, in MXene Nanocomposites (CRC Press, Boca Raton, 2023), pp. 137–152. https://doi.org/10.1201/9781003281511-7
W. Huang, L. Hu, Y. Tang, Z. Xie, H. Zhang, Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv. Funct. Mater. 30, 2005223 (2020). https://doi.org/10.1002/adfm.202005223
Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang et al., Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1, 183–195 (2018). https://doi.org/10.1002/eem2.12023
X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D
Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang et al., Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 119, 11980–12031 (2019). https://doi.org/10.1021/acs.chemrev.9b00348
L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2013). https://doi.org/10.1126/science.aag2421
W. He, M. Sohn, R. Ma, D.J. Kang, Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy 78, 105383 (2020). https://doi.org/10.1016/j.nanoen.2020.105383
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4, 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
S. Ganguly, N. Kanovsky, P. Das, A. Gedanken, S. Margel, Photopolymerized thin coating of polypyrrole/graphene nanofiber/iron oxide onto nonpolar plastic for flexible electromagnetic radiation shielding, strain sensing, and non-contact heating applications. Adv. Mater. Interfaces 8, 2101255 (2021). https://doi.org/10.1002/admi.202101255
S. Seyedin, J.M. Razal, P.C. Innis, A. Jeiranikhameneh, S. Beirne et al., Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 7, 21150–21158 (2015). https://doi.org/10.1021/acsami.5b04892
S. Seyedin, J.M. Razal, P.C. Innis, G.G. Wallace, A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Mater. Struct. 25, 035015 (2016). https://doi.org/10.1088/0964-1726/25/3/035015
M.Z. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Achieving outstanding mechanical performance in reinforced elastomeric composite fibers using large sheets of graphene oxide. Adv. Funct. Mater. 25, 94–104 (2015). https://doi.org/10.1002/adfm.201402167
S. Seyedin, J.M. Razal, P.C. Innis, R. Jalili, G.G. Wallace, Compositional effects of large graphene oxide sheets on the spinnability and properties of polyurethane composite fibers. Adv. Mater. Interfaces 3, 1500672 (2016). https://doi.org/10.1002/admi.201500672
S. Ghosh, S. Ganguly, P. Das, T.K. Das, M. Bose et al., Fabrication of reduced graphene oxide/silver nanops decorated conductive cotton fabric for high performing electromagnetic interference shielding and antibacterial application. Fibres. Polym. 20, 1161–1171 (2019). https://doi.org/10.1007/s12221-019-1001-7
S. Ganguly, S. Mondal, P. Das, P. Bhawal, T.K. Das et al., An insight into the physico-mechanical signatures of silylated graphene oxide in poly(ethylene methyl acrylate) copolymeric thermoplastic matrix. Macromol. Res. 27, 268–281 (2019). https://doi.org/10.1007/s13233-019-7039-y
S. Ganguly, D. Ray, P. Das, P.P. Maity, S. Mondal et al., Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release. Ultrason. Sonochem. 42, 212–227 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.028
S. Lee, S. Shin, S. Lee, J. Seo, J. Lee et al., Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 25, 3114–3121 (2015). https://doi.org/10.1002/adfm.201500628
Y. Lu, J. Jiang, S. Yoon, K.-S. Kim, J.-H. Kim et al., High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning. ACS Appl. Mater. Interfaces 10, 2093–2104 (2018). https://doi.org/10.1021/acsami.7b16022
S. Ghosh, P. Das, S. Ganguly, S. Remanan, T.K. Das et al., 3D-enhanced, high-performing, super-hydrophobic and electromagnetic-interference shielding fabrics based on silver paint and their use in antibacterial applications. ChemistrySelect 4, 11748–11754 (2019). https://doi.org/10.1002/slct.201901738
S. Ganguly, P. Das, M. Bose, T.K. Das, S. Mondal et al., Sonochemical green reduction to prepare Ag nanops decorated graphene sheets for catalytic performance and antibacterial application. Ultrason. Sonochem. 39, 577–588 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.005
P. Das, M. Sherazee, P.K. Marvi, S.R. Ahmed, A. Gedanken et al., Waste-derived sustainable fluorescent nanocarbon-coated breathable functional fabric for antioxidant and antimicrobial applications. ACS Appl. Mater. Interfaces 15, 29425–29439 (2023). https://doi.org/10.1021/acsami.3c03778
P. Das, S. Ganguly, A. Saravanan, S. Margel, A. Gedanken et al., Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release. ACS Appl. Bio Mater. 5, 5617–5633 (2022). https://doi.org/10.1021/acsabm.2c00664
S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh et al., Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
S. Ganguly, P. Bhawal, A. Choudhury, S. Mondal, P. Das et al., Preparation and properties of halloysite nanotubes/poly(ethylene methyl acrylate)-based nanocomposites by variation of mixing methods. Polym. Plast. Technol. Eng. 57, 997–1014 (2018). https://doi.org/10.1080/03602559.2017.1370106
S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6, 219–249 (2019). https://doi.org/10.1039/C8MH01062E
M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mater. Chem. C (2017). https://doi.org/10.1039/C7TC00140A
Z. Wu, L. Wei, S. Tang, Y. Xiong, X. Qin et al., Recent progress in Ti3C2Tx MXene-based flexible pressure sensors. ACS Nano 15, 18880–18894 (2021). https://doi.org/10.1021/acsnano.1c08239
M. Liu, Y. Zhuo, A. Sarycheva, Y. Gogotsi, M.A. Bissett et al., Deformation of and interfacial stress transfer in Ti3C2 MXene–polymer composites. ACS Appl. Mater. Interfaces 14, 10681–10690 (2022). https://doi.org/10.1021/acsami.1c21611
C.B. Hatter, J. Shah, B. Anasori, Y. Gogotsi, Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Compos. Part B Eng. 182, 107603 (2020). https://doi.org/10.1016/j.compositesb.2019.107603
S. Tu, Q. Jiang, X. Zhang, H.N. Alshareef, Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 12, 3369–3377 (2018). https://doi.org/10.1021/acsnano.7b08895
H. Aghamohammadi, N. Amousa, R. Eslami-Farsani, Recent advances in developing the MXene/polymer nanocomposites with multiple properties: a review study. Synth. Met. 273, 116695 (2021). https://doi.org/10.1016/j.synthmet.2020.116695
V. Kumar, P. Yeole, A. Majed, C. Park, K. Li et al., MXene reinforced thermosetting composite for lightning strike protection of carbon fiber reinforced polymer. Adv. Mater. Interfaces 8, 2100803 (2021). https://doi.org/10.1002/admi.202100803
J.-H. Pu, X. Zhao, X.-J. Zha, L. Bai, K. Ke et al., Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7, 15913–15923 (2019). https://doi.org/10.1039/c9ta04352g
X.-P. Li, Y. Li, X. Li, D. Song, P. Min et al., Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 542, 54–62 (2019). https://doi.org/10.1016/j.jcis.2019.01.123
M. Sajid, H.B. Kim, G.U. Siddiqui, K.H. Na, K.H. Choi, Linear bi-layer humidity sensor with tunable response using combinations of molybdenum carbide with polymers. Sens. Actuat. A Phys. 262, 68–77 (2017). https://doi.org/10.1016/j.sna.2017.05.029
F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO2 nanop modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015). https://doi.org/10.1016/j.bios.2015.08.004
R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6, 36422 (2016). https://doi.org/10.1038/srep36422
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi et al., All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12, 2381–2388 (2018). https://doi.org/10.1021/acsnano.7b07672
X. Wu, B. Huang, R. Lv, Q. Wang, Y. Wang, Highly flexible and low capacitance loss supercapacitor electrode based on hybridizing deized conjugated polymer chains with MXene. Chem. Eng. J. 378, 122246 (2019). https://doi.org/10.1016/j.cej.2019.122246
K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov et al., Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017). https://doi.org/10.1038/s41598-017-01714-3
X. Gao, Z.-K. Li, J. Xue, Y. Qian, L.-Z. Zhang et al., Titanium carbide Ti3C2Tx (MXene) enhanced PAN nanofiber membrane for air purification. J. Membr. Sci. 586, 162–169 (2019). https://doi.org/10.1016/j.memsci.2019.05.058
X. Jia, B. Shen, L. Zhang, W. Zheng, Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 173, 932–940 (2021). https://doi.org/10.1016/j.carbon.2020.11.036
S. Liu, L. Wang, X. Wang, L. Liu, A. Zhou et al., Preparation, mechanical and thermal characteristics of d-Ti3C2/PVA film. Mater. Today Commun. 22, 100799 (2020). https://doi.org/10.1016/j.mtcomm.2019.100799
Y. Pan, L. Fu, Q. Zhou, Z. Wen, C.-T. Lin et al., Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene). Polym. Compos. 41, 210–218 (2020). https://doi.org/10.1002/pc.25361
S. Mazhar, A. Ali Qarni, Y. Ul Haq, Z. Ul Haq, I. Murtaza, Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 46, 12593–12605 (2020). https://doi.org/10.1016/j.ceramint.2020.02.023
Y. Shi, C. Liu, L. Liu, L. Fu, B. Yu et al., Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 378, 122267 (2019). https://doi.org/10.1016/j.cej.2019.122267
W. Zhi, S. Xiang, R. Bian, R. Lin, K. Wu et al., Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Compos. Sci. Techn. 168, 404–411 (2018). https://doi.org/10.1016/j.compscitech.2018.10.026
H. Xu, X. Yin, X. Li, M. Li, S. Liang et al., Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 11, 10198–10207 (2019). https://doi.org/10.1021/acsami.8b21671
D. Hu, X. Huang, S. Li, P. Jiang, Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 188, 107995 (2020). https://doi.org/10.1016/j.compscitech.2020.107995
X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
X. Sheng, Y. Zhao, L. Zhang, X. Lu. Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos. Sci. Technol. 181, 107710 (2019). https://doi.org/10.1016/j.compscitech.2019.107710
J.-Q. Luo, S. Zhao, H.-B. Zhang, Z. Deng, L. Li et al., Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos. Sci. Technol. 182, 107754 (2019). https://doi.org/10.1016/j.compscitech.2019.107754
Y. Dong, C. Zhang, G. Zhao, Y. Guan, A. Gao et al., Constitutive equation and processing maps of an Al–Mg–Si aluminum alloy: determination and application in simulating extrusion process of complex profiles. Mater. Des. 92, 983–997 (2016). https://doi.org/10.1016/j.matdes.2015.12.113
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
B. Wang, Y. Wang, S. Du, J. Zhu, S. Ma, Upcycling of thermosetting polymers into high-value materials. Mater. Horiz. 10, 41–51 (2023). https://doi.org/10.1039/D2MH01128J
K. Urdl, A. Kandelbauer, W. Kern, U. Müller, M. Thebault et al., Self-healing of densely crosslinked thermoset polymers—a critical review. Prog. Org. Coat. 104, 232–249 (2017). https://doi.org/10.1016/j.porgcoat.2016.11.010
R. Alexander-Katz, Handbook of Polymer Synthesis, Characterization, and Processing (Wiley, 2013), pp.519–533
A. Kausar, Role of thermosetting polymer in structural composite. Am. J. Polym. Sci. Eng. 5(1), 1–12 (2017)
B. Suresha, G. Chandramohan, N.M. Renukappa, H. Siddaramaiah, Mechanical and tribological properties of glass–epoxy composites with and without graphite particulate filler. J. Appl. Polym. Sci. 103, 2472–2480 (2007). https://doi.org/10.1002/app.25413
G. Zhang, T. Burkhart, B. Wetzel, Tribological behavior of epoxy composites under diesel-lubricated conditions. Wear 307, 174–181 (2013). https://doi.org/10.1016/j.wear.2013.08.014
N.W. Khun, H. Zhang, L.H. Lim, C.Y. Yue, X. Hu et al., Tribological properties of short carbon fibers reinforced epoxy composites. Friction 2, 226–239 (2014). https://doi.org/10.1007/s40544-014-0043-5
J. Zhang, M. de Souza, C. Creighton, R.J. Varley, New approaches to bonding thermoplastic and thermoset polymer composites. Compos. Part A Appl. Sci. Manuf. 133, 105870 (2020). https://doi.org/10.1016/j.compositesa.2020.105870
S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, Polymer nanocomposites for electromagnetic interference shielding: a review. J. Nanosci. Nanotechnol. 18, 7641–7669 (2018). https://doi.org/10.1166/jnn.2018.15828
J. Luo, Z. Demchuk, X. Zhao, T. Saito, M. Tian et al., Elastic vitrimers: beyond thermoplastic and thermoset elastomers. Matter 5, 1391–1422 (2022). https://doi.org/10.1016/j.matt.2022.04.007
H. Zhang, L. Wang, A. Zhou, C. Shen, Y. Dai et al., Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. RSC Adv. 6, 87341–87352 (2016). https://doi.org/10.1039/C6RA14560D
P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
L. Wang, H. Qiu, P. Song, Y. Zhang, Y. Lu et al., 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 123, 293–300 (2019). https://doi.org/10.1016/j.compositesa.2019.05.030
L. Wang, P. Song, C.-T. Lin, J. Kong, J. Gu, 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 4093732 (2020). https://doi.org/10.34133/2020/4093732
L. Wang, L. Chen, P. Song, C. Liang, Y. Lu et al., Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 171, 111–118 (2019). https://doi.org/10.1016/j.compositesb.2019.04.050
Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528–26534 (2021). https://doi.org/10.1002/anie.202111823
S. Wei, J. Ma, D. Wu, B. Chen, C. Du et al., Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary composite for efficient low-grade thermal energy harvest. Adv. Funct. Mater. 33, 2209806 (2023). https://doi.org/10.1002/adfm.202209806
L. Zhao, L. Wang, Y. Zheng, S. Zhao, W. Wei et al., Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. Nano Energy 84, 105921 (2021). https://doi.org/10.1016/j.nanoen.2021.105921
Y. Tang, J. Yan, J. Wang, Y. Liu, J. Gao, MXene based flexible Janus nanofibrous membrane composite for unidirectional water transportation. Compos. Sci. Technol. 239, 110032 (2023). https://doi.org/10.1016/j.compscitech.2023.110032
M. Qin, W. Yuan, X. Zhang, Y. Cheng, M. Xu et al., Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids Surf. B Biointerfaces 214, 112482 (2022). https://doi.org/10.1016/j.colsurfb.2022.112482
Z. Liu, R. Zhang, H. Xiong, L. Zhang, J. Li et al., Swelling-induced structural transformation strategy: controllable synthesis of 2D porous polypyrrole/MXene heterostructures with tunable pore structures. Adv. Mater. Interfaces 10, 2202501 (2023). https://doi.org/10.1002/admi.202202501
Z. Qin, X. Chen, Y. Lv, B. Zhao, X. Fang et al., Wearable and high-performance piezoresistive sensor based on nanofiber/sodium alginate synergistically enhanced MXene composite aerogel. Chem. Eng. J. 451, 138586 (2023). https://doi.org/10.1016/j.cej.2022.138586
X. Wang, N. Li, J. Yin, X. Wang, L. Xu et al., Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Sci. China Mater. 66, 272–283 (2023). https://doi.org/10.1007/s40843-022-2105-6
H. Zhang, L. Wang, Q. Chen, P. Li, A. Zhou et al., Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 92, 682–689 (2016). https://doi.org/10.1016/j.matdes.2015.12.084
P. Das, S. Ganguly, A. Saha, M. Noked, S. Margel et al., Carbon-dots-initiated photopolymerization: an In situ synthetic approach for MXene/poly(norepinephrine)/copper hybrid and its application for mitigating water pollution. ACS Appl. Mater. Interfaces 13, 31038–31050 (2021). https://doi.org/10.1021/acsami.1c08111
P. Das, A. Rosenkranz, S. Ganguly, MXene Nanocomposites: Design, Fabrication, and Shielding Applications, 1st edn. (CRC Press, Boca Raton, 2023), p.18. https://doi.org/10.1201/9781003281511
R. Liu, W. Li, High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 3, 2609–2617 (2018). https://doi.org/10.1021/acsomega.7b02001
W. Chen, P. Liu, Y. Liu, Z. Liu, Recent advances in two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.137239
X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
O.B. Seo, S. Saha, N.H. Kim, J.H. Lee, Preparation of functionalized MXene-stitched-graphene oxide/poly(ethylene-co-acrylic acid) nanocomposite with enhanced hydrogen gas barrier properties. J. Membr. Sci. 640, 119839 (2021). https://doi.org/10.1016/j.memsci.2021.119839
S. Tang, Z. Wu, X. Li, F. Xie, D. Ye et al., Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films with high strength and superior gas barrier properties. Carbohydr. Polym. 299, 120204 (2023). https://doi.org/10.1016/j.carbpol.2022.120204
X. Wang, X. Li, L. Cui, Y. Liu, S. Fan, Improvement of gas barrier properties for biodegradable poly(butylene adipate-co-terephthalate) nanocomposites with MXene nanosheets via biaxial stretching. Polymers 14, 480 (2022). https://doi.org/10.3390/polym14030480
M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133–137 (2012). https://doi.org/10.1557/mrc.2012.25
J.-C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10, 276–286 (2015). https://doi.org/10.1007/s11467-015-0493-x
M. Khazaei, M. Arai, T. Sasaki, C.-Y. Chung, N.S. Venkataramanan et al., Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 23, 2185–2192 (2013). https://doi.org/10.1002/adfm.201202502
R. Niu, R. Han, Y. Wang, L. Zhang, Q. Qiao et al., MXene-based porous and robust 2D/2D hybrid architectures with dispersed Li3Ti2(PO4)3 as superior anodes for lithium-ion battery. Chem. Eng. J. 405, 127049 (2021). https://doi.org/10.1002/adfm.201202502
X. Li, X. Yin, S. Liang, M. Li, L. Cheng et al., 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 146, 210–217 (2019). https://doi.org/10.1016/j.carbon.2019.02.003
J. Jimmy, B. Kandasubramanian, Mxene functionalized polymer composites: synthesis and applications. Eur. Polym. J. 122, 109367 (2020). https://doi.org/10.1016/j.eurpolymj.2019.109367
K. Khan, A.K. Tareen, M. Iqbal, Z. Ye, Z. Xie et al., Recent progress in emerging novel MXenes based materials and their fascinating sensing applications. Small 19, e2206147 (2023). https://doi.org/10.1002/smll.202206147
C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31, 2009524 (2021). https://doi.org/10.1002/adfm.202009524
M.T. Rahman, S.M. Sohel Rana, M. Salauddin, M. Abu Zahed, S. Lee et al., Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy 100, 107454 (2022). https://doi.org/10.1016/j.nanoen.2022.107454
S. Iravani, Role of MXenes in advancing soft robotics. Soft Matter 19, 6196–6212 (2023). https://doi.org/10.1039/d3sm00756a
S. Chen, W. Huang, A review related to MXene preparation and its sensor arrays of electronic skins. Analyst 148, 435–453 (2023). https://doi.org/10.1039/d2an01143c
H. Zhi, X. Zhang, F. Wang, P. Wan, L. Feng, Flexible Ti3C2Tx MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing. ACS Appl. Mater. Interfaces 13, 45987–45994 (2021). https://doi.org/10.1021/acsami.1c12991
Q. Yu, J. Jiang, Z. Chen, C. Han, X. Zhang et al., A multilevel fluorometric biosensor based on boric acid embedded in carbon dots to detect intracellular and serum glucose. Sens. Actuat. B Chem. 350, 130898 (2022). https://doi.org/10.1016/j.snb.2021.130898
K. Zhang, J. Sun, J. Song, C. Gao, Z. Wang et al., Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Appl. Mater. Interfaces 12, 45306–45314 (2020). https://doi.org/10.1021/acsami.0c13653
Y. Xiang, L. Fang, F. Wu, S. Zhang, H. Ruan et al., 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range. Adv. Mater. Technol. 6, 2001157 (2021). https://doi.org/10.1002/admt.202001157
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023). https://doi.org/10.1126/science.ade0086
V. Chugh, A. Basu, A. Kaushik, A.K. Basu, E-skin—based advanced wearable technology for Health Management. Curr. Res. Biotechnol. 5, 100129 (2023). https://doi.org/10.1016/j.crbiot.2023.100129
D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang et al., Roles of MXene in pressure sensing: preparation, composite structure design, and mechanism. Adv. Mater. 34, e2110608 (2022). https://doi.org/10.1002/adma.202110608
Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021). https://doi.org/10.1016/j.nanoen.2020.105663
B. Xu, F. Ye, R. Chen, X. Luo, G. Chang et al., A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram. Int. 48, 10220–10226 (2022). https://doi.org/10.1016/j.ceramint.2021.12.235
X. Li, G. Shan, R. Ma, C.-H. Shek, H. Zhao et al., Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide orption applications. Front. Phys. 17, 63501 (2022). https://doi.org/10.1007/s11467-022-1181-2
W. Yuan, X. Qu, Y. Lu, W. Zhao, Y. Ren et al., MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chin. Chem. Lett. 32, 2021–2026 (2021). https://doi.org/10.1016/j.cclet.2020.12.003
K. Chen, Y. Hu, F. Wang, M. Liu, P. Liu et al., Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf. A Physicochem. Eng. Aspects 645, 128897 (2022). https://doi.org/10.1016/j.colsurfa.2022.128897
Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang et al., Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6(48), eabb5367 (2020). https://doi.org/10.1126/sciadv.abb5367
Y. Bai, S. Bi, W. Wang, N. Ding, Y. Lu et al., Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20, 444–454 (2022). https://doi.org/10.1080/1539445x.2022.2081580
K.H. Lee, Y.-Z. Zhang, H. Kim, Y. Lei, S. Hong et al., Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods 5, 2100819 (2021). https://doi.org/10.1002/smtd.202100819
S.-N. Li, Z.-R. Yu, B.-F. Guo, K.-Y. Guo, Y. Li et al., Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 90, 106502 (2021). https://doi.org/10.1016/j.nanoen.2021.106502
Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao et al., Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J. 401, 126129 (2020). https://doi.org/10.1016/j.cej.2020.126129
Y. Liu, D. Xu, Y. Ding, X. Lv, T. Huang et al., A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@ chitosan assembly for highly stretchable and sensitive wearable skin. J. Mater. Chem. B 9(42), 8862–8870 (2021). https://doi.org/10.1039/D1TB01798E
D. Kong, Z.M. El-Bahy, H. Algadi, T. Li, S.M. El-Bahy et al., Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv. Compos. Hybrid Mater. 5, 1976–1987 (2022). https://doi.org/10.1007/s42114-022-00531-1
X. Wang, X. Wang, J. Yin, N. Li, Z. Zhang et al., Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 241, 110052 (2022). https://doi.org/10.1016/j.compositesb.2022.110052
G. Ge, Y.Z. Zhang, W. Zhang, W. Yuan, J.K. El-Demellawi et al., Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano 15, 2698–2706 (2021). https://doi.org/10.1021/acsnano.0c07998
H. Wang, J. Xiang, X. Wen, X. Du, Y. Wang et al., Multifunctional skin-inspired resilient MXene-embedded nanocomposite hydrogels for wireless wearable electronics. Compos. Part A Appl. Sci. Manuf. 155, 106835 (2022). https://doi.org/10.1016/j.compositesa.2022.106835
S. He, X. Sun, Z. Qin, X. Dong, H. Zhang et al., Non-swelling and anti-fouling MXene nanocomposite hydrogels for underwater strain sensing. Adv. Mater. Technol. 7, 2101343 (2022). https://doi.org/10.1002/admt.202101343
M. Jian, Y. Zhang, Z. Liu, Natural biopolymers for flexible sensing and energy devices. Chin. J. Polym. Sci. 38, 459–490 (2020). https://doi.org/10.1007/s10118-020-2379-9
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31, 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). https://doi.org/10.1016/j.nanoen.2021.106151
J. Yang, H. Li, J. Cheng, T. He, J. Li et al., Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. J. Mater. Sci. 56, 13859–13873 (2021). https://doi.org/10.1007/s10853-021-05909-y
H. Huang, Y. Dong, S. Wan, J. Shen, C. Li et al., A transient dual-type sensor based on MXene/cellulose nanofibers composite for intelligent sedentary and sitting postures monitoring. Carbon 200, 327–336 (2022). https://doi.org/10.1016/j.carbon.2022.08.070
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
M. Bandar Abadi, R. Weissing, M. Wilhelm, Y. Demidov, J. Auer et al., Nacre-mimetic, mechanically flexible, and electrically conductive silk fibroin-MXene composite foams as piezoresistive pressure sensors. ACS Appl. Mater. Interfaces 13, 34996–35007 (2021). https://doi.org/10.1021/acsami.1c09675
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
M. Paolieri, Z. Chen, F. Babu Kadumudi, M. Alehosseini, M. Zorrón et al., Biomimetic flexible electronic materials from silk fibroin-MXene composites developed via mussel-inspired chemistry as wearable pressure sensors. ACS Appl. Nano Mater. 6, 5211–5223 (2023). https://doi.org/10.1021/acsanm.2c05140
Y. Yang, W. Song, B. Murugesan, X. Cheng, M. Jiang et al., Oriented Ti3C2Tx MXene-doped silk fibroin/hyaluronic acid hydrogels for sensitive compression strain monitoring with a wide resilience range and high cycling stability. Colloids Surf. A Physicochem. Eng. Aspects 665, 131221 (2023). https://doi.org/10.1016/j.colsurfa.2023.131221
M.I. Shekh, G. Zhu, W. Xiong, W. Wu, F.J. Stadler et al., Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: chitosan based multi-networked elastomeric hydrogels for physical motion detection. Int. J. Biol. Macromol. 224, 604–620 (2023). https://doi.org/10.1016/j.ijbiomac.2022.10.150
Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14, 2788–2797 (2020). https://doi.org/10.1021/acsnano.9b09802
N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim et al., 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019). https://doi.org/10.1002/advs.201900344
X. Xu, Y. Chen, P. He, S. Wang, K. Ling et al., Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 14, 2875–2883 (2021). https://doi.org/10.1007/s12274-021-3536-3
Q. Chen, Q. Gao, X. Wang, D.W. Schubert, X. Liu, Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine/MXene foam for piezoresistive sensors and motion monitoring. Composites Part A: Appl. Sci. Manuf. 155, 106838 (2022). https://doi.org/10.1016/j.compositesa.2022.106838
H. Dong, J. Sun, X. Liu, X. Jiang, S. Lu, Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 14, 15504–15516 (2022). https://doi.org/10.1021/acsami.1c23567
H. Wang, R. Zhou, D. Li, L. Zhang, G. Ren et al., High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 15, 9690–9700 (2021). https://doi.org/10.1021/acsnano.1c00259
Q. Yi, X. Pei, P. Das, H. Qin, S.W. Lee et al., A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022). https://doi.org/10.1016/j.nanoen.2022.107511
J.S. Meena, S. Bin Choi, S.-B. Jung, J.-W. Kim, Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Appl. Mater. Today 29, 101612 (2022). https://doi.org/10.1016/j.apmt.2022.101612
L.-X. Liu, W. Chen, H.-B. Zhang, Q.-W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1905197 (2019). https://doi.org/10.1002/adfm.201905197
W.-T. Cao, C. Ma, D.-S. Mao, J. Zhang, M.-G. Ma et al., MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv. Funct. Mater. 29, 1905898 (2019). https://doi.org/10.1002/adfm.201905898
T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7, 1022–1027 (2019). https://doi.org/10.1039/C8TC04893B
J. Luo, S. Gao, H. Luo, L. Wang, X. Huang et al., Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem. Eng. J. 406, 126898 (2021). https://doi.org/10.1016/j.cej.2020.126898
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015 (2019). https://doi.org/10.1002/adfm.201905015
D. Tan, C. Jiang, N. Sun, J. Huang, Z. Zhang et al., Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy 90, 106528 (2021). https://doi.org/10.1016/j.nanoen.2021.106528
Q. Zhao, L. Yang, Y. Ma, H. Huang, H. He et al., Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement. J. Alloys Compd. 886, 161069 (2021). https://doi.org/10.1016/j.jallcom.2021.161069
S. Wang, H.-Q. Shao, Y. Liu, C.-Y. Tang, X. Zhao et al., Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos. Sci. Technol. 202, 108600 (2021). https://doi.org/10.1016/j.compscitech.2020.108600
S. Tremmel, X. Luo, B. Rothammer, A. Seynstahl, B. Wang et al., Evaluation of DLC, MoS2, and Ti3C2T thin films for triboelectric nanogenerators. Nano Energy 97, 107185 (2022). https://doi.org/10.1016/j.nanoen.2022.107185
M. Salauddin, S.M. Sohel Rana, M.T. Rahman, M. Sharifuzzaman, P. Maharjan et al., Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics. Adv. Funct. Mater. 32, 2107143 (2022). https://doi.org/10.1002/adfm.202107143
D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang et al., An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Adv. Funct. Mater. 32, 2108856 (2022). https://doi.org/10.1002/adfm.202108856
T. Beduk, C. Durmus, S.B. Hanoglu, D. Beduk, K.N. Salama et al., Breath as the mirror of our body is the answer really blowing in the wind? Recent technologies in exhaled breath analysis systems as non-invasive sensing platforms. Trac Trends Anal. Chem. 143, 116329 (2021). https://doi.org/10.1016/j.trac.2021.116329
S. Das, M. Pal, Review—non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167, 037562 (2020). https://doi.org/10.1149/1945-7111/ab67a6
D. Yang, X. Fan, D. Zhao, Y. An, Y. Hu et al., Sc2Co2 and Mn-doped Sc2Co2 as gas sensor materials to no and co: a first-principles study. Phys. E 111, 84–90 (2019). https://doi.org/10.1016/j.physe.2019.02.019
Y. Zhang, Y. Jiang, Z. Duan, Q. Huang, Y. Wu et al., Highly sensitive and selective NO2 sensor of alkalized V2CT MXene driven by interlayer swelling. Sens. Actuat. B Chem. 344, 130150 (2021). https://doi.org/10.1016/j.snb.2021.130150
J.L. Kelley, M. Tobler, D. Beck, I. Sadler-Riggleman, C.R. Quackenbush et al., Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide–rich springs. Proc. Natl. Acad. Sci. U.S.A. 118, 14929118 (2021). https://doi.org/10.1073/pnas.2014929118
Q. Xu, B. Zong, Q. Li, X. Fang, S. Mao et al., H2S sensing under various humidity conditions with Ag nanop functionalized Ti3C2Tx MXene field-effect transistors. J. Hazard. Mater. 424, 127492 (2022). https://doi.org/10.1016/j.jhazmat.2021.127492
E. Lee, A. VahidMohammadi, Y.S. Yoon, M. Beidaghi, D.J. Kim, Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 4, 1603–1611 (2019). https://doi.org/10.1021/acssensors.9b00303
J. Daniels, S. Wadekar, K. DeCubellis, G.W. Jackson, A.S. Chiu et al., A mask-based diagnostic platform for point-of-care screening of Covid-19. Biosens. Bioelectron. 192, 113486 (2021). https://doi.org/10.1016/j.bios.2021.113486
Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6, 470–506 (2019). https://doi.org/10.1039/c8mh01365a
L. Yang, G. Zheng, Y. Cao, C. Meng, Y. Li et al., Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. Microsyst. Nanoeng. 8, 78 (2022). https://doi.org/10.1038/s41378-022-00414-x
K. Sung Bum, S. Amit, J. Myeong Hoon, B. Jeong Min, C. Kyoung Jin, Heterogeneous stacking of reduced graphene oxide on ZnO nanowires for NO2 gas sensors with dramatically improved response and high sensitivity. Sensors Actuat. B Chem. 379, 133196 (2023). https://doi.org/10.1016/j.snb.2022.133196
N. Goel, M. Kumar, Recent advances in ultrathin 2D hexagonal boron nitride based gas sensors. J. Mater. Chem. C 9, 1537–1549 (2021). https://doi.org/10.1039/d0tc05855f
S. Alwarappan, N. Nesakumar, D. Sun, T.Y. Hu, C.-Z. Li, 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 205, 113943 (2022). https://doi.org/10.1016/j.bios.2021.113943
A. Hermawan, T. Amrillah, A. Riapanitra, W.-J. Ong, S. Yin, Prospects and challenges of MXenes as emerging sensing materials for flexible and wearable breath-based biomarker diagnosis. Adv. Healthc. Mater. 10, e2100970 (2021). https://doi.org/10.1002/adhm.202100970
X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li et al., Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7, 13707–13713 (2015). https://doi.org/10.1021/acsami.5b03737
B. Xiao, Y.-C. Li, X.-F. Yu, J.-B. Cheng, MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuat. B Chem. 235, 103–109 (2016). https://doi.org/10.1016/j.snb.2016.05.062
K. Dixit, S. Fardindoost, A. Ravishankara, N. Tasnim, M. Hoorfar, Exhaled breath analysis for diabetes diagnosis and monitoring: relevance, challenges and possibilities. Biosensors 11, 476 (2021). https://doi.org/10.3390/bios11120476
R.F. Del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah et al., Volatile biomarkers in breath associated with liver cirrhosis—comparisons of pre- and post-liver transplant breath samples. EBioMedicine 2, 1243–1250 (2015). https://doi.org/10.1016/j.ebiom.2015.07.027
A.M. Peel, M. Wilkinson, A. Sinha, Y.K. Loke, S.J. Fowler et al., Volatile organic compounds associated with diagnosis and disease characteristics in asthma—a systematic review. Respir. Med. 169, 105984 (2020). https://doi.org/10.1016/j.rmed.2020.105984
Y. Sakumura, Y. Koyama, H. Tokutake, T. Hida, K. Sato et al., Diagnosis by volatile organic compounds in exhaled breath from lung cancer patients using support vector machine algorithm. Sensors 17, 287 (2017). https://doi.org/10.3390/s17020287
V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C.-P. Liu et al., Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics 8, 12 (2018). https://doi.org/10.3390/diagnostics8010012
L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1, 407–416 (2019). https://doi.org/10.1002/inf2.12032
W. Yuan, K. Yang, H. Peng, F. Li, F. Yin, A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J. Mater. Chem. A 6, 18116–18124 (2018). https://doi.org/10.1039/C8TA06928J
J. Choi, Y.-J. Kim, S.-Y. Cho, K. Park, H. Kang et al., In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30, 2003998 (2020). https://doi.org/10.1002/adfm.202003998
R. Zhang, L. Yang, G. Liu, F. Yin, W. Yuan et al., Polydopamine functionalized MXene for chemiresistive gas sensing: partial oxidation and optimized chemical state pinning. Sensors Actuat. B: Chem. 386, 133760 (2023). https://doi.org/10.1016/j.snb.2023.133760
P.P. Ricci, O.J. Gregory, Sensors for the detection of ammonia as a potential biomarker for health screening. Sci. Rep. 11, 7185 (2021). https://doi.org/10.1038/s41598-021-86686-1
P. Španěl, D. Smith, What is the real utility of breath ammonia concentration measurements in medicine and physiology? J. Breath Res. 12, 027102 (2018). https://doi.org/10.1088/1752-7163/aa907f
A.A. Shahzad, S. Mushtaq, A. Waris, S.O. Gilani, M.A. Alnuwaiser et al., A low-cost device for measurement of exhaled breath for the detection of obstructive lung disease. Biosensors 12, 409 (2022). https://doi.org/10.3390/bios12060409
H.-Y. Li, C.-S. Lee, D.H. Kim, J.-H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10, 27858–27867 (2018). https://doi.org/10.1021/acsami.8b09169
E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi et al., Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 9, 37184–37190 (2017). https://doi.org/10.1021/acsami.7b11055
J. Zhou, S.H. Hosseini Shokouh, H.-P. Komsa, L. Rieppo, L. Cui et al., MXene-polymer hybrid for high-performance gas sensor prepared by microwave-assisted in-situ intercalation. Adv. Mater. Technol. 7, 2101565 (2022). https://doi.org/10.1002/admt.202101565
Y. Cai, Y. Wang, X. Wen, J. Xiong, H. Song et al., Ti3C2Tx MXene/urchin-like PANI hollow nanosphere composite for high performance flexible ammonia gas sensor. Anal. Chim. Acta 1225, 340256 (2022). https://doi.org/10.1016/j.aca.2022.340256
X. Wen, Y. Cai, X. Nie, J. Xiong, Y. Wang et al., PSS-doped PANI nanop/Ti3C2Tx composites for conductometric flexible ammonia gas sensors operated at room temperature. Sens. Actuat. B Chem. 374, 132788 (2023). https://doi.org/10.1016/j.snb.2022.132788
L. Jin, C. Wu, K. Wei, L. He, H. Gao et al., Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl. Nano Mater. 3, 12071–12079 (2020). https://doi.org/10.1021/acsanm.0c02577
S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang et al., PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sens. Actuat. B Chem. 327, 128923 (2021). https://doi.org/10.1016/j.snb.2020.128923
L. Zhao, Y. Zheng, K. Wang, C. Lv, W. Wei et al., Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv. Mater. Technol. 5, 2000248 (2020). https://doi.org/10.1002/admt.202000248
S. Hajian, P. Khakbaz, M. Moshayedi, D. Maddipatla, B.B. Narakathu et al., Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti3C2Tx MXene as ammonia sensor: a first-principles study, in 2018 IEEE SENSORS. New Delhi, India (IEEE, 2018), pp. 1–4
J. Zhou, S.H.H. Shokouh, L. Cui, T. Järvinen, O. Pitkänen et al., An ultra-sensitive NH3 gas sensor enabled by an ion-in-conjugated polycroconaine/Ti3C2Tx core-shell composite. Nanoscale Horiz. 8, 794–802 (2023). https://doi.org/10.1039/d2nh00591c
G.D. Banik, A. De, S. Som, S. Jana, S.B. Daschakraborty et al., Hydrogen sulphide in exhaled breath: a potential biomarker for small intestinal bacterial overgrowth in IBS. J. Breath Res. 10, 026010 (2016). https://doi.org/10.1088/1752-7155/10/2/026010
S.H. Hosseini-Shokouh, J. Zhou, E. Berger, Z.-P. Lv, X. Hong et al., Highly selective H2S gas sensor based on Ti3C2Tx MXene–organic composites. ACS Appl. Mater. Interfaces 15, 7063–7073 (2023). https://doi.org/10.1021/acsami.2c19883
B. Sun, H. Lv, Z. Liu, J. Wang, X. Bai et al., Co3O4@PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit. J. Mater. Chem. A 9, 6335–6344 (2021). https://doi.org/10.1039/d0ta11392a
Y.L. Pham, J. Beauchamp, Breath biomarkers in diagnostic applications. Molecules 26, 5514 (2021). https://doi.org/10.3390/molecules26185514
Y. Zhou, Y. Wang, Y. Wang, X. Li, Humidity-enabled ionic conductive trace carbon dioxide sensing of nitrogen-doped Ti3C2Tx MXene/polyethyleneimine composite films decorated with reduced graphene oxide nanosheets. Anal. Chem. 92, 16033–16042 (2020). https://doi.org/10.1021/acs.analchem.0c03664
Z.H. Endre, J.W. Pickering, M.K. Storer, W.-P. Hu, K.T. Moorhead et al., Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol. Meas. 32, 115–130 (2011). https://doi.org/10.1088/0967-3334/32/1/008
X. Li, L. Jin, A. Ni, L. Zhang, L. He et al., Tough and antifreezing MXene@Au hydrogel for low-temperature trimethylamine gas sensing. ACS Appl. Mater. Interfaces 14, 30182–30191 (2022). https://doi.org/10.1021/acsami.2c06749
S.V. Rana, A. Malik, Hydrogen breath tests in gastrointestinal diseases. Indian J. Clin. Biochem. 29, 398–405 (2014). https://doi.org/10.1007/s12291-014-0426-4
S.N. Shuvo, A.M. Ulloa Gomez, A. Mishra, W.Y. Chen, A.M. Dongare et al., Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 5, 2915–2924 (2020). https://doi.org/10.1021/acssensors.0c01287
P. Chakraborty, T. Das, D. Nafday, T. Saha-Dasgupta, Manipulating the mechanical properties of Ti2C MXene: effect of substitutional doping. Phys. Rev. B 95(18), 184106 (2017). https://doi.org/10.1103/PhysRevB.95.184106
D.H. Ho, Y.Y. Choi, S.B. Jo, J.M. Myoung, J.H. Cho, Sensing with MXenes: progress and prospects. Adv. Mater. 33, e2005846 (2021). https://doi.org/10.1002/adma.202005846
M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, e2103393 (2021). https://doi.org/10.1002/adma.202103393
M. Carey, M.W. Barsoum, MXene polymer nanocomposites: a review. Mater. Today Adv. 9, 100120 (2021). https://doi.org/10.1016/j.mtadv.2020.100120
V. Chaudhary, A. Gautam, Y.K. Mishra, A. Kaushik, Emerging MXene-polymer hybrid nanocomposites for high-performance ammonia sensing and monitoring. Nanomaterials 11, 2496 (2021). https://doi.org/10.3390/nano11102496
S. Dhall, B.R. Mehta, A.K. Tyagi, K. Sood, A review on environmental gas sensors: materials and technologies. Sens. Int. 2, 100116 (2021). https://doi.org/10.1016/j.sintl.2021.100116
R. Zeng, W. Wang, M. Chen, Q. Wan, C. Wang et al., CRISPR-12a-driven MXene-PEDOT: PSS piezoresistive wireless biosensor. Nano Energy 82, 105711 (2021). https://doi.org/10.1016/j.nanoen.2020.105711