Bio-Derived Hierarchical Multicore–Shell Fe2N-Nanoparticle-Impregnated N-Doped Carbon Nanofiber Bundles: A Host Material for Lithium-/Potassium-Ion Storage
Corresponding Author: Yun Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 56
Abstract
Despite the significant progress in the fabrication of advanced electrode materials, complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions, morphologies, and chemistries. Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species, we propose the use of skin collagen fibers for the template crafting of a novel multicore–shell Fe2N–carbon framework anode configuration, composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles (Fe2N@N-CFBs). In the resultant heterostructure, the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well connected by the long-range carbon nanofiber framework. This not only provides direct and continuous conductive pathways to facilitate electron/ion transport, but also helps cushion the volume expansion of the encapsulated Fe2N to preserve the electrode microstructure. Considering its unique structural characteristics, Fe2N@N-CFBs as an advanced anode material exhibits remarkable electrochemical performances for lithium- and potassium-ion batteries. Moreover, this bio-derived structural strategy can pave the way for novel low-cost and high-efficiency syntheses of metal-nitride/carbon nanofiber heterostructures for potential applications in energy-related fields and beyond.
Highlights:
1 A viable bio-derived material engineering strategy is developed based on the use of skin collagen fibers for the crafting of metal-nitride–carbon nanofiber composites.
2 N-doped carbon nanofiber bundles embedded with Fe2N nanoparticles are fabricated using a structural replication process.
3 The composite with a hierarchically ordered, compact, and multicore–shell heterostructure exhibits increased lithium- and potassium-ion storage performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
- F. Yang, H. Gao, J. Hao, S. Zhang, P. Li et al., Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
- H. Wu, Q. Yu, C.-Y. Lao, M. Qin, W. Wang et al., Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 18, 43–50 (2018). https://doi.org/10.1016/j.ensm.2018.09.025
- Y. Marcus, Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents part 3—standard potentials of selected electrodes. Pure Appl. Chem. 57(8), 1129–1132 (1985). https://doi.org/10.1351/pac198557081129
- L. Lai, J. Zhu, B. Li, Y. Zhen, Z. Shen et al., One novel and universal method to prepare transition metal nitrides doped graphene anodes for Li-ion battery. Electrochim. Acta 134, 28–34 (2014). https://doi.org/10.1016/j.electacta.2014.04.073
- B. Das, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J. Mater. Chem. 22, 17505–17510 (2012). https://doi.org/10.1039/c2jm31969a
- X. Li, A.L. Hector, J.R. Owen, S.I.U. Shah, Evaluation of nanocrystalline Sn3N4 derived from ammonolysis of Sn(NEt2)4 as a negative electrode material for Li-ion and Na-ion batteries. J. Mater. Chem. A 4(14), 5081–5087 (2016). https://doi.org/10.1039/C5TA08287K
- I. Memona, A.S. Mustansar, A.U. Rehman, A. Nisar, M.M. Waheed et al., Mechanistic insights into high lithium storage performance of mesoporous chromium nitride anchored on nitrogen-doped carbon nanotubes. Chem. Eng. J. 327, 361–370 (2017). https://doi.org/10.1016/j.cej.2017.06.095
- Q. Sun, Z.W. Fu, Mn3N2 as a novel negative electrode material for rechargeable lithium batteries. Appl. Surf. Sci. 258(7), 3197–3201 (2012). https://doi.org/10.1016/j.apsusc.2011.11.063
- J. Guo, Y. Yang, W. Yu, X. Dong, J. Wang et al., Synthesis of α-Fe2O3, Fe3O4 and Fe2N magnetic hollow nanofibers as anode materials for Li-ion batteries. RSC Adv. 6(112), 111447–111456 (2016). https://doi.org/10.1039/C6RA23601D
- P. Yu, L. Wang, F. Sun, D. Zhao, C. Tian et al., Three-dimensional Fe2N@C microspheres grown on reduced graphite oxide for lithium-ion batteries and the Li storage mechanism. Chemistry 21(8), 3249–3256 (2015). https://doi.org/10.1002/chem.201406188
- A. Sakuma, Self-consistent calculations for the electronic structures of iron nitrides, Fe3N, Fe4N and Fe16N2. J. Magn. Magn. Mater. 102(1–2), 127–134 (2000). https://doi.org/10.1016/0304-8853(91)90277-H
- Y. Zhong, X.H. Xia, F. Shi, J.Y. Zhan, J.P. Tu et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286–1500313 (2016). https://doi.org/10.1002/advs.201500286
- W. Li, G. Wu, C.M. Araújo, R.H. Scheicher, A. Blomqvist et al., Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3(10), 1524–1530 (2010). https://doi.org/10.1039/c0ee00052c
- M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu et al., Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3(4), 1364–1387 (2015). https://doi.org/10.1039/C4TA05565A
- Z. Li, Y. Fang, J. Zhang, X.W. Lou, Necklace-like structures composed of Fe3N@C yolk-shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. 30(30), 1800525–1800529 (2018). https://doi.org/10.1002/adma.201800525
- S.L. Liu, J. Liu, W.J. Wang, L.Y. Yang, K.J. Zhu et al., Synthesis of coral-like Fe2N@C nanoparticles and application in sodium ion batteries as a novel anode electrode material. RSC Adv. 6(89), 8613–86136 (2016). https://doi.org/10.1039/C6RA17251B
- X. Gao, B.Y. Wang, Y. Zhang, H. Liu, H.K. Liu et al., Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
- P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 28(30), 1801765–1801776 (2018). https://doi.org/10.1002/adfm.201801765
- H. Huang, S. Gao, A.M. Wu, K. Cheng, X.N. Li et al., Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31, 74–83 (2017). https://doi.org/10.1016/j.nanoen.2016.10.059
- Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu et al., Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv. Funct. Mater. 26(43), 7754–7765 (2016). https://doi.org/10.1002/adfm.201603716
- Y. Chu, L. Guo, B. Xi, Z. Feng, F. Wu et al., Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv. Mater. 30(6), 1704244–1704255 (2018). https://doi.org/10.1002/adma.201704244
- L. Kong, J. Zhu, W. Shuang, X.-H. Bu, Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv. Energy Mater. 8(25), 1801515 (2018). https://doi.org/10.1002/aenm.201801515
- W. Shuang, H. Huang, L. Kong, M. Zhong, A. Li et al., Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy 62, 154–163 (2019). https://doi.org/10.1016/j.nanoen.2019.05.030
- X. Xu, Z. Meng, X. Zhu, S. Zhang, W.Q. Han, Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J. Power Sources 380, 12–17 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.057
- Y. Wei, H. Chen, H. Jiang, B. Wang, H. Liu et al., Biotemplate-based engineering of high-temperature stable anatase TiO2 nanofiber bundles with impregnated CeO2 nanocrystals for enhanced lithium storage. ACS Sustain. Chem. Eng. 7(8), 7823–7832 (2019). https://doi.org/10.1021/acssuschemeng.9b00012
- Y. Liu, A. Qin, S. Chen, L. Liao, K. Zhang et al., Hybrid nanostructures of MoS2/sisal fiber tubular carbon as anode material for lithium ion batteries. Int. J. Electrochem. Sci. 13, 2054–2068 (2018). https://doi.org/10.20964/2018.02.63
- H. Jiang, H. Chen, Y. Wei, J. Zeng, H. Liu et al., Biotemplate-mediated structural engineering of rod-like V2O5 cathode materials for lithium-ion batteries. J. Alloys Compd. 787, 625–630 (2019). https://doi.org/10.1016/j.jallcom.2019.02.118
- X. Wang, J. Li, Z. Chen, L. Lei, X. Liao et al., Hierarchically structured C@SnO2@C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries. J. Mater. Chem. A 4(48), 918783–991881 (2016). https://doi.org/10.1039/C6TA06622D
- Z. Chen, Y. Zhang, X. Wang, W. Sun, S. Dou et al., Fast-pulverization enabled simultaneous enhancement on cycling stability and rate capability of C@NiFe2O4 hierarchical fibrous bundle. J. Power Sources 363, 209–217 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.099
- D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo et al., Double-helix structure in carrageenan–metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925–15928 (2016). https://doi.org/10.1002/anie.201610301
- H. Chen, H. Liu, Y. Guo, B. Wang, Y. Wei et al., Hierarchically ordered mesoporous TiO2 nanofiber bundles derived from natural collagen fibers for lithium and sodium storage. J. Alloys Compd. 731, 844–852 (2018). https://doi.org/10.1016/j.jallcom.2017.10.116
- X.L. Wang, X. Huang, Z.R. Chen, X.P. Liao, C. Liu et al., Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials. J. Mater. Chem. C 3(39), 10146–10153 (2015). https://doi.org/10.1039/C5TC02689J
- D.H. Deng, H. Wu, X.P. Liao, B. Shi, Synthesis of unique mesoporous ZrO2–carbon fiber from collagen fiber. Microporous Mesoporous Mater. 116(1–3), 705–709 (2008). https://doi.org/10.1016/j.micromeso.2008.05.018
- X.P. Liao, M.N. Zhang, B. Shi, Collagen-fiber-immobilized tannins and their adsorption of Au(III). Ind. Eng. Chem. Res. 43(9), 2222–2227 (2004). https://doi.org/10.1021/ie0340894
- R. Tang, X.P. Liao, X. Liu, B. Shi, Collagen fiber immobilized Fe(III): a novel catalyst for photo-assisted degradation of dyes. Chem. Commun. 47, 4 (2005). https://doi.org/10.1039/b512184a
- X. Wang, K. Gao, X. Ye, X. Huang, B. Shi, Close-packing of hierarchically structured C@Sn@C nanofibers for high-performance Li-ion battery with large gravimetric and volumetric energy densities. Chem. Eng. J. 344, 625–632 (2018). https://doi.org/10.1016/j.cej.2018.03.078
- L. Xia, S. Wang, G. Liu, L. Ding, D. Li et al., Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
- Z.K. Heiba, M.B. Mohamed, H.H. Hamdeh, M.A. Ahmed, Structural analysis and cations distribution of nanocrystalline Ni1−xZnxFe1.7Ga0.3O4. J. Alloys Compd. 618, 755–760 (2015). https://doi.org/10.1016/j.jallcom.2014.08.241
- M. Niederdrenk, P. Schaaf, K.P. Lieb, O. Schulte, Characterization of magnetron-sputtered iron-nitride films. J. Alloys Compd. 237(1–2), 81–88 (1996). https://doi.org/10.1016/0925-8388(95)02195-7
- Y. Dong, B. Wang, K. Zhao, Y. Yu, X. Wang et al., Air-stable porous Fe2N encapsulated in carbon microboxes with high volumetric lithium storage capacity and a long cycle life. Nano Lett. 17(9), 5740–5746 (2017). https://doi.org/10.1021/acs.nanolett.7b02698
- D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
- Y. Wang, W. Chen, Y. Nie, L. Peng, W. Ding et al., Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chem. Commun. 53(83), 11426–11429 (2017). https://doi.org/10.1039/C7CC07249J
- A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey et al., Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). https://doi.org/10.1021/nn101926g
- D.K. Nandi, U.K. Sen, S. Sinha, A. Dhara, S. Mitra et al., Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode. Phys. Chem. Chem. Phys. 17(26), 17445–17453 (2015). https://doi.org/10.1039/C5CP02184G
- D. Oh, C. Ozgit Akgun, E. Akca, L.E. Thompson, L.F. Tadesse et al., Biotemplating pores with size and shape diversity for Li-oxygen battery cathodes. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/srep46808
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
- H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou et al., Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 29(13), 1809195–1809205 (2019). https://doi.org/10.1002/adfm.201809195
- Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang et al., Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 8(32), 20682–20690 (2016). https://doi.org/10.1021/acsami.6b04763
- J. Huang, X. Lin, H. Tan, B. Zhang, Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 8(19), 1703496 (2018). https://doi.org/10.1002/aenm.201703496
References
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
F. Yang, H. Gao, J. Hao, S. Zhang, P. Li et al., Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
H. Wu, Q. Yu, C.-Y. Lao, M. Qin, W. Wang et al., Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 18, 43–50 (2018). https://doi.org/10.1016/j.ensm.2018.09.025
Y. Marcus, Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents part 3—standard potentials of selected electrodes. Pure Appl. Chem. 57(8), 1129–1132 (1985). https://doi.org/10.1351/pac198557081129
L. Lai, J. Zhu, B. Li, Y. Zhen, Z. Shen et al., One novel and universal method to prepare transition metal nitrides doped graphene anodes for Li-ion battery. Electrochim. Acta 134, 28–34 (2014). https://doi.org/10.1016/j.electacta.2014.04.073
B. Das, M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J. Mater. Chem. 22, 17505–17510 (2012). https://doi.org/10.1039/c2jm31969a
X. Li, A.L. Hector, J.R. Owen, S.I.U. Shah, Evaluation of nanocrystalline Sn3N4 derived from ammonolysis of Sn(NEt2)4 as a negative electrode material for Li-ion and Na-ion batteries. J. Mater. Chem. A 4(14), 5081–5087 (2016). https://doi.org/10.1039/C5TA08287K
I. Memona, A.S. Mustansar, A.U. Rehman, A. Nisar, M.M. Waheed et al., Mechanistic insights into high lithium storage performance of mesoporous chromium nitride anchored on nitrogen-doped carbon nanotubes. Chem. Eng. J. 327, 361–370 (2017). https://doi.org/10.1016/j.cej.2017.06.095
Q. Sun, Z.W. Fu, Mn3N2 as a novel negative electrode material for rechargeable lithium batteries. Appl. Surf. Sci. 258(7), 3197–3201 (2012). https://doi.org/10.1016/j.apsusc.2011.11.063
J. Guo, Y. Yang, W. Yu, X. Dong, J. Wang et al., Synthesis of α-Fe2O3, Fe3O4 and Fe2N magnetic hollow nanofibers as anode materials for Li-ion batteries. RSC Adv. 6(112), 111447–111456 (2016). https://doi.org/10.1039/C6RA23601D
P. Yu, L. Wang, F. Sun, D. Zhao, C. Tian et al., Three-dimensional Fe2N@C microspheres grown on reduced graphite oxide for lithium-ion batteries and the Li storage mechanism. Chemistry 21(8), 3249–3256 (2015). https://doi.org/10.1002/chem.201406188
A. Sakuma, Self-consistent calculations for the electronic structures of iron nitrides, Fe3N, Fe4N and Fe16N2. J. Magn. Magn. Mater. 102(1–2), 127–134 (2000). https://doi.org/10.1016/0304-8853(91)90277-H
Y. Zhong, X.H. Xia, F. Shi, J.Y. Zhan, J.P. Tu et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286–1500313 (2016). https://doi.org/10.1002/advs.201500286
W. Li, G. Wu, C.M. Araújo, R.H. Scheicher, A. Blomqvist et al., Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N. Energy Environ. Sci. 3(10), 1524–1530 (2010). https://doi.org/10.1039/c0ee00052c
M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu et al., Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3(4), 1364–1387 (2015). https://doi.org/10.1039/C4TA05565A
Z. Li, Y. Fang, J. Zhang, X.W. Lou, Necklace-like structures composed of Fe3N@C yolk-shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. 30(30), 1800525–1800529 (2018). https://doi.org/10.1002/adma.201800525
S.L. Liu, J. Liu, W.J. Wang, L.Y. Yang, K.J. Zhu et al., Synthesis of coral-like Fe2N@C nanoparticles and application in sodium ion batteries as a novel anode electrode material. RSC Adv. 6(89), 8613–86136 (2016). https://doi.org/10.1039/C6RA17251B
X. Gao, B.Y. Wang, Y. Zhang, H. Liu, H.K. Liu et al., Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
P. Ge, H. Hou, S. Li, L. Yang, X. Ji, Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 28(30), 1801765–1801776 (2018). https://doi.org/10.1002/adfm.201801765
H. Huang, S. Gao, A.M. Wu, K. Cheng, X.N. Li et al., Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31, 74–83 (2017). https://doi.org/10.1016/j.nanoen.2016.10.059
Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu et al., Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv. Funct. Mater. 26(43), 7754–7765 (2016). https://doi.org/10.1002/adfm.201603716
Y. Chu, L. Guo, B. Xi, Z. Feng, F. Wu et al., Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv. Mater. 30(6), 1704244–1704255 (2018). https://doi.org/10.1002/adma.201704244
L. Kong, J. Zhu, W. Shuang, X.-H. Bu, Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv. Energy Mater. 8(25), 1801515 (2018). https://doi.org/10.1002/aenm.201801515
W. Shuang, H. Huang, L. Kong, M. Zhong, A. Li et al., Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy 62, 154–163 (2019). https://doi.org/10.1016/j.nanoen.2019.05.030
X. Xu, Z. Meng, X. Zhu, S. Zhang, W.Q. Han, Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J. Power Sources 380, 12–17 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.057
Y. Wei, H. Chen, H. Jiang, B. Wang, H. Liu et al., Biotemplate-based engineering of high-temperature stable anatase TiO2 nanofiber bundles with impregnated CeO2 nanocrystals for enhanced lithium storage. ACS Sustain. Chem. Eng. 7(8), 7823–7832 (2019). https://doi.org/10.1021/acssuschemeng.9b00012
Y. Liu, A. Qin, S. Chen, L. Liao, K. Zhang et al., Hybrid nanostructures of MoS2/sisal fiber tubular carbon as anode material for lithium ion batteries. Int. J. Electrochem. Sci. 13, 2054–2068 (2018). https://doi.org/10.20964/2018.02.63
H. Jiang, H. Chen, Y. Wei, J. Zeng, H. Liu et al., Biotemplate-mediated structural engineering of rod-like V2O5 cathode materials for lithium-ion batteries. J. Alloys Compd. 787, 625–630 (2019). https://doi.org/10.1016/j.jallcom.2019.02.118
X. Wang, J. Li, Z. Chen, L. Lei, X. Liao et al., Hierarchically structured C@SnO2@C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries. J. Mater. Chem. A 4(48), 918783–991881 (2016). https://doi.org/10.1039/C6TA06622D
Z. Chen, Y. Zhang, X. Wang, W. Sun, S. Dou et al., Fast-pulverization enabled simultaneous enhancement on cycling stability and rate capability of C@NiFe2O4 hierarchical fibrous bundle. J. Power Sources 363, 209–217 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.099
D. Li, D. Yang, X. Yang, Y. Wang, Z. Guo et al., Double-helix structure in carrageenan–metal hydrogels: a general approach to porous metal sulfides/carbon aerogels with excellent sodium-ion storage. Angew. Chem. Int. Ed. 55, 15925–15928 (2016). https://doi.org/10.1002/anie.201610301
H. Chen, H. Liu, Y. Guo, B. Wang, Y. Wei et al., Hierarchically ordered mesoporous TiO2 nanofiber bundles derived from natural collagen fibers for lithium and sodium storage. J. Alloys Compd. 731, 844–852 (2018). https://doi.org/10.1016/j.jallcom.2017.10.116
X.L. Wang, X. Huang, Z.R. Chen, X.P. Liao, C. Liu et al., Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials. J. Mater. Chem. C 3(39), 10146–10153 (2015). https://doi.org/10.1039/C5TC02689J
D.H. Deng, H. Wu, X.P. Liao, B. Shi, Synthesis of unique mesoporous ZrO2–carbon fiber from collagen fiber. Microporous Mesoporous Mater. 116(1–3), 705–709 (2008). https://doi.org/10.1016/j.micromeso.2008.05.018
X.P. Liao, M.N. Zhang, B. Shi, Collagen-fiber-immobilized tannins and their adsorption of Au(III). Ind. Eng. Chem. Res. 43(9), 2222–2227 (2004). https://doi.org/10.1021/ie0340894
R. Tang, X.P. Liao, X. Liu, B. Shi, Collagen fiber immobilized Fe(III): a novel catalyst for photo-assisted degradation of dyes. Chem. Commun. 47, 4 (2005). https://doi.org/10.1039/b512184a
X. Wang, K. Gao, X. Ye, X. Huang, B. Shi, Close-packing of hierarchically structured C@Sn@C nanofibers for high-performance Li-ion battery with large gravimetric and volumetric energy densities. Chem. Eng. J. 344, 625–632 (2018). https://doi.org/10.1016/j.cej.2018.03.078
L. Xia, S. Wang, G. Liu, L. Ding, D. Li et al., Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016). https://doi.org/10.1002/smll.201503315
Z.K. Heiba, M.B. Mohamed, H.H. Hamdeh, M.A. Ahmed, Structural analysis and cations distribution of nanocrystalline Ni1−xZnxFe1.7Ga0.3O4. J. Alloys Compd. 618, 755–760 (2015). https://doi.org/10.1016/j.jallcom.2014.08.241
M. Niederdrenk, P. Schaaf, K.P. Lieb, O. Schulte, Characterization of magnetron-sputtered iron-nitride films. J. Alloys Compd. 237(1–2), 81–88 (1996). https://doi.org/10.1016/0925-8388(95)02195-7
Y. Dong, B. Wang, K. Zhao, Y. Yu, X. Wang et al., Air-stable porous Fe2N encapsulated in carbon microboxes with high volumetric lithium storage capacity and a long cycle life. Nano Lett. 17(9), 5740–5746 (2017). https://doi.org/10.1021/acs.nanolett.7b02698
D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271), 361–365 (2016). https://doi.org/10.1126/science.aad0832
Y. Wang, W. Chen, Y. Nie, L. Peng, W. Ding et al., Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chem. Commun. 53(83), 11426–11429 (2017). https://doi.org/10.1039/C7CC07249J
A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey et al., Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). https://doi.org/10.1021/nn101926g
D.K. Nandi, U.K. Sen, S. Sinha, A. Dhara, S. Mitra et al., Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode. Phys. Chem. Chem. Phys. 17(26), 17445–17453 (2015). https://doi.org/10.1039/C5CP02184G
D. Oh, C. Ozgit Akgun, E. Akca, L.E. Thompson, L.F. Tadesse et al., Biotemplating pores with size and shape diversity for Li-oxygen battery cathodes. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/srep46808
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57(17), 4687–4691 (2018). https://doi.org/10.1002/anie.201801389
H. Yang, R. Xu, Y. Yao, S. Ye, X. Zhou et al., Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 29(13), 1809195–1809205 (2019). https://doi.org/10.1002/adfm.201809195
Z. Ju, S. Zhang, Z. Xing, Q. Zhuang, Y. Qiang et al., Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Interfaces 8(32), 20682–20690 (2016). https://doi.org/10.1021/acsami.6b04763
J. Huang, X. Lin, H. Tan, B. Zhang, Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 8(19), 1703496 (2018). https://doi.org/10.1002/aenm.201703496