Construction of Multifunctional Conductive Carbon-Based Cathode Additives for Boosting Li6PS5Cl-Based All-Solid-State Lithium Batteries
Corresponding Author: Guoxiu Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 140
Abstract
The electrochemical performance of all-solid-state lithium batteries (ASSLBs) can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the conductive carbon additives (CCAs) inside the composite cathodes. Herein, the well-defined Mo3Ni3N nanosheets embedded onto the N-doped porous carbons (NPCs) substrate are successfully synthesized (Mo-Ni@NPCs) as CCAs inside LiCoO2 for Li6PSC5Cl (LPSCl)-based ASSLBs. This nano-composite not only makes it difficult for hydroxide groups (–OH) to survive on the surface but also allows the in situ surface reconstruction to generate the ultra-stable MoS2-Mo3Ni3N heterostructures after the initial cycling stage. These can effectively prevent the occurrence of OH-induced LPSC decomposition reaction from producing harmful insulating sulfates, as well as simultaneously constructing the highly-efficient electrons/ions dual-migration pathways at the cathode interfaces to facilitate the improvement of both electrons and Li+ ions conductivities in ASSLBs. With this approach, fine-tuned Mo-Ni@NPCs can deliver extremely outstanding performance, including an ultra-high first discharge-specific capacity of 148.61 mAh g−1 (0.1C), a high Coulombic efficiency (94.01%), and a capacity retention rate after 1000 cycles still attain as high as 90.62%. This work provides a brand-new approach of “conversion-protection” strategy to overcome the drawbacks of composite cathodes interfaces instability and further promotes the commercialization of ASSLBs.
Highlights:
1 This work provides a brand-new approach to the “conversion-protection” strategy to overcome the drawbacks of composite cathode interfaces.
2 The Mo3Ni3N not only makes it difficult for hydroxide groups (-OH) to survive on the surface but also allows the in situ surface reconstruction to generate the ultra-stable MoS2-Mo3Ni3N heterostructures after the initial cycling stage.
3 The Mo-Ni@NPCs/LCO/LPSC-based ASSLBs achieve high-capacity retention (90.62%) and excellent cycle life (1000 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
- Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
- H. Zhang, H. Liu, L.F.J. Piper, M.S. Whittingham, G. Zhou, Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev. 122, 5641–5681 (2022). https://doi.org/10.1021/acs.chemrev.1c00327
- L. Zhou, T.-T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
- Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z
- Y. Chen, L. Huang, D. Zhou, X. Gao, T. Hu et al., Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries. Adv. Energy Mater. 14, 2304443 (2024). https://doi.org/10.1002/aenm.202304443
- Y. Chen, W. Li, C. Sun, J. Jin, Q. Wang et al., Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv. Energy Mater. 11, 2002545 (2021). https://doi.org/10.1002/aenm.202002545
- C. Wei, D. Yu, X. Xu, R. Wang, J. Li et al., Tailoring electrolyte distributions to enable high-performance Li3PS4-based all-solid-state batteries under different operating temperatures. Chem. Asian J. 18, e202300304 (2023). https://doi.org/10.1002/asia.202300304
- M. Zhang, S. Zhang, M. Li, D. Xiao, W. Fu et al., Self-sacrificing reductive interphase for robust and high-performance sulfide-based all-solid-state lithium batteries. Adv. Energy Mater. 14, 2303647 (2024). https://doi.org/10.1002/aenm.202303647
- R.L. Kam, K. Jun, L. Barroso-Luque, J.H. Yang, F. Xie et al., Crystal structures and phase stability of the Li2S-P2S5 system from first principles. Chem. Mater. 35, 9111–9126 (2023). https://doi.org/10.1021/acs.chemmater.3c01793
- L. Ye, E. Gil-González, X. Li, Li9.54Si1.74(P1-xSbx)1.44S11.7Cl0.3: a functionally stable sulfide solid electrolyte in air for solid-state batteries. Electrochem. Commun. 128, 107058 (2021). https://doi.org/10.1016/j.elecom.2021.107058
- P. Wang, W. Qu, W.-L. Song, H. Chen, R. Chen et al., Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900950 (2019). https://doi.org/10.1002/adfm.201900950
- X. Gao, Z. Zhen, J. Chen, R. Xu, X. Zeng et al., Interface stability of cathode for all-solid-state lithium batteries based on sulfide electrolyte: Current insights and future directions. Chem. Eng. J. 491, 152010 (2024). https://doi.org/10.1016/j.cej.2024.152010
- S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3, 866–894 (2021). https://doi.org/10.1002/cey2.129
- S.W. Park, G. Oh, J.W. Park, Y.C. Ha, S.M. Lee et al., Graphitic hollow nanocarbon as a promising conducting agent for solid-state lithium batteries. Small 15, e1900235 (2019). https://doi.org/10.1002/smll.201900235
- W. Zhang, T. Leichtweiß, S.P. Culver, R. Koerver, D. Das et al., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017). https://doi.org/10.1021/acsami.7b11530
- M. Cho, J. Yun, J. Kang, S. Kim, J.-W. Lee, Conflicting roles of conductive additives in controlling cathode performance in all-solid-state batteries. Electrochim. Acta 481, 143990 (2024). https://doi.org/10.1016/j.electacta.2024.143990
- J. Liang, Y. Sun, Y. Zhao, Q. Sun, J. Luo et al., Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J. Mater. Chem. A 8, 2769–2776 (2020). https://doi.org/10.1039/C9TA08607B
- J.H. Choi, S. Choi, T.J. Embleton, K. Ko, K.S. Saqib et al., The effect of conductive additive morphology and crystallinity on the electrochemical performance of Ni-rich cathodes for sulfide all-solid-state lithium-ion batteries. Nanomaterials 13, 3065 (2023). https://doi.org/10.3390/nano13233065
- K.S. Saqib, T.J. Embleton, J.H. Choi, S.J. Won, J. Ali et al., Understanding the carbon additive/sulfide solid electrolyte interface in nickel-rich cathode composites and prioritizing the corresponding interplay between the electrical and ionic conductive networks to enhance all-solid-state-battery rate capability. ACS Appl. Mater. Interfaces 16, 47551–47562 (2024). https://doi.org/10.1021/acsami.4c08670
- R. Meng, J. Wu, M. Zhu, W. Xie, M. Yang et al., MoS2-C superlattice cathodes for conductive additive-free sulfide electrolyte-based all-solid-state lithium batteries. Chem. Eng. J. 493, 152540 (2024). https://doi.org/10.1016/j.cej.2024.152540
- X. Zhang, Z. Liu, X. Wei, S. Ali, J. Lang et al., Unraveling the improved lithium-storage mechanism by interfacial engineering based on metallic MoS2/MoN heterostructure. J. Alloys Compd. 966, 171282 (2023). https://doi.org/10.1016/j.jallcom.2023.171282
- Y. Yuan, S. Adimi, X. Guo, T. Thomas, Y. Zhu et al., A surface-oxide-rich activation layer (SOAL) on Ni2Mo3N for a rapid and durable oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 18036–18041 (2020). https://doi.org/10.1002/anie.202008116
- S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao et al., Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 11, 2003314 (2021). https://doi.org/10.1002/aenm.202003314
- J. Zhang, Y. Li, M. Han, Q. Xia, Q. Chen et al., Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Mater. Res. Bull. 137, 111186 (2021). https://doi.org/10.1016/j.materresbull.2020.111186
- F. Li, Y. Kuang, P. Guo, H. Li, Nickel nanops on hydroxyl and defect-rich hollow carbon spheres as catalysts for efficient selective hydrogenation of phenol. Catal. Lett. 154, 5236–5254 (2024). https://doi.org/10.1007/s10562-024-04689-9
- G.F. Dewald, S. Ohno, M.A. Kraft, R. Koerver, P. Till et al., Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater. 31, 8328–8337 (2019). https://doi.org/10.1021/acs.chemmater.9b01550
- T.-T. Zuo, R. Rueß, R. Pan, F. Walther, M. Rohnke et al., A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nat. Commun. 12, 6669 (2021). https://doi.org/10.1038/s41467-021-26895-4
- J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen et al., Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ. Sci. 12, 344–350 (2019). https://doi.org/10.1039/C8EE03252A
- B. Yu, Y. Chen, Z. Wang, D. Chen, X. Wang et al., 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J. Power. Sources 447, 227364 (2020). https://doi.org/10.1016/j.jpowsour.2019.227364
- Y. Xia, X. Chen, J. Wei, S. Wang, S. Chen et al., 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023). https://doi.org/10.1038/s41563-023-01671-5
- X. Cai, X.-G. Sang, Y. Song, D. Guo, X.-X. Liu et al., Activating the highly reversible Mo4+/Mo5+ redox couple in amorphous molybdenum oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces 12, 48565–48571 (2020). https://doi.org/10.1021/acsami.0c13692
- Q. He, B. Yu, Z. Li, P.D. Yan Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019). https://doi.org/10.1002/eem2.12056
- S. Deng, Y. Sun, X. Li, Z. Ren, J. Liang et al., Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries. ACS Energy Lett. 5, 1243–1251 (2020). https://doi.org/10.1021/acsenergylett.0c00256
- P. Wang, H. Li, J. Jiang, B. Mo, C. Cui, An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure. Vib. Spectrosc. 100, 172–176 (2019). https://doi.org/10.1016/j.vibspec.2018.12.005
- Y. Wang, W. Zhai, Y. Ren, Q. Zhang, Y. Yao et al., Phase-controlled growth of 1T’-MoS2 nanoribbons on 1H-MoS2 nanosheets. Adv. Mater. 36, e2307269 (2024). https://doi.org/10.1002/adma.202307269
- K. Wang, Z. Liang, S. Weng, Y. Ding, Y. Su et al., Surface engineering strategy enables 4.5 V sulfide-based all-solid-state batteries with high cathode loading and long cycle life. ACS Energy Lett. 8, 3450–3459 (2023). https://doi.org/10.1021/acsenergylett.3c01047
- Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
- X. Li, J. Liang, J.T. Kim, J. Fu, H. Duan et al., Highly stable halide-electrolyte-based all-solid-state Li-Se batteries. Adv. Mater. 34, e2200856 (2022). https://doi.org/10.1002/adma.202200856
- S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen et al., Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries. Sci. Adv. 8, eadd189 (2022). https://doi.org/10.1126/sciadv.add5189
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- Y. Ma, R. Zhang, Y. Tang, Y. Ma, J.H. Teo et al., Single- to few-layer nanop cathode coating for thiophosphate-based all-solid-state batteries. ACS Nano 16, 18682–18694 (2022). https://doi.org/10.1021/acsnano.2c07314
References
Y. Kuang, C. Chen, D. Kirsch, L. Hu, Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457
Y. Mu, S. Yu, Y. Chen, Y. Chu, B. Wu et al., Highly efficient aligned ion-conducting network and interface chemistries for depolarized all-solid-state lithium metal batteries. Nano-Micro Lett. 16, 86 (2024). https://doi.org/10.1007/s40820-023-01301-4
H. Zhang, H. Liu, L.F.J. Piper, M.S. Whittingham, G. Zhou, Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev. 122, 5641–5681 (2022). https://doi.org/10.1021/acs.chemrev.1c00327
L. Zhou, T.-T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro et al., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z
Y. Chen, L. Huang, D. Zhou, X. Gao, T. Hu et al., Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries. Adv. Energy Mater. 14, 2304443 (2024). https://doi.org/10.1002/aenm.202304443
Y. Chen, W. Li, C. Sun, J. Jin, Q. Wang et al., Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries. Adv. Energy Mater. 11, 2002545 (2021). https://doi.org/10.1002/aenm.202002545
C. Wei, D. Yu, X. Xu, R. Wang, J. Li et al., Tailoring electrolyte distributions to enable high-performance Li3PS4-based all-solid-state batteries under different operating temperatures. Chem. Asian J. 18, e202300304 (2023). https://doi.org/10.1002/asia.202300304
M. Zhang, S. Zhang, M. Li, D. Xiao, W. Fu et al., Self-sacrificing reductive interphase for robust and high-performance sulfide-based all-solid-state lithium batteries. Adv. Energy Mater. 14, 2303647 (2024). https://doi.org/10.1002/aenm.202303647
R.L. Kam, K. Jun, L. Barroso-Luque, J.H. Yang, F. Xie et al., Crystal structures and phase stability of the Li2S-P2S5 system from first principles. Chem. Mater. 35, 9111–9126 (2023). https://doi.org/10.1021/acs.chemmater.3c01793
L. Ye, E. Gil-González, X. Li, Li9.54Si1.74(P1-xSbx)1.44S11.7Cl0.3: a functionally stable sulfide solid electrolyte in air for solid-state batteries. Electrochem. Commun. 128, 107058 (2021). https://doi.org/10.1016/j.elecom.2021.107058
P. Wang, W. Qu, W.-L. Song, H. Chen, R. Chen et al., Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900950 (2019). https://doi.org/10.1002/adfm.201900950
X. Gao, Z. Zhen, J. Chen, R. Xu, X. Zeng et al., Interface stability of cathode for all-solid-state lithium batteries based on sulfide electrolyte: Current insights and future directions. Chem. Eng. J. 491, 152010 (2024). https://doi.org/10.1016/j.cej.2024.152010
S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3, 866–894 (2021). https://doi.org/10.1002/cey2.129
S.W. Park, G. Oh, J.W. Park, Y.C. Ha, S.M. Lee et al., Graphitic hollow nanocarbon as a promising conducting agent for solid-state lithium batteries. Small 15, e1900235 (2019). https://doi.org/10.1002/smll.201900235
W. Zhang, T. Leichtweiß, S.P. Culver, R. Koerver, D. Das et al., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017). https://doi.org/10.1021/acsami.7b11530
M. Cho, J. Yun, J. Kang, S. Kim, J.-W. Lee, Conflicting roles of conductive additives in controlling cathode performance in all-solid-state batteries. Electrochim. Acta 481, 143990 (2024). https://doi.org/10.1016/j.electacta.2024.143990
J. Liang, Y. Sun, Y. Zhao, Q. Sun, J. Luo et al., Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J. Mater. Chem. A 8, 2769–2776 (2020). https://doi.org/10.1039/C9TA08607B
J.H. Choi, S. Choi, T.J. Embleton, K. Ko, K.S. Saqib et al., The effect of conductive additive morphology and crystallinity on the electrochemical performance of Ni-rich cathodes for sulfide all-solid-state lithium-ion batteries. Nanomaterials 13, 3065 (2023). https://doi.org/10.3390/nano13233065
K.S. Saqib, T.J. Embleton, J.H. Choi, S.J. Won, J. Ali et al., Understanding the carbon additive/sulfide solid electrolyte interface in nickel-rich cathode composites and prioritizing the corresponding interplay between the electrical and ionic conductive networks to enhance all-solid-state-battery rate capability. ACS Appl. Mater. Interfaces 16, 47551–47562 (2024). https://doi.org/10.1021/acsami.4c08670
R. Meng, J. Wu, M. Zhu, W. Xie, M. Yang et al., MoS2-C superlattice cathodes for conductive additive-free sulfide electrolyte-based all-solid-state lithium batteries. Chem. Eng. J. 493, 152540 (2024). https://doi.org/10.1016/j.cej.2024.152540
X. Zhang, Z. Liu, X. Wei, S. Ali, J. Lang et al., Unraveling the improved lithium-storage mechanism by interfacial engineering based on metallic MoS2/MoN heterostructure. J. Alloys Compd. 966, 171282 (2023). https://doi.org/10.1016/j.jallcom.2023.171282
Y. Yuan, S. Adimi, X. Guo, T. Thomas, Y. Zhu et al., A surface-oxide-rich activation layer (SOAL) on Ni2Mo3N for a rapid and durable oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 18036–18041 (2020). https://doi.org/10.1002/anie.202008116
S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao et al., Insight into MoS2–MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries. Adv. Energy Mater. 11, 2003314 (2021). https://doi.org/10.1002/aenm.202003314
J. Zhang, Y. Li, M. Han, Q. Xia, Q. Chen et al., Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Mater. Res. Bull. 137, 111186 (2021). https://doi.org/10.1016/j.materresbull.2020.111186
F. Li, Y. Kuang, P. Guo, H. Li, Nickel nanops on hydroxyl and defect-rich hollow carbon spheres as catalysts for efficient selective hydrogenation of phenol. Catal. Lett. 154, 5236–5254 (2024). https://doi.org/10.1007/s10562-024-04689-9
G.F. Dewald, S. Ohno, M.A. Kraft, R. Koerver, P. Till et al., Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater. 31, 8328–8337 (2019). https://doi.org/10.1021/acs.chemmater.9b01550
T.-T. Zuo, R. Rueß, R. Pan, F. Walther, M. Rohnke et al., A mechanistic investigation of the Li10GeP2S12|LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nat. Commun. 12, 6669 (2021). https://doi.org/10.1038/s41467-021-26895-4
J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen et al., Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ. Sci. 12, 344–350 (2019). https://doi.org/10.1039/C8EE03252A
B. Yu, Y. Chen, Z. Wang, D. Chen, X. Wang et al., 1T-MoS2 nanotubes wrapped with N-doped graphene as highly-efficient absorbent and electrocatalyst for Li–S batteries. J. Power. Sources 447, 227364 (2020). https://doi.org/10.1016/j.jpowsour.2019.227364
Y. Xia, X. Chen, J. Wei, S. Wang, S. Chen et al., 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023). https://doi.org/10.1038/s41563-023-01671-5
X. Cai, X.-G. Sang, Y. Song, D. Guo, X.-X. Liu et al., Activating the highly reversible Mo4+/Mo5+ redox couple in amorphous molybdenum oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces 12, 48565–48571 (2020). https://doi.org/10.1021/acsami.0c13692
Q. He, B. Yu, Z. Li, P.D. Yan Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019). https://doi.org/10.1002/eem2.12056
S. Deng, Y. Sun, X. Li, Z. Ren, J. Liang et al., Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries. ACS Energy Lett. 5, 1243–1251 (2020). https://doi.org/10.1021/acsenergylett.0c00256
P. Wang, H. Li, J. Jiang, B. Mo, C. Cui, An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure. Vib. Spectrosc. 100, 172–176 (2019). https://doi.org/10.1016/j.vibspec.2018.12.005
Y. Wang, W. Zhai, Y. Ren, Q. Zhang, Y. Yao et al., Phase-controlled growth of 1T’-MoS2 nanoribbons on 1H-MoS2 nanosheets. Adv. Mater. 36, e2307269 (2024). https://doi.org/10.1002/adma.202307269
K. Wang, Z. Liang, S. Weng, Y. Ding, Y. Su et al., Surface engineering strategy enables 4.5 V sulfide-based all-solid-state batteries with high cathode loading and long cycle life. ACS Energy Lett. 8, 3450–3459 (2023). https://doi.org/10.1021/acsenergylett.3c01047
Y. Lu, C.-Z. Zhao, J.-Q. Huang, Q. Zhang, The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022). https://doi.org/10.1016/j.joule.2022.05.005
X. Li, J. Liang, J.T. Kim, J. Fu, H. Duan et al., Highly stable halide-electrolyte-based all-solid-state Li-Se batteries. Adv. Mater. 34, e2200856 (2022). https://doi.org/10.1002/adma.202200856
S. Sun, C.-Z. Zhao, H. Yuan, Z.-H. Fu, X. Chen et al., Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries. Sci. Adv. 8, eadd189 (2022). https://doi.org/10.1126/sciadv.add5189
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14, 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
Y. Ma, R. Zhang, Y. Tang, Y. Ma, J.H. Teo et al., Single- to few-layer nanop cathode coating for thiophosphate-based all-solid-state batteries. ACS Nano 16, 18682–18694 (2022). https://doi.org/10.1021/acsnano.2c07314