Machine Learning Enabled Reusable Adhesion, Entangled Network-Based Hydrogel for Long-Term, High-Fidelity EEG Recording and Attention Assessment
Corresponding Author: Bin Hu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 281
Abstract
Due to their high mechanical compliance and excellent biocompatibility, conductive hydrogels exhibit significant potential for applications in flexible electronics. However, as the demand for high sensitivity, superior mechanical properties, and strong adhesion performance continues to grow, many conventional fabrication methods remain complex and costly. Herein, we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid–metal-induced cross-linking reaction, hydrogel demonstrates outstanding properties, including exceptional stretchability (1643%), high tensile strength (366.54 kPa), toughness (350.2 kJ m−3), and relatively low mechanical hysteresis. The hydrogel exhibits long-term stable reusable adhesion (104 kPa), enabling conformal and stable adhesion to human skin. This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio (25.2 dB) and low impedance (310 ohms). Furthermore, by integrating advanced machine learning algorithms, achieving an attention classification accuracy of 91.38%, which will significantly impact fields like education, healthcare, and artificial intelligence.
Highlights:
1 A dual-network hydrogel (PGEH) cross-linked via liquid metal induction was developed exhibiting remarkable mechanical properties and skin-temperature-triggered on-demand adhesion capabilities.
2 The PGEH capacitive sensor demonstrates exceptional sensitivity (1.25 kPa), rapid dynamic response (30 ms), and long-term cycling stability (20,000 cycles), enabling precise monitoring of human motion and reliable signal transmission.
3 Low-impedance electrophysiological sensor (310 ohms) maintains 14-day signal fidelity (25.2 dB), paired with machine learning-based attention monitoring (91.38% of accuracy) for real-time cognitive feedback in focus-demanding scenarios.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
- H. Xue, D. Wang, M. Jin, H. Gao, X. Wang et al., Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst. Nanoeng. 9, 79 (2023). https://doi.org/10.1038/s41378-023-00524-0
- F. Wang, Y. Xue, X. Chen, P. Zhang, L. Shan et al., 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34(21), 2314471 (2024). https://doi.org/10.1002/adfm.202314471
- Y. Peng, S. Liang, Q.-F. Meng, D. Liu, K. Ma et al., Engineered bio-based hydrogels for cancer immunotherapy. Adv. Mater. 36(21), 2313188 (2024). https://doi.org/10.1002/adma.202313188
- K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al., Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano 17(16), 16160–16173 (2023). https://doi.org/10.1021/acsnano.3c05253
- L. Luo, Z. Wu, Q. Ding, H. Wang, Y. Luo et al., In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano 18(24), 15754–15768 (2024). https://doi.org/10.1021/acsnano.4c02359
- D. Yao, W. Wang, H. Wang, Y. Luo, H. Ding et al., Ultrasensitive and breathable hydrogel fiber-based strain sensors enabled by customized crack design for wireless sign language recognition. Adv. Funct. Mater. 35(10), 2416482 (2025). https://doi.org/10.1002/adfm.202416482
- Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15(1), 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
- C. Liu, Y. Wang, S. Shi, Y. Zheng, Z. Ye et al., Myelin sheath-inspired hydrogel electrode for artificial skin and physiological monitoring. ACS Nano 18(40), 27420–27432 (2024). https://doi.org/10.1021/acsnano.4c07677
- Y. Zhang, Z. Li, Z. Xu, M. Xiao, Y. Yuan et al., Flexible healable electromagnetic-interference-shielding bioelastic hydrogel nanocomposite for machine learning-assisted highly sensitive sensing bioelectrode. Aggregate 5(5), e566 (2024). https://doi.org/10.1002/agt2.566
- Q. Han, X. Gao, C. Zhang, Y. Tian, S. Liang et al., Acid-induced in situ phase separation and percolation for constructing bi-continuous phase hydrogel electrodes with motion-insensitive property. Adv. Mater. 37(6), 2415445 (2025). https://doi.org/10.1002/adma.202415445
- G. Yang, Z. Lan, H. Gong, J. Wen, B. Pang et al., A Nepenthes-inspired hydrogel hybrid system for sweat-wicking electrophysiological signal recording during exercises. Adv. Funct. Mater. 35(13), 2417841 (2025). https://doi.org/10.1002/adfm.202417841
- J. Wu, J. Xian, C. He, H. Lin, J. Li et al., Asymmetric wettability hydrogel surfaces for enduring electromyographic monitoring. Adv. Mater. 36(41), e2405372 (2024). https://doi.org/10.1002/adma.202405372
- H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human–machine interaction system for active rehabilitation. Adv. Mater. 36(11), 2309868 (2024). https://doi.org/10.1002/adma.202309868
- J. Luo, C. Sun, B. Chang, Y. Jing, K. Li et al., MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano 16(11), 19373–19384 (2022). https://doi.org/10.1021/acsnano.2c08961
- W. Wang, D. Yao, H. Wang, Q. Ding, Y. Luo et al., A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 34(32), 2316339 (2024). https://doi.org/10.1002/adfm.202316339
- J. Li, H. Wang, Y. Luo, Z. Zhou, H. Zhang et al., Design of AI-enhanced and hardware-supported multimodal E-skin for environmental object recognition and wireless toxic gas alarm. Nano-Micro Lett. 16(1), 256 (2024). https://doi.org/10.1007/s40820-024-01466-6
- Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33(21), 2300046 (2023). https://doi.org/10.1002/adfm.202300046
- L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020). https://doi.org/10.1038/s41467-020-18503-8
- J.X.M. Chen, T. Chen, Y. Zhang, W. Fang, W.E. Li et al., Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv. Funct. Mater. 34(40), 2403721 (2024). https://doi.org/10.1002/adfm.202403721
- C. Wang, H. Wang, B. Wang, H. Miyata, Y. Wang et al., On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 8(20), eabo1396 (2022). https://doi.org/10.1126/sciadv.abo1396
- X. Yuan, W. Kong, P. Xia, Z. Wang, Q. Gao et al., Implantable wet-adhesive flexible electronics with ultrathin gelatin film. Adv. Funct. Mater. 34(42), 2404824 (2024). https://doi.org/10.1002/adfm.202404824
- Z. Liu, Y. Ding, Y. Ding, W. Wang, Z. Mao et al., Gelatin-DOPA-knob/fibrinogen hydrogel inspired by fibrin polymerization and mussel adhesion for rapid and robust hemostatic sealing. Biomaterials 317, 123038 (2025). https://doi.org/10.1016/j.biomaterials.2024.123038
- G.R. Koirala, D.-H. Lee, Y.J. Jo, Y.H. Kim, J.H. Shin et al., Fully wireless, in vivo assessment of superimposed physiological vital signs using a biodegradable passive tag interrogated with a wearable reader patch. Adv. Funct. Mater. 35(3), 2413363 (2025). https://doi.org/10.1002/adfm.202413363
- L. Li, X. Ye, Z. Ji, M. Zheng, S. Lin et al., Paintable, fast gelation, highly adhesive hydrogels for high-fidelity electrophysiological monitoring wirelessly. Small 21(8), e2407996 (2025). https://doi.org/10.1002/smll.202407996
- A. Szarpak, R. Auzély-Velty, Hyaluronic acid single-network hydrogel with high stretchable and elastic properties. Carbohydr. Polym. 320, 121212 (2023). https://doi.org/10.1016/j.carbpol.2023.121212
- F. Mo, L. Hang, M. Xu, L. Cheng, M. Cui et al., Rational design of dynamically super-tough and super-stretchable hydrogels for deformable energy storage devices. Small 20(25), 2305557 (2024). https://doi.org/10.1002/smll.202305557
- M. Ahmadian, M. Jaymand, Interpenetrating polymer network hydrogels for removal of synthetic dyes: a comprehensive review. Coord. Chem. Rev. 486, 215152 (2023). https://doi.org/10.1016/j.ccr.2023.215152
- I. Dellatolas, M. Bantawa, B. Damerau, M. Guo, T. Divoux et al., Local mechanism governs global reinforcement of nanofiller-hydrogel composites. ACS Nano 17(21), 20939–20948 (2023). https://doi.org/10.1021/acsnano.3c00716
- C. Lim, S. Lee, H. Kang, Y.S. Cho, D.-H. Yeom et al., Highly conductive and stretchable hydrogel nanocomposite using whiskered gold nanosheets for soft bioelectronics. Adv. Mater. 36(39), 2407931 (2024). https://doi.org/10.1002/adma.202407931
- Y.-H. Fang, C. Liang, V. Liljeström, Z.-P. Lv, O. Ikkala et al., Toughening hydrogels with fibrillar connected double networks. Adv. Mater. 36(27), e2402282 (2024). https://doi.org/10.1002/adma.202402282
- Y. Zhang, Y. Dai, F. Xia, X. Zhang, Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano Energy 104, 107977 (2022). https://doi.org/10.1016/j.nanoen.2022.107977
- X. Hou, B. Huang, L. Zhou, S. Liu, J. Kong et al., An amphiphilic entangled network design toward ultratough hydrogels. Adv. Mater. 35(28), e2301532 (2023). https://doi.org/10.1002/adma.202301532
- H. Li, J. Cao, R. Wan, V.R. Feig, C.M. Tringides et al., PEDOTs-based conductive hydrogels: design, fabrications, and applications. Adv. Mater. 37(7), 2415151 (2025). https://doi.org/10.1002/adma.202415151
- Y.N. Lu, K. Mo, X.H. Liang, J.S. Xie, Y. Yang, L. Zheng, M. Gu, X.R. Liu, Y. Lu, J. Ge, High ion-conductive hydrogel: soft, elastic, with wide humidity tolerance and long-term stability. ACS Appl. Mater. Interfaces 16(44), 60992–61003 (2024). https://doi.org/10.1021/acsami.4c12851
- J. Li, Y. Luo, K. Tao, J. Wu, Graphene-modified hydrogels for bioelectronic interface. Matter 7(12), 4139–4142 (2024). https://doi.org/10.1016/j.matt.2024.10.003
- Q. Zhang, H. Lu, G. Yun, L. Gong, Z. Chen et al., A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity. Adv. Funct. Mater. 34(31), 2308113 (2024). https://doi.org/10.1002/adfm.202308113
- F. Tian, H. Zhang, Y. Tan, L. Zhu, L. Shen et al., An on-board executable multi-feature transfer-enhanced fusion model for three-lead EEG sensor-assisted depression diagnosis. IEEE J. Biomed. Health Inform. 29(1), 152–165 (2025). https://doi.org/10.1109/JBHI.2024.3487012
- F. Tian, L. Zhu, Q. Shi, R. Wang, L. Zhang et al., The three-lead EEG sensor: introducing an EEG-assisted depression diagnosis system based on ant lion optimization. IEEE Trans. Biomed. Circuits Syst. 17(6), 1305–1318 (2023). https://doi.org/10.1109/TBCAS.2023.3292237
- S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong et al., Hydrogen-doped viscoplastic liquid metal microps for stretchable printed metal lines. Nat. Mater. 20(4), 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7
- Y. Ye, F. Jiang, Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications. Nano Energy 99, 107374 (2022). https://doi.org/10.1016/j.nanoen.2022.107374
- M. Chao, P. Di, Y. Yuan, Y. Xu, L. Zhang et al., Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction. Nano Energy 108, 108201 (2023). https://doi.org/10.1016/j.nanoen.2023.108201
- J. Zhang, J. Liao, Z. Liu, R. Zhang, M. Sitti, Liquid metal microdroplet-initiated ultra-fast polymerization of a stimuli-responsive hydrogel composite. Adv. Funct. Mater. 34(31), 2308238 (2024). https://doi.org/10.1002/adfm.202308238
- Q. Cao, J. Chen, M. Wang, Z. Wang, W. Wang et al., Superabsorbent carboxymethyl cellulose–based hydrogel fabricated by liquid-metal-induced double crosslinking polymerisation. Carbohydr. Polym. 331, 121910 (2024). https://doi.org/10.1016/j.carbpol.2024.121910
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15(1), 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- H. Fang, J. Wang, L. Li, L. Xu, Y. Wu et al., A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 365, 153–164 (2019). https://doi.org/10.1016/j.cej.2019.02.030
- J.-E. Park, H.S. Kang, M. Koo, C. Park, Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 32(37), 2002178 (2020). https://doi.org/10.1002/adma.202002178
- L. Lan, J. Ping, H. Li, C. Wang, G. Li et al., Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 36(25), e2401151 (2024). https://doi.org/10.1002/adma.202401151
- R. Song, X. Wang, M. Johnson, C. Milne, A. Lesniak-Podsiadlo et al., Enhanced strength for double network hydrogel adhesive through cohesion-adhesion balance. Adv. Funct. Mater. 34(23), 2313322 (2024). https://doi.org/10.1002/adfm.202313322
- G. Yang, Y. Hu, W. Guo, W. Lei, W. Liu et al., Tunable hydrogel electronics for diagnosis of peripheral neuropathy. Adv. Mater. 36(18), e2308831 (2024). https://doi.org/10.1002/adma.202308831
- H. Shi, H. Huo, H. Yang, H. Li, J. Shen et al., Cellulose-based dual-network conductive hydrogel with exceptional adhesion. Adv. Funct. Mater. 34(48), 2408560 (2024). https://doi.org/10.1002/adfm.202408560
- X. Xiong, Y. Chen, Z. Wang, H. Liu, M. Le et al., Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors. Nat. Commun. 14(1), 1331 (2023). https://doi.org/10.1038/s41467-023-36920-3
- L. Bai, Y. Jin, X. Shang, H. Jin, L. Shi et al., Temperature-triggered smart milk-derived hydrogel with programmable adhesion for versatile skin-attached iontronics. Nano Energy 104, 107962 (2022). https://doi.org/10.1016/j.nanoen.2022.107962
- Y. He, Q. Li, P. Chen, Q. Duan, J. Zhan et al., A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat. Commun. 13(1), 7666 (2022). https://doi.org/10.1038/s41467-022-35437-5
- Y. Jiang, X. Zhang, W. Zhang, M. Wang, L. Yan et al., Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 16(6), 8662–8676 (2022). https://doi.org/10.1021/acsnano.2c00662
- S. Ge, J. Li, J. Geng, S. Liu, H. Xu et al., Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Mater. Horiz. 8(4), 1189–1198 (2021). https://doi.org/10.1039/D0MH01762K
- H. Zhang, H. Chen, J.-H. Lee, E. Kim, K.-Y. Chan et al., Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 17(6), 5921–5934 (2023). https://doi.org/10.1021/acsnano.3c00015
- J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang et al., Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33(34), 2008267 (2021). https://doi.org/10.1002/adma.202008267
- F. Zhuo, J. Zhou, Y. Liu, J. Xie, H. Chen et al., Kirigami-inspired 3D-printable MXene organohydrogels for soft electronics. Adv. Funct. Mater. 33(52), 2308487 (2023). https://doi.org/10.1002/adfm.202308487
- J. Liu, K. Liu, X. Pan, K. Bi, F. Zhou et al., A flexible semidry electrode for long-term, high-quality electrocardiogram monitoring. Adv. Compos. Hybrid Mater. 6(1), 13 (2022). https://doi.org/10.1007/s42114-022-00596-y
- M. Reis Carneiro, C. Majidi, M. Tavakoli, Multi-electrode printed bioelectronic patches for long-term electrophysiological monitoring. Adv. Funct. Mater. 32(43), 2205956 (2022). https://doi.org/10.1002/adfm.202205956
- P. Tordi, A. Tamayo, Y. Jeong, M. Bonini, P. Samorì, Multiresponsive ionic conductive alginate/gelatin organohydrogels with tunable functions. Adv. Funct. Mater. 34(52), 2410663 (2024). https://doi.org/10.1002/adfm.202410663
- J. Wang, T. Wang, H. Liu, K. Wang, K. Moses et al., Flexible electrodes for brain–computer interface system. Adv. Mater. 35(47), 2211012 (2023). https://doi.org/10.1002/adma.202211012
- Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35(30), e2211236 (2023). https://doi.org/10.1002/adma.202211236
- W. Wan, X. Cui, Z. Gao, Z. Gu, Frontal EEG-based multi-level attention states recognition using dynamical complexity and extreme gradient boosting. Front. Hum. Neurosci. 15, 673955 (2021). https://doi.org/10.3389/fnhum.2021.673955
- J.A. Anguera, J. Boccanfuso, J.L. Rintoul, O. Al-Hashimi, F. Faraji et al., Video game training enhances cognitive control in older adults. Nature 501(7465), 97–101 (2013). https://doi.org/10.1038/nature12486
- J. Theeuwes, Perceptual selectivity for color and form. Percept. Psychophys. 51(6), 599–606 (1992). https://doi.org/10.3758/bf03211656
- X. Wu, C. Shi, L. Yan, Driving attention state detection based on GRU-EEGNet. Sensors 24(16), 5086 (2024). https://doi.org/10.3390/s24165086
- A. Al-Nafjan, M. Aldayel, Predict students’ attention in online learning using EEG data. Sustainability 14(11), 6553 (2022). https://doi.org/10.3390/su14116553
- C.-H. Lee, Y.-X. Zhang, C.-M. Huang, C.-M. Wu, Classification of brain attention based on EEGNet with fewer channels. Proceedings of the 2024 12th International Conference on Computer and Communications Management. Kagoshima-shi Japan. ACM, (2024). 55–61. https://doi.org/10.1145/3688268.3688277
- J. Slater, R. Joober, B.L. Koborsy, S. Mitchell, E. Sahlas et al., Can electroencephalography (EEG) identify ADHD subtypes? A systematic review. Neurosci. Biobehav. Rev. 139, 104752 (2022). https://doi.org/10.1016/j.neubiorev.2022.104752
References
S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28(22), 4203–4218 (2016). https://doi.org/10.1002/adma.201504150
H. Xue, D. Wang, M. Jin, H. Gao, X. Wang et al., Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. Microsyst. Nanoeng. 9, 79 (2023). https://doi.org/10.1038/s41378-023-00524-0
F. Wang, Y. Xue, X. Chen, P. Zhang, L. Shan et al., 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34(21), 2314471 (2024). https://doi.org/10.1002/adfm.202314471
Y. Peng, S. Liang, Q.-F. Meng, D. Liu, K. Ma et al., Engineered bio-based hydrogels for cancer immunotherapy. Adv. Mater. 36(21), 2313188 (2024). https://doi.org/10.1002/adma.202313188
K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al., Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano 17(16), 16160–16173 (2023). https://doi.org/10.1021/acsnano.3c05253
L. Luo, Z. Wu, Q. Ding, H. Wang, Y. Luo et al., In situ structural densification of hydrogel network and its interface with electrodes for high-performance multimodal artificial skin. ACS Nano 18(24), 15754–15768 (2024). https://doi.org/10.1021/acsnano.4c02359
D. Yao, W. Wang, H. Wang, Y. Luo, H. Ding et al., Ultrasensitive and breathable hydrogel fiber-based strain sensors enabled by customized crack design for wireless sign language recognition. Adv. Funct. Mater. 35(10), 2416482 (2025). https://doi.org/10.1002/adfm.202416482
Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15(1), 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
C. Liu, Y. Wang, S. Shi, Y. Zheng, Z. Ye et al., Myelin sheath-inspired hydrogel electrode for artificial skin and physiological monitoring. ACS Nano 18(40), 27420–27432 (2024). https://doi.org/10.1021/acsnano.4c07677
Y. Zhang, Z. Li, Z. Xu, M. Xiao, Y. Yuan et al., Flexible healable electromagnetic-interference-shielding bioelastic hydrogel nanocomposite for machine learning-assisted highly sensitive sensing bioelectrode. Aggregate 5(5), e566 (2024). https://doi.org/10.1002/agt2.566
Q. Han, X. Gao, C. Zhang, Y. Tian, S. Liang et al., Acid-induced in situ phase separation and percolation for constructing bi-continuous phase hydrogel electrodes with motion-insensitive property. Adv. Mater. 37(6), 2415445 (2025). https://doi.org/10.1002/adma.202415445
G. Yang, Z. Lan, H. Gong, J. Wen, B. Pang et al., A Nepenthes-inspired hydrogel hybrid system for sweat-wicking electrophysiological signal recording during exercises. Adv. Funct. Mater. 35(13), 2417841 (2025). https://doi.org/10.1002/adfm.202417841
J. Wu, J. Xian, C. He, H. Lin, J. Li et al., Asymmetric wettability hydrogel surfaces for enduring electromyographic monitoring. Adv. Mater. 36(41), e2405372 (2024). https://doi.org/10.1002/adma.202405372
H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human–machine interaction system for active rehabilitation. Adv. Mater. 36(11), 2309868 (2024). https://doi.org/10.1002/adma.202309868
J. Luo, C. Sun, B. Chang, Y. Jing, K. Li et al., MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano 16(11), 19373–19384 (2022). https://doi.org/10.1021/acsnano.2c08961
W. Wang, D. Yao, H. Wang, Q. Ding, Y. Luo et al., A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater. 34(32), 2316339 (2024). https://doi.org/10.1002/adfm.202316339
J. Li, H. Wang, Y. Luo, Z. Zhou, H. Zhang et al., Design of AI-enhanced and hardware-supported multimodal E-skin for environmental object recognition and wireless toxic gas alarm. Nano-Micro Lett. 16(1), 256 (2024). https://doi.org/10.1007/s40820-024-01466-6
Z. Wu, H. Wang, Q. Ding, K. Tao, W. Shi et al., A self-powered, rechargeable, and wearable hydrogel patch for wireless gas detection with extraordinary performance. Adv. Funct. Mater. 33(21), 2300046 (2023). https://doi.org/10.1002/adfm.202300046
L. Zhang, K.S. Kumar, H. He, C.J. Cai, X. He et al., Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020). https://doi.org/10.1038/s41467-020-18503-8
J.X.M. Chen, T. Chen, Y. Zhang, W. Fang, W.E. Li et al., Conductive bio-based hydrogel for wearable electrodes via direct ink writing on skin. Adv. Funct. Mater. 34(40), 2403721 (2024). https://doi.org/10.1002/adfm.202403721
C. Wang, H. Wang, B. Wang, H. Miyata, Y. Wang et al., On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 8(20), eabo1396 (2022). https://doi.org/10.1126/sciadv.abo1396
X. Yuan, W. Kong, P. Xia, Z. Wang, Q. Gao et al., Implantable wet-adhesive flexible electronics with ultrathin gelatin film. Adv. Funct. Mater. 34(42), 2404824 (2024). https://doi.org/10.1002/adfm.202404824
Z. Liu, Y. Ding, Y. Ding, W. Wang, Z. Mao et al., Gelatin-DOPA-knob/fibrinogen hydrogel inspired by fibrin polymerization and mussel adhesion for rapid and robust hemostatic sealing. Biomaterials 317, 123038 (2025). https://doi.org/10.1016/j.biomaterials.2024.123038
G.R. Koirala, D.-H. Lee, Y.J. Jo, Y.H. Kim, J.H. Shin et al., Fully wireless, in vivo assessment of superimposed physiological vital signs using a biodegradable passive tag interrogated with a wearable reader patch. Adv. Funct. Mater. 35(3), 2413363 (2025). https://doi.org/10.1002/adfm.202413363
L. Li, X. Ye, Z. Ji, M. Zheng, S. Lin et al., Paintable, fast gelation, highly adhesive hydrogels for high-fidelity electrophysiological monitoring wirelessly. Small 21(8), e2407996 (2025). https://doi.org/10.1002/smll.202407996
A. Szarpak, R. Auzély-Velty, Hyaluronic acid single-network hydrogel with high stretchable and elastic properties. Carbohydr. Polym. 320, 121212 (2023). https://doi.org/10.1016/j.carbpol.2023.121212
F. Mo, L. Hang, M. Xu, L. Cheng, M. Cui et al., Rational design of dynamically super-tough and super-stretchable hydrogels for deformable energy storage devices. Small 20(25), 2305557 (2024). https://doi.org/10.1002/smll.202305557
M. Ahmadian, M. Jaymand, Interpenetrating polymer network hydrogels for removal of synthetic dyes: a comprehensive review. Coord. Chem. Rev. 486, 215152 (2023). https://doi.org/10.1016/j.ccr.2023.215152
I. Dellatolas, M. Bantawa, B. Damerau, M. Guo, T. Divoux et al., Local mechanism governs global reinforcement of nanofiller-hydrogel composites. ACS Nano 17(21), 20939–20948 (2023). https://doi.org/10.1021/acsnano.3c00716
C. Lim, S. Lee, H. Kang, Y.S. Cho, D.-H. Yeom et al., Highly conductive and stretchable hydrogel nanocomposite using whiskered gold nanosheets for soft bioelectronics. Adv. Mater. 36(39), 2407931 (2024). https://doi.org/10.1002/adma.202407931
Y.-H. Fang, C. Liang, V. Liljeström, Z.-P. Lv, O. Ikkala et al., Toughening hydrogels with fibrillar connected double networks. Adv. Mater. 36(27), e2402282 (2024). https://doi.org/10.1002/adma.202402282
Y. Zhang, Y. Dai, F. Xia, X. Zhang, Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano Energy 104, 107977 (2022). https://doi.org/10.1016/j.nanoen.2022.107977
X. Hou, B. Huang, L. Zhou, S. Liu, J. Kong et al., An amphiphilic entangled network design toward ultratough hydrogels. Adv. Mater. 35(28), e2301532 (2023). https://doi.org/10.1002/adma.202301532
H. Li, J. Cao, R. Wan, V.R. Feig, C.M. Tringides et al., PEDOTs-based conductive hydrogels: design, fabrications, and applications. Adv. Mater. 37(7), 2415151 (2025). https://doi.org/10.1002/adma.202415151
Y.N. Lu, K. Mo, X.H. Liang, J.S. Xie, Y. Yang, L. Zheng, M. Gu, X.R. Liu, Y. Lu, J. Ge, High ion-conductive hydrogel: soft, elastic, with wide humidity tolerance and long-term stability. ACS Appl. Mater. Interfaces 16(44), 60992–61003 (2024). https://doi.org/10.1021/acsami.4c12851
J. Li, Y. Luo, K. Tao, J. Wu, Graphene-modified hydrogels for bioelectronic interface. Matter 7(12), 4139–4142 (2024). https://doi.org/10.1016/j.matt.2024.10.003
Q. Zhang, H. Lu, G. Yun, L. Gong, Z. Chen et al., A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity. Adv. Funct. Mater. 34(31), 2308113 (2024). https://doi.org/10.1002/adfm.202308113
F. Tian, H. Zhang, Y. Tan, L. Zhu, L. Shen et al., An on-board executable multi-feature transfer-enhanced fusion model for three-lead EEG sensor-assisted depression diagnosis. IEEE J. Biomed. Health Inform. 29(1), 152–165 (2025). https://doi.org/10.1109/JBHI.2024.3487012
F. Tian, L. Zhu, Q. Shi, R. Wang, L. Zhang et al., The three-lead EEG sensor: introducing an EEG-assisted depression diagnosis system based on ant lion optimization. IEEE Trans. Biomed. Circuits Syst. 17(6), 1305–1318 (2023). https://doi.org/10.1109/TBCAS.2023.3292237
S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong et al., Hydrogen-doped viscoplastic liquid metal microps for stretchable printed metal lines. Nat. Mater. 20(4), 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7
Y. Ye, F. Jiang, Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications. Nano Energy 99, 107374 (2022). https://doi.org/10.1016/j.nanoen.2022.107374
M. Chao, P. Di, Y. Yuan, Y. Xu, L. Zhang et al., Flexible breathable photothermal-therapy epidermic sensor with MXene for ultrasensitive wearable human-machine interaction. Nano Energy 108, 108201 (2023). https://doi.org/10.1016/j.nanoen.2023.108201
J. Zhang, J. Liao, Z. Liu, R. Zhang, M. Sitti, Liquid metal microdroplet-initiated ultra-fast polymerization of a stimuli-responsive hydrogel composite. Adv. Funct. Mater. 34(31), 2308238 (2024). https://doi.org/10.1002/adfm.202308238
Q. Cao, J. Chen, M. Wang, Z. Wang, W. Wang et al., Superabsorbent carboxymethyl cellulose–based hydrogel fabricated by liquid-metal-induced double crosslinking polymerisation. Carbohydr. Polym. 331, 121910 (2024). https://doi.org/10.1016/j.carbpol.2024.121910
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15(1), 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
H. Fang, J. Wang, L. Li, L. Xu, Y. Wu et al., A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications. Chem. Eng. J. 365, 153–164 (2019). https://doi.org/10.1016/j.cej.2019.02.030
J.-E. Park, H.S. Kang, M. Koo, C. Park, Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 32(37), 2002178 (2020). https://doi.org/10.1002/adma.202002178
L. Lan, J. Ping, H. Li, C. Wang, G. Li et al., Skin-inspired all-natural biogel for bioadhesive interface. Adv. Mater. 36(25), e2401151 (2024). https://doi.org/10.1002/adma.202401151
R. Song, X. Wang, M. Johnson, C. Milne, A. Lesniak-Podsiadlo et al., Enhanced strength for double network hydrogel adhesive through cohesion-adhesion balance. Adv. Funct. Mater. 34(23), 2313322 (2024). https://doi.org/10.1002/adfm.202313322
G. Yang, Y. Hu, W. Guo, W. Lei, W. Liu et al., Tunable hydrogel electronics for diagnosis of peripheral neuropathy. Adv. Mater. 36(18), e2308831 (2024). https://doi.org/10.1002/adma.202308831
H. Shi, H. Huo, H. Yang, H. Li, J. Shen et al., Cellulose-based dual-network conductive hydrogel with exceptional adhesion. Adv. Funct. Mater. 34(48), 2408560 (2024). https://doi.org/10.1002/adfm.202408560
X. Xiong, Y. Chen, Z. Wang, H. Liu, M. Le et al., Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors. Nat. Commun. 14(1), 1331 (2023). https://doi.org/10.1038/s41467-023-36920-3
L. Bai, Y. Jin, X. Shang, H. Jin, L. Shi et al., Temperature-triggered smart milk-derived hydrogel with programmable adhesion for versatile skin-attached iontronics. Nano Energy 104, 107962 (2022). https://doi.org/10.1016/j.nanoen.2022.107962
Y. He, Q. Li, P. Chen, Q. Duan, J. Zhan et al., A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention. Nat. Commun. 13(1), 7666 (2022). https://doi.org/10.1038/s41467-022-35437-5
Y. Jiang, X. Zhang, W. Zhang, M. Wang, L. Yan et al., Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 16(6), 8662–8676 (2022). https://doi.org/10.1021/acsnano.2c00662
S. Ge, J. Li, J. Geng, S. Liu, H. Xu et al., Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Mater. Horiz. 8(4), 1189–1198 (2021). https://doi.org/10.1039/D0MH01762K
H. Zhang, H. Chen, J.-H. Lee, E. Kim, K.-Y. Chan et al., Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano 17(6), 5921–5934 (2023). https://doi.org/10.1021/acsnano.3c00015
J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang et al., Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33(34), 2008267 (2021). https://doi.org/10.1002/adma.202008267
F. Zhuo, J. Zhou, Y. Liu, J. Xie, H. Chen et al., Kirigami-inspired 3D-printable MXene organohydrogels for soft electronics. Adv. Funct. Mater. 33(52), 2308487 (2023). https://doi.org/10.1002/adfm.202308487
J. Liu, K. Liu, X. Pan, K. Bi, F. Zhou et al., A flexible semidry electrode for long-term, high-quality electrocardiogram monitoring. Adv. Compos. Hybrid Mater. 6(1), 13 (2022). https://doi.org/10.1007/s42114-022-00596-y
M. Reis Carneiro, C. Majidi, M. Tavakoli, Multi-electrode printed bioelectronic patches for long-term electrophysiological monitoring. Adv. Funct. Mater. 32(43), 2205956 (2022). https://doi.org/10.1002/adfm.202205956
P. Tordi, A. Tamayo, Y. Jeong, M. Bonini, P. Samorì, Multiresponsive ionic conductive alginate/gelatin organohydrogels with tunable functions. Adv. Funct. Mater. 34(52), 2410663 (2024). https://doi.org/10.1002/adfm.202410663
J. Wang, T. Wang, H. Liu, K. Wang, K. Moses et al., Flexible electrodes for brain–computer interface system. Adv. Mater. 35(47), 2211012 (2023). https://doi.org/10.1002/adma.202211012
Q. Tian, H. Zhao, X. Wang, Y. Jiang, M. Zhu et al., Hairy-skin-adaptive viscoelastic dry electrodes for long-term electrophysiological monitoring. Adv. Mater. 35(30), e2211236 (2023). https://doi.org/10.1002/adma.202211236
W. Wan, X. Cui, Z. Gao, Z. Gu, Frontal EEG-based multi-level attention states recognition using dynamical complexity and extreme gradient boosting. Front. Hum. Neurosci. 15, 673955 (2021). https://doi.org/10.3389/fnhum.2021.673955
J.A. Anguera, J. Boccanfuso, J.L. Rintoul, O. Al-Hashimi, F. Faraji et al., Video game training enhances cognitive control in older adults. Nature 501(7465), 97–101 (2013). https://doi.org/10.1038/nature12486
J. Theeuwes, Perceptual selectivity for color and form. Percept. Psychophys. 51(6), 599–606 (1992). https://doi.org/10.3758/bf03211656
X. Wu, C. Shi, L. Yan, Driving attention state detection based on GRU-EEGNet. Sensors 24(16), 5086 (2024). https://doi.org/10.3390/s24165086
A. Al-Nafjan, M. Aldayel, Predict students’ attention in online learning using EEG data. Sustainability 14(11), 6553 (2022). https://doi.org/10.3390/su14116553
C.-H. Lee, Y.-X. Zhang, C.-M. Huang, C.-M. Wu, Classification of brain attention based on EEGNet with fewer channels. Proceedings of the 2024 12th International Conference on Computer and Communications Management. Kagoshima-shi Japan. ACM, (2024). 55–61. https://doi.org/10.1145/3688268.3688277
J. Slater, R. Joober, B.L. Koborsy, S. Mitchell, E. Sahlas et al., Can electroencephalography (EEG) identify ADHD subtypes? A systematic review. Neurosci. Biobehav. Rev. 139, 104752 (2022). https://doi.org/10.1016/j.neubiorev.2022.104752