cPCN-Regulated SnO2 Composites Enables Perovskite Solar Cell with Efficiency Beyond 23%
Corresponding Author: Peng Gao
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 101
Abstract
Efficient electron transport layers (ETLs) not only play a crucial role in promoting carrier separation and electron extraction in perovskite solar cells (PSCs) but also significantly affect the process of nucleation and growth of the perovskite layer. Herein, crystalline polymeric carbon nitrides (cPCN) are introduced to regulate the electronic properties of SnO2 nanocrystals, resulting in cPCN-composited SnO2 (SnO2-cPCN) ETLs with enhanced charge transport and perovskite layers with decreased grain boundaries. Firstly, SnO2-cPCN ETLs show three times higher electron mobility than pristine SnO2 while offering better energy level alignment with the perovskite layer. The SnO2-cPCN ETLs with decreased wettability endow the perovskite films with higher crystallinity by retarding the crystallization rate. In the end, the power conversion efficiency (PCE) of planar PSCs can be boosted to 23.17% with negligible hysteresis and a steady-state efficiency output of 21.98%, which is one of the highest PCEs for PSCs with modified SnO2 ETLs. SnO2-cPCN based devices also showed higher stability than pristine SnO2, maintaining 88% of the initial PCE after 2000 h of storage in the ambient environment (with controlled RH of 30% ± 5%) without encapsulation.
Highlights:
1 The (SnO2-cPCN) ETL shows superior electron mobility of 3.3 × 10−3 cm2 V−1 s−1, which is about three times higher than that of pristine SnO2.
2 The less wettable SnO2-cPCN leads to perovskite layers with reduced grain boundaries and enhanced qualities due to suppressed heterogeneous nucleation of perovskite.
3 The PSCs based on SnO2-cPCN showed negligible J–V hysteresis and two champion PCE of 23.17% and 20.3% on devices with 0.1 and 1 cm2 active area, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Gao, M. Grätzel, M. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h
- W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
- Z. Zhang, Z. Li, L. Meng, S.Y. Lien, P. Gao, Perovskite-based tandem solar cells: get the most out of the sun. Adv. Func. Mater. 30(38), 2001904 (2020). https://doi.org/10.1002/adfm.202001904
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- J.J. Yoo, S. Wieghold, M.C. Sponseller, M.R. Chua, S.N. Bertram et al., An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12(7), 2192–2199 (2019). https://doi.org/10.1039/c9ee00751b
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9(1), 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4
- Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan et al., Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell. Adv. Sci. 7(5), 1903368 (2020). https://doi.org/10.1002/advs.201903368
- H. Min, M. Kim, S. Lee, H. Kim, G. Kim, K. Choi et al., Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
- T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale et al., Perovskite-based solar cells: Impact of morphology and device architecture on device performance. J. Mater. Chem. A 3(17), 8943–8969 (2015). https://doi.org/10.1039/c4ta05226a
- T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
- Q. Jiang, X. Zhang, J. You, SnO2: A wonderful electron transport layer for perovskite solar cells. Small e1801154 (2018). https://doi.org/https://doi.org/10.1002/smll.201801154
- W. Hui, Y. Yang, Q. Xu, H. Gu, S. Feng et al., Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater. 32(4), e1906374 (2020). https://doi.org/10.1002/adma.201906374
- M.M. Tavakoli, F. Giordano, S.M. Zakeeruddin, M. Gratzel, Mesoscopic oxide double layer as electron specific contact for highly efficient and uv stable perovskite photovoltaics. Nano Lett. 18(4), 2428–2434 (2018). https://doi.org/10.1021/acs.nanolett.7b05469
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Y. Chen, S. Tan, N. Li, B. Huang, X. Niu et al., Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 4(9), 1961–1976 (2020). https://doi.org/10.1016/j.joule.2020.07.006
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using edta-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin et al., Understanding the rate-dependent J–V hysteresis, slow time component, and aging in ch3nh3pbi3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8(3), 995–1004 (2015). https://doi.org/10.1039/c4ee03664f
- S.S. Shin, S.J. Lee, S.I. Seok, Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29(47), 1900455 (2019). https://doi.org/10.1002/adfm.201900455
- Q. Xiong, L. Yang, Q. Zhou, T. Wu, C.L. Mai et al., NdCl3 dose as a universal approach for high-efficiency perovskite solar cells based on low-temperature-processed SnOx. ACS Appl. Mater. Interfaces 12(41), 46306–46316 (2020). https://doi.org/10.1021/acsami.0c13296
- X. Ren, D. Yang, Z. Yang, J. Feng, X. Zhu et al., Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 9(3), 2421–2429 (2017). https://doi.org/10.1021/acsami.6b13362
- J. Wei, F. Guo, X. Wang, K. Xu, M. Lei et al., SnO2 -in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv. Mater. 30(52), e1805153 (2018). https://doi.org/10.1002/adma.201805153
- C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
- P. Murgatroyd, Theory of space-charge-limited current enhanced by frenkel effect. J. Phys. D 3(2), 151 (1970). https://doi.org/10.1088/0022-3727/3/2/308
- J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9), 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
- M. Hadadian, J.-H. Smått, J.-P. Correa-Baena, The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ. Sci. 13(5), 1377–1407 (2020). https://doi.org/10.1039/c9ee04030g
- L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye et al., Passivated perovskite crystallization via g-c3n4 for high-performance solar cells. Adv. Funct. Mater. 28(7), 1705875 (2018). https://doi.org/10.1002/adfm.201705875
- Z. Li, S. Wu, J. Zhang, Y. Yuan, Z. Wang et al., Improving photovoltaic performance using perovskite/surface-modified graphitic carbon nitride heterojunction. Solar RRL 4(3), 1900413 (2019). https://doi.org/10.1002/solr.201900413
- J. Chen, H. Dong, L. Zhang, J. Li, F. Jia et al., Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with pces exceeding 22%. J. Mater. Chem. A 8(5), 2644–2653 (2020). https://doi.org/10.1039/c9ta11344d
- F.K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick et al., Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2(6), 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30
- L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6(6), 3921–3931 (2016). https://doi.org/10.1021/acscatal.6b00922
- H. Gao, S. Yan, J. Wang, Y.A. Huang, P. Wang et al., Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 15(41), 18077–18084 (2013). https://doi.org/10.1039/c3cp53774a
- J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2(6), 940–948 (2012). https://doi.org/10.1021/cs300167b
- B. Tu, Y. Shao, W. Chen, Y. Wu, X. Li et al., Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells. Adv. Mater. 31(15), e1805944 (2019). https://doi.org/10.1002/adma.201805944
- M.F. Ayguler, A.G. Hufnagel, P. Rieder, M. Wussler, W. Jaegermann et al., Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl. Mater. Interfaces 10(14), 11414–11419 (2018). https://doi.org/10.1021/acsami.8b00990
- J. Pei, Y. Wu, X. Guo, Y. Ying, Y. Wen et al., EmimBF4-assisted SnO2-based planar perovskite films for label-free photoelectrochemical sensing. ACS Omega 2(8), 4341–4346 (2017). https://doi.org/10.1021/acsomega.7b00496
- S. Wang, Y. Zhu, B. Liu, C. Wang, R. Ma, Introduction of carbon nanodots into SnO2 electron transport layer for efficient and uv stable planar perovskite solar cells. J. Mater. Chem. A 7(10), 5353–5362 (2019). https://doi.org/10.1039/c8ta11651b
- Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
- D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9(10), 3071–3078 (2016). https://doi.org/10.1039/c6ee02139e
- .
- P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9(13), 1803017 (2019). https://doi.org/10.1002/aenm.201803017
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
- S. Sonmezoglu, S. Akin, Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy 76, 105127 (2020). https://doi.org/10.1016/j.nanoen.2020.105127
- Y.H. Deng, Z.Q. Yang, R.M. Ma, Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Converg. 7(1), 25 (2020). https://doi.org/10.1186/s40580-020-00236-5
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
- G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). https://doi.org/10.1002/adfm.201302090
- W. Xu, Z. Lan, B.L. Peng, R.F. Wen, X.H. Ma, Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach. J. Chem. Phys. 142(5), 054701 (2015). https://doi.org/10.1063/1.4906877
- X. Xiao, W. Li, Y. Fang, Y. Liu, Y. Shao et al., Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nat. Commun. 11(1), 2215 (2020). https://doi.org/10.1038/s41467-020-16075-1
- E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale et al., Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020). https://doi.org/10.1021/acsenergylett.0c01566
- S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), e2003990 (2020). https://doi.org/10.1002/adma.202003990
- X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
- B. Chen, M. Yang, X. Zheng, C. Wu, W. Li et al., Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6(23), 4693–4700 (2015). https://doi.org/10.1021/acs.jpclett.5b02229
- J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608 (2015). https://doi.org/https://doi.org/10.1039/c5ee00120j
- F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li et al., Suppressing defects through the synergistic effect of a lewis base and a lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 11(12), 3480–3490 (2018). https://doi.org/10.1039/c8ee02252f
- W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
- X. Yu, Q. Zhou, J. Xu, L. Liang, X. Wang et al., The impact of PbI2: Ki alloys on the performance of sequentially deposited perovskite solar cells. Eur. J. Inorg. Chem. 9, 821–830 (2021). https://doi.org/10.1002/ejic.202001109
- T. Bu, J. Li, F. Zheng, W. Chen, X. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
- Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
- T. Walter, R. Herberholz, C. Müller, H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411–4420 (1996). https://doi.org/10.1063/1.363401
- S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore et al., Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6, 6)-phenyl c61-butyric acid methyl ester organic solar cells degraded under air exposure. J. Appl. Phys. 110(9), 094509 (2011). https://doi.org/10.1063/1.3658023
- J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310
- C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev. 47(12), 4581–4610 (2018). https://doi.org/10.1039/c7cs00868f
- M.-J. Choi, Y.-S. Lee, I.H. Cho, S.S. Kim, D.-H. Kim et al., Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors. Nano Energy 71, 104639 (2020). https://doi.org/10.1016/j.nanoen.2020.104639
- M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors. Iii. Trap states in the band gap. J. Appl. Phys. 118(10), 105701 (2015). https://doi.org/https://doi.org/10.1063/1.4929877
- Y. Li, L. Meng, Y.M. Yang, G. Xu, Z. Hong et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016). https://doi.org/10.1038/ncomms10214
- D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2019). https://doi.org/10.1038/s41578-019-0151-y
- L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Maters. 10(14), 2000197 (2020). https://doi.org/10.1002/aenm.202000197
- R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
- N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 127(28), 8326–8330 (2015). https://doi.org/10.1002/ange.201503153
References
P. Gao, M. Grätzel, M. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014). https://doi.org/10.1039/c4ee00942h
W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
Z. Zhang, Z. Li, L. Meng, S.Y. Lien, P. Gao, Perovskite-based tandem solar cells: get the most out of the sun. Adv. Func. Mater. 30(38), 2001904 (2020). https://doi.org/10.1002/adfm.202001904
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
J.J. Yoo, S. Wieghold, M.C. Sponseller, M.R. Chua, S.N. Bertram et al., An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12(7), 2192–2199 (2019). https://doi.org/10.1039/c9ee00751b
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 9(1), 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4
Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan et al., Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell. Adv. Sci. 7(5), 1903368 (2020). https://doi.org/10.1002/advs.201903368
H. Min, M. Kim, S. Lee, H. Kim, G. Kim, K. Choi et al., Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). https://doi.org/10.1038/nature12340
T. Salim, S. Sun, Y. Abe, A. Krishna, A.C. Grimsdale et al., Perovskite-based solar cells: Impact of morphology and device architecture on device performance. J. Mater. Chem. A 3(17), 8943–8969 (2015). https://doi.org/10.1039/c4ta05226a
T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee et al., Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885
Q. Jiang, X. Zhang, J. You, SnO2: A wonderful electron transport layer for perovskite solar cells. Small e1801154 (2018). https://doi.org/https://doi.org/10.1002/smll.201801154
W. Hui, Y. Yang, Q. Xu, H. Gu, S. Feng et al., Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater. 32(4), e1906374 (2020). https://doi.org/10.1002/adma.201906374
M.M. Tavakoli, F. Giordano, S.M. Zakeeruddin, M. Gratzel, Mesoscopic oxide double layer as electron specific contact for highly efficient and uv stable perovskite photovoltaics. Nano Lett. 18(4), 2428–2434 (2018). https://doi.org/10.1021/acs.nanolett.7b05469
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Y. Chen, S. Tan, N. Li, B. Huang, X. Niu et al., Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 4(9), 1961–1976 (2020). https://doi.org/10.1016/j.joule.2020.07.006
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using edta-complexed SnO2. Nat. Commun. 9(1), 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin et al., Understanding the rate-dependent J–V hysteresis, slow time component, and aging in ch3nh3pbi3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8(3), 995–1004 (2015). https://doi.org/10.1039/c4ee03664f
S.S. Shin, S.J. Lee, S.I. Seok, Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 29(47), 1900455 (2019). https://doi.org/10.1002/adfm.201900455
Q. Xiong, L. Yang, Q. Zhou, T. Wu, C.L. Mai et al., NdCl3 dose as a universal approach for high-efficiency perovskite solar cells based on low-temperature-processed SnOx. ACS Appl. Mater. Interfaces 12(41), 46306–46316 (2020). https://doi.org/10.1021/acsami.0c13296
X. Ren, D. Yang, Z. Yang, J. Feng, X. Zhu et al., Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 9(3), 2421–2429 (2017). https://doi.org/10.1021/acsami.6b13362
J. Wei, F. Guo, X. Wang, K. Xu, M. Lei et al., SnO2 -in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv. Mater. 30(52), e1805153 (2018). https://doi.org/10.1002/adma.201805153
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
P. Murgatroyd, Theory of space-charge-limited current enhanced by frenkel effect. J. Phys. D 3(2), 151 (1970). https://doi.org/10.1088/0022-3727/3/2/308
J. Xie, K. Huang, X. Yu, Z. Yang, K. Xiao et al., Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11(9), 9176–9182 (2017). https://doi.org/10.1021/acsnano.7b04070
M. Hadadian, J.-H. Smått, J.-P. Correa-Baena, The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy Environ. Sci. 13(5), 1377–1407 (2020). https://doi.org/10.1039/c9ee04030g
L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye et al., Passivated perovskite crystallization via g-c3n4 for high-performance solar cells. Adv. Funct. Mater. 28(7), 1705875 (2018). https://doi.org/10.1002/adfm.201705875
Z. Li, S. Wu, J. Zhang, Y. Yuan, Z. Wang et al., Improving photovoltaic performance using perovskite/surface-modified graphitic carbon nitride heterojunction. Solar RRL 4(3), 1900413 (2019). https://doi.org/10.1002/solr.201900413
J. Chen, H. Dong, L. Zhang, J. Li, F. Jia et al., Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with pces exceeding 22%. J. Mater. Chem. A 8(5), 2644–2653 (2020). https://doi.org/10.1039/c9ta11344d
F.K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick et al., Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2(6), 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30
L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 6(6), 3921–3931 (2016). https://doi.org/10.1021/acscatal.6b00922
H. Gao, S. Yan, J. Wang, Y.A. Huang, P. Wang et al., Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 15(41), 18077–18084 (2013). https://doi.org/10.1039/c3cp53774a
J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal. 2(6), 940–948 (2012). https://doi.org/10.1021/cs300167b
B. Tu, Y. Shao, W. Chen, Y. Wu, X. Li et al., Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells. Adv. Mater. 31(15), e1805944 (2019). https://doi.org/10.1002/adma.201805944
M.F. Ayguler, A.G. Hufnagel, P. Rieder, M. Wussler, W. Jaegermann et al., Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl. Mater. Interfaces 10(14), 11414–11419 (2018). https://doi.org/10.1021/acsami.8b00990
J. Pei, Y. Wu, X. Guo, Y. Ying, Y. Wen et al., EmimBF4-assisted SnO2-based planar perovskite films for label-free photoelectrochemical sensing. ACS Omega 2(8), 4341–4346 (2017). https://doi.org/10.1021/acsomega.7b00496
S. Wang, Y. Zhu, B. Liu, C. Wang, R. Ma, Introduction of carbon nanodots into SnO2 electron transport layer for efficient and uv stable planar perovskite solar cells. J. Mater. Chem. A 7(10), 5353–5362 (2019). https://doi.org/10.1039/c8ta11651b
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760
D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9(10), 3071–3078 (2016). https://doi.org/10.1039/c6ee02139e
.
P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9(13), 1803017 (2019). https://doi.org/10.1002/aenm.201803017
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
S. Sonmezoglu, S. Akin, Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy 76, 105127 (2020). https://doi.org/10.1016/j.nanoen.2020.105127
Y.H. Deng, Z.Q. Yang, R.M. Ma, Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Converg. 7(1), 25 (2020). https://doi.org/10.1186/s40580-020-00236-5
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). https://doi.org/10.1038/nmat4014
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014). https://doi.org/10.1002/adfm.201302090
W. Xu, Z. Lan, B.L. Peng, R.F. Wen, X.H. Ma, Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach. J. Chem. Phys. 142(5), 054701 (2015). https://doi.org/10.1063/1.4906877
X. Xiao, W. Li, Y. Fang, Y. Liu, Y. Shao et al., Benign ferroelastic twin boundaries in halide perovskites for charge carrier transport and recombination. Nat. Commun. 11(1), 2215 (2020). https://doi.org/10.1038/s41467-020-16075-1
E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale et al., Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020). https://doi.org/10.1021/acsenergylett.0c01566
S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), e2003990 (2020). https://doi.org/10.1002/adma.202003990
X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
B. Chen, M. Yang, X. Zheng, C. Wu, W. Li et al., Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6(23), 4693–4700 (2015). https://doi.org/10.1021/acs.jpclett.5b02229
J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608 (2015). https://doi.org/https://doi.org/10.1039/c5ee00120j
F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li et al., Suppressing defects through the synergistic effect of a lewis base and a lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 11(12), 3480–3490 (2018). https://doi.org/10.1039/c8ee02252f
W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015). https://doi.org/10.1126/science.aad1015
X. Yu, Q. Zhou, J. Xu, L. Liang, X. Wang et al., The impact of PbI2: Ki alloys on the performance of sequentially deposited perovskite solar cells. Eur. J. Inorg. Chem. 9, 821–830 (2021). https://doi.org/10.1002/ejic.202001109
T. Bu, J. Li, F. Zheng, W. Chen, X. Wen et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 9, 4609 (2018). https://doi.org/10.1038/s41467-018-07099-9
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
T. Walter, R. Herberholz, C. Müller, H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411–4420 (1996). https://doi.org/10.1063/1.363401
S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore et al., Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6, 6)-phenyl c61-butyric acid methyl ester organic solar cells degraded under air exposure. J. Appl. Phys. 110(9), 094509 (2011). https://doi.org/10.1063/1.3658023
J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/aenm.201501310
C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev. 47(12), 4581–4610 (2018). https://doi.org/10.1039/c7cs00868f
M.-J. Choi, Y.-S. Lee, I.H. Cho, S.S. Kim, D.-H. Kim et al., Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors. Nano Energy 71, 104639 (2020). https://doi.org/10.1016/j.nanoen.2020.104639
M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors. Iii. Trap states in the band gap. J. Appl. Phys. 118(10), 105701 (2015). https://doi.org/https://doi.org/10.1063/1.4929877
Y. Li, L. Meng, Y.M. Yang, G. Xu, Z. Hong et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016). https://doi.org/10.1038/ncomms10214
D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5(1), 44–60 (2019). https://doi.org/10.1038/s41578-019-0151-y
L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Maters. 10(14), 2000197 (2020). https://doi.org/10.1002/aenm.202000197
R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 127(28), 8326–8330 (2015). https://doi.org/10.1002/ange.201503153