Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries
Corresponding Author: Wei‑Qiang Han
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 180
Abstract
Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security, high energy density, low cost, and environmental friendliness. However, deep-seated problems including Zn dendrite and adverse side reactions severely impede the practical application. In this work, we proposed a freestanding Zn-electrolyte interfacial layer composed of multicapsular carbon fibers (MCFs) to regulate the plating/stripping behavior of Zn anodes. The versatile MCFs protective layer can uniformize the electric field and Zn2+ flux, meanwhile, reduce the deposition overpotentials, leading to high-quality and rapid Zn deposition kinetics. Furthermore, the bottom-up and uniform deposition of Zn on the Zn-MCFs interface endows long-term and high-capacity plating. Accordingly, the Zn@MCFs symmetric batteries can keep working up to 1500 h with 5 mAh cm−2. The feasibility of the MCFs interfacial layer is also convinced in Zn@MCFs||MnO2 batteries. Remarkably, the Zn@MCFs||α-MnO2 batteries deliver a high specific capacity of 236.1 mAh g−1 at 1 A g−1 with excellent stability, and maintain an exhilarating energy density of 154.3 Wh kg−1 at 33% depth of discharge in pouch batteries.
Highlights:
1 Freestanding multicapsular carbon fibers (MCFs) cloth was synthesized by electrospinning and applied as interfacial layer to regulate the plating/stripping behavior of Zn anodes.
2 MCFs layer is supposed to uniformize the electric field and Zn2+ flux, and the moderate zincophilicity enables the bottom-up deposition of Zn on Zn@MCFs anode, thereby leading to high-quality and rapid Zn deposition kinetics.
3 Superior electrochemical performance of Zn@MCFs is achieved in symmetrical, asymmetrical and Zn||MnO2 batteries, including long cycling life, high coulombic efficiency and excellent rate performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
- Y. Zhang, P. Chen, T. Wang, D. Su, C. Wang, Development of small-scale monitoring and modeling strategies for safe lithium-ion batteries. Batter. Supercaps 5(2), e202100292 (2022). https://doi.org/10.1002/batt.202100292
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018). https://doi.org/10.1002/aenm.201703008
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox et al., Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021). https://doi.org/10.1038/s41467-020-20334-6
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
- B. Zhang, L. Qin, Y. Fang, Y. Chai, X. Xie et al., Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. 67(9), 955–962 (2022). https://doi.org/10.1016/j.scib.2022.01.027
- P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), e202200598 (2022). https://doi.org/10.1002/anie.202200598
- Z. Liu, L. Qin, B. Lu, X. Wu, S. Liang et al., Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. Chemsuschem 15(10), e202200348 (2022). https://doi.org/10.1002/cssc.202200348
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- C. Shen, X. Li, N. Li, K. Xie, J. Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
- M. Li, Q. He, Z. Li, Q. Li, Y. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 132(38), 16737–16744 (2020). https://doi.org/10.1002/ange.202005472
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- Y. Liang, Y. Wang, H. Mi, L. Sun, D. Ma et al., Functionalized carbon nanofiber interlayer towards dendrite-free Zn-ion batteries. Chem. Eng. J. 425, 131862 (2021). https://doi.org/10.1016/j.cej.2021.131862
- P. Xue, C. Guo, N. Wang, K. Zhu, S. Jing et al., Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3D hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn–metal composite anodes. Adv. Funct. Mater. 31(50), 2106417 (2021). https://doi.org/10.1002/adfm.202106417
- D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140(5), 1812–1823 (2018). https://doi.org/10.1021/jacs.7b11589
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 171 (2016). https://doi.org/10.1038/NENERGY.2016.39
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 49(23), 16223 (1994). https://doi.org/10.1103/PhysRevB.49.16223
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- C. Wang, J. Kim, M. Kim, H. Lim, M. Zhang et al., Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. J. Mater. Chem. A 7(22), 13743–13750 (2019). https://doi.org/10.1039/C9TA03128F
- Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu et al., Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv. Energy Mater. 10(22), 1904010 (2020). https://doi.org/10.1002/aenm.201904010
- Y. Fang, Y. Zeng, Q. Jin, X.F. Lu, D. Luan et al., Nitrogen-doped amorphous Zn–carbon multichannel fibers for stable lithium metal anodes. Angew. Chem. Int. Ed. 133(15), 8596–8601 (2021). https://doi.org/10.1002/anie.202100471
- K. Yan, S. Zhao, J. Zhang, J. Safaei, X. Yu et al., Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano Lett. 20(8), 6112–6119 (2020). https://doi.org/10.1021/acs.nanolett.0c02215
- H. Liu, J. Li, X. Zhang, X. Liu, Y. Yan et al., Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31(48), 2106550 (2021). https://doi.org/10.1002/adfm.202106550
- P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in-situ grown ZnSe overlayer toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). https://doi.org/10.1002/adma.202008424
- J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
- L.P. Wang, N.W. Li, T.S. Wang, Y.X. Yin, Y.G. Guo et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux et al., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2
- M. Li, J. Meng, Q. Li, M. Huang, X. Liu et al., Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn–Co batteries. Adv. Funct. Mater. 28(32), 1802016 (2018). https://doi.org/10.1002/adfm.201802016
- X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- K. Hu, X. Guan, R. Lv, G. Li, Z. Hu et al., Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chem. Eng. J. 396, 125363 (2020). https://doi.org/10.1016/j.cej.2020.125363
- K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc–metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11(31), 2100982 (2021). https://doi.org/10.1002/aenm.202100982
- Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13(14), 16869–16875 (2021). https://doi.org/10.1021/acsami.0c22911
- D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
- X. Liu, J. Zhang, S. Guo, N. Pinna, Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. J. Mater. Chem. A 4(4), 1423–1431 (2016). https://doi.org/10.1039/C5TA09066K
- Y. Borodko, S.E. Habas, M. Koebel, P. Yang, H. Frei et al., Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 110(46), 23052–23059 (2006). https://doi.org/10.1021/jp063338+
- Y. Wang, W. Zhao, Z. Qi, L. Zhang, Y. Zhang et al., Designing ZIF-8/hydroxylated MWCNT nanocomposites for phosphate adsorption from water: capability and mechanism. Chem. Eng. J. 394, 124992 (2020). https://doi.org/10.1016/j.cej.2020.124992
- Z. Sun, X. Wang, H. Zhao, S.W. Koh, J. Ge et al., Rambutan-like hollow carbon spheres decorated with vacancy-rich nickel oxide for energy conversion and storage. Carbon Energy 2(1), 122–130 (2020). https://doi.org/10.1002/cey2.16
- T. Wang, D. Su, Y. Chen, K. Yan, L. Yu et al., Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium-sulfur batteries. Chem. Eng. J. 401, 126079 (2020). https://doi.org/10.1016/j.cej.2020.126079
- Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015). https://doi.org/10.1002/adma.201503015
- H. Ying, S. Zhang, Z. Meng, Z. Sun, W.Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5(18), 8334–8342 (2017). https://doi.org/10.1039/C7TA01480E
- H. Ying, T. Yang, S. Zhang, R. Guo, J. Wang et al., Dual immobilization of SnOx nanops by N-doped carbon and TiO2 for high-performance lithium-ion battery anodes. ACS Appl. Mater. Interfaces 12(50), 55820–55829 (2020). https://doi.org/10.1021/acsami.0c15670
- Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
- F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
References
X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
Y. Zhang, P. Chen, T. Wang, D. Su, C. Wang, Development of small-scale monitoring and modeling strategies for safe lithium-ion batteries. Batter. Supercaps 5(2), e202100292 (2022). https://doi.org/10.1002/batt.202100292
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang et al., Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8(17), 1703008 (2018). https://doi.org/10.1002/aenm.201703008
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox et al., Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021). https://doi.org/10.1038/s41467-020-20334-6
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
B. Zhang, L. Qin, Y. Fang, Y. Chai, X. Xie et al., Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. 67(9), 955–962 (2022). https://doi.org/10.1016/j.scib.2022.01.027
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61(17), e202200598 (2022). https://doi.org/10.1002/anie.202200598
Z. Liu, L. Qin, B. Lu, X. Wu, S. Liang et al., Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. Chemsuschem 15(10), e202200348 (2022). https://doi.org/10.1002/cssc.202200348
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
C. Shen, X. Li, N. Li, K. Xie, J. Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
M. Li, Q. He, Z. Li, Q. Li, Y. Zhang et al., A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 9(29), 1901469 (2019). https://doi.org/10.1002/aenm.201901469
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 132(38), 16737–16744 (2020). https://doi.org/10.1002/ange.202005472
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
Y. Liang, Y. Wang, H. Mi, L. Sun, D. Ma et al., Functionalized carbon nanofiber interlayer towards dendrite-free Zn-ion batteries. Chem. Eng. J. 425, 131862 (2021). https://doi.org/10.1016/j.cej.2021.131862
P. Xue, C. Guo, N. Wang, K. Zhu, S. Jing et al., Synergistic manipulation of Zn2+ ion flux and nucleation induction effect enabled by 3D hollow SiO2/TiO2/carbon fiber for long-lifespan and dendrite-free Zn–metal composite anodes. Adv. Funct. Mater. 31(50), 2106417 (2021). https://doi.org/10.1002/adfm.202106417
D. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 140(5), 1812–1823 (2018). https://doi.org/10.1021/jacs.7b11589
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 171 (2016). https://doi.org/10.1038/NENERGY.2016.39
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli et al., Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 49(23), 16223 (1994). https://doi.org/10.1103/PhysRevB.49.16223
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
C. Wang, J. Kim, M. Kim, H. Lim, M. Zhang et al., Nanoarchitectured metal–organic framework-derived hollow carbon nanofiber filters for advanced oxidation processes. J. Mater. Chem. A 7(22), 13743–13750 (2019). https://doi.org/10.1039/C9TA03128F
Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu et al., Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries. Adv. Energy Mater. 10(22), 1904010 (2020). https://doi.org/10.1002/aenm.201904010
Y. Fang, Y. Zeng, Q. Jin, X.F. Lu, D. Luan et al., Nitrogen-doped amorphous Zn–carbon multichannel fibers for stable lithium metal anodes. Angew. Chem. Int. Ed. 133(15), 8596–8601 (2021). https://doi.org/10.1002/anie.202100471
K. Yan, S. Zhao, J. Zhang, J. Safaei, X. Yu et al., Dendrite-free sodium metal batteries enabled by the release of contact strain on flexible and sodiophilic matrix. Nano Lett. 20(8), 6112–6119 (2020). https://doi.org/10.1021/acs.nanolett.0c02215
H. Liu, J. Li, X. Zhang, X. Liu, Y. Yan et al., Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31(48), 2106550 (2021). https://doi.org/10.1002/adfm.202106550
P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in-situ grown ZnSe overlayer toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). https://doi.org/10.1002/adma.202008424
J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
L.P. Wang, N.W. Li, T.S. Wang, Y.X. Yin, Y.G. Guo et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17(2), 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux et al., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2
M. Li, J. Meng, Q. Li, M. Huang, X. Liu et al., Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn–Co batteries. Adv. Funct. Mater. 28(32), 1802016 (2018). https://doi.org/10.1002/adfm.201802016
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
K. Hu, X. Guan, R. Lv, G. Li, Z. Hu et al., Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chem. Eng. J. 396, 125363 (2020). https://doi.org/10.1016/j.cej.2020.125363
K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc–metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11(31), 2100982 (2021). https://doi.org/10.1002/aenm.202100982
Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13(14), 16869–16875 (2021). https://doi.org/10.1021/acsami.0c22911
D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16(29), 2001736 (2020). https://doi.org/10.1002/smll.202001736
X. Liu, J. Zhang, S. Guo, N. Pinna, Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. J. Mater. Chem. A 4(4), 1423–1431 (2016). https://doi.org/10.1039/C5TA09066K
Y. Borodko, S.E. Habas, M. Koebel, P. Yang, H. Frei et al., Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 110(46), 23052–23059 (2006). https://doi.org/10.1021/jp063338+
Y. Wang, W. Zhao, Z. Qi, L. Zhang, Y. Zhang et al., Designing ZIF-8/hydroxylated MWCNT nanocomposites for phosphate adsorption from water: capability and mechanism. Chem. Eng. J. 394, 124992 (2020). https://doi.org/10.1016/j.cej.2020.124992
Z. Sun, X. Wang, H. Zhao, S.W. Koh, J. Ge et al., Rambutan-like hollow carbon spheres decorated with vacancy-rich nickel oxide for energy conversion and storage. Carbon Energy 2(1), 122–130 (2020). https://doi.org/10.1002/cey2.16
T. Wang, D. Su, Y. Chen, K. Yan, L. Yu et al., Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium-sulfur batteries. Chem. Eng. J. 401, 126079 (2020). https://doi.org/10.1016/j.cej.2020.126079
Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015). https://doi.org/10.1002/adma.201503015
H. Ying, S. Zhang, Z. Meng, Z. Sun, W.Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5(18), 8334–8342 (2017). https://doi.org/10.1039/C7TA01480E
H. Ying, T. Yang, S. Zhang, R. Guo, J. Wang et al., Dual immobilization of SnOx nanops by N-doped carbon and TiO2 for high-performance lithium-ion battery anodes. ACS Appl. Mater. Interfaces 12(50), 55820–55829 (2020). https://doi.org/10.1021/acsami.0c15670
Q. Cao, H. Gao, Y. Gao, J. Yang, C. Li et al., Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 31(37), 2103922 (2021). https://doi.org/10.1002/adfm.202103922
F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). https://doi.org/10.1002/adma.202101649
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471