Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes
Corresponding Author: Wei‑Qiang Han
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 68
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Highlights:
1 As an emerging preparation strategy for MXenes, Lewis acidic etching has attracted increasing attention in the past few years benefiting from a series of merits.
2 Lewis acidic etching method is mainly presented from etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes.
3 The applications of MXenes and MXene-based composites obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/C5CS00869G
- S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
- T. Hartman, Z. Sofer, Beyond graphene: chemistry of group 14 graphene analogues: silicene, germanene, and stanene. ACS Nano 13(8), 8566–8576 (2019). https://doi.org/10.1021/acsnano.9b04466
- H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou et al., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 30(32), 1800295 (2018). https://doi.org/10.1002/adma.201800295
- V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013). https://doi.org/10.1126/science.1226419
- L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
- A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12(1), 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15(4), 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi, C. Zhi, MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- Y. An, Y. Tian, J. Feng, Y. Qian, MXenes for advanced separator in rechargeable batteries. Mater. Today 57, 146–179 (2022). https://doi.org/10.1016/j.mattod.2022.06.006
- M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1(2), 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
- J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2D molybdenum Carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
- J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund et al., A two-dimensional zirconium carbide by selective etching of al3c3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55(16), 5008–5013 (2016). https://doi.org/10.1002/anie.201510432
- J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao et al., Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11(4), 3841–3850 (2017). https://doi.org/10.1021/acsnano.7b00030
- M. Shekhirev, C.E. Shuck, A. Sarycheva, Y. Gogotsi, Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 120, 100757 (2021). https://doi.org/10.1016/j.pmatsci.2020.100757
- N.R. Hemanth, B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. 392, 123678 (2020). https://doi.org/10.1016/j.cej.2019.123678
- D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- S. Zhang, W.Q. Han, Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Phys. Chem. Chem. Phys. 22(29), 16482–16526 (2020). https://doi.org/10.1039/D0CP02275F
- B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/adma.202007973
- B. Anasori, Y. Gogotsi, MXenes: trends, growth, and future directions. Graphene 2D Mater. 7(3–4), 75–79 (2022). https://doi.org/10.1007/s41127-022-00053-z
- M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11(2), 2000681 (2020). https://doi.org/10.1002/aenm.202000681
- A. Shayesteh Zeraati, S.A. Mirkhani, P. Sun, M. Naguib, P.V. Braun et al., Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13(6), 3572–3580 (2021). https://doi.org/10.1039/D0NR06671K
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared Structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39), 2103393 (2021). https://doi.org/10.1002/adma.202103393
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14(1), 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
- Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
- M. Dadashi Firouzjaei, M. Karimiziarani, H. Moradkhani, M. Elliott, B. Anasori, MXenes: the two-dimensional influencers. Mater. Today Adv. 13, 100202 (2022). https://doi.org/10.1016/j.mtadv.2021.100202
- B. Ahmed, A.E. Ghazaly, J. Rosen, i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30(47), 2000894 (2020). https://doi.org/10.1002/adfm.202000894
- K. Fan, Y. Ying, X. Luo, H. Huang, Nitride MXenes as sulfur hosts for thermodynamic and kinetic suppression of polysulfide shuttling: a computational study. J. Mater. Chem. A 9(45), 25391–25398 (2021). https://doi.org/10.1039/D1TA06759A
- D. Johnson, Z. Qiao, E. Uwadiunor, A. Djire, Holdups in nitride MXene’s development and limitations in advancing the field of MXene. Small 18(17), 2106129 (2022). https://doi.org/10.1002/smll.202106129
- J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
- T. Su, X. Ma, J. Tong, H. Ji, Z. Qin et al., Surface engineering of MXenes for energy and environmental applications. J. Mater. Chem. A 10(19), 10265–10296 (2022). https://doi.org/10.1039/D2TA01140A
- J. Björk, J. Rosen, Functionalizing MXenes by tailoring surface terminations in different chemical environments. Chem. Mater. 33(23), 9108–9118 (2021). https://doi.org/10.1021/acs.chemmater.1c01264
- A.S.F. Vladislav Kamysbayev, H. Hu, X. Rui, F. Lagunas, D. Wang et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
- Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
- M.S. Bhargava Reddy, S. Kailasa, B.C.G. Marupalli, K.K. Sadasivuni, S. Aich, A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sens. 7(8), 2132–2163 (2022). https://doi.org/10.1021/acssensors.2c01046
- A.R. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3(1), 29–55 (2020). https://doi.org/10.1002/eem2.12058
- D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/am501144q
- B.-M. Jun, S. Kim, J. Heo, C.M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12(3), 471–487 (2018). https://doi.org/10.1007/s12274-018-2225-3
- X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27(1), 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
- X. Guo, C. Wang, W. Wang, Q. Zhou, W. Xu et al., Vacancy manipulating of molybdenum carbide mxenes to enhance faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 1, e9120026 (2022). https://doi.org/10.26599/NRE.2022.9120026
- H.E. Karahan, K. Goh, C.J. Zhang, E. Yang, C. Yildirim et al., MXene materials for designing advanced separation membranes. Adv. Mater. 32(29), 1906697 (2020). https://doi.org/10.1002/adma.201906697
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- C. Tsounis, P.V. Kumar, H. Masood, R.P. Kulkarni, G.S. Gautam et al., Advancing MXene electrocatalysts for energy conversion reactions: surface, stoichiometry, and stability. Angew. Chem. Int. Ed. 62(4), e202210828 (2022). https://doi.org/10.1002/anie.202210828
- X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13(1), 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
- S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. Zhang, Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021). https://doi.org/10.1016/j.mattod.2021.02.010
- C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10(1), 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
- S. Venkateshalu, M. Shariq, N.K. Chaudhari, K. Lee, A.N. Grace, 2D non-carbide MXenes: an emerging material class for energy storage and conversion. J. Mater. Chem. A 10(38), 20174–20189 (2022). https://doi.org/10.1039/D2TA05392F
- Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
- Q. Tang, Z. Zhou, P. Shen, Are MXenes Promising Anode Materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B. 87(23), 235441 (2013). https://doi.org/10.1103/PhysRevB.87.235441
- H. Kim, Z. Wang, H.N. Alshareef, MXetronics: electronic and photonic applications of MXenes. Nano Energy 60, 179–197 (2019). https://doi.org/10.1016/j.nanoen.2019.03.020
- K. Wang, H. Jin, H. Li, Z. Mao, L. Tang et al., Role of surface functional groups to superconductivity in Nb2C-MXene: experiments and density functional theory calculations. Surf. Interfaces 29, 101711 (2022). https://doi.org/10.1016/j.surfin.2021.101711
- R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019). https://doi.org/10.1016/j.ceramint.2019.06.114
- C.E. Shuck, Y. Gogotsi, Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020). https://doi.org/10.1016/j.cej.2020.125786
- M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “Clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
- V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker et al., Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
- M. Anayee, C.E. Shuck, M. Shekhirev, A. Goad, R. Wang et al., Kinetics of Ti3AlC2 etching for Ti3C2Tx MXene synthesis. Chem. Mater. 34(21), 9589–9600 (2022). https://doi.org/10.1021/acs.chemmater.2c02194
- K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
- P. Huang, S. Zhang, H. Ying, W. Yang, J. Wang et al., Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 14(4), 1218–1227 (2021). https://doi.org/10.1007/s12274-020-3221-y
- P. Huang, S. Zhang, H. Ying, Z. Zhang, W. Han, Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanops for superior sodium-ion batteries. Chem. Eng. J. 417, 129161 (2021). https://doi.org/10.1016/j.cej.2021.129161
- C. Huang, S. Shi, H. Yu, Work function adjustment of Nb2CTx nanoflakes as hole and electron transport layers in organic solar cells by controlling surface functional groups. ACS Energy Lett. 6(10), 3464–3472 (2021). https://doi.org/10.1021/acsenergylett.1c01656
- D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022). https://doi.org/10.1021/acsnano.1c09639
- S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen et al., Li-Ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017). https://doi.org/10.1016/j.ensm.2017.03.012
- G. Liang, X. Li, Y. Wang, S. Yang, Z. Huang et al., Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 1, e9120002 (2022). https://doi.org/10.26599/NRE.2022.9120002
- O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4(1), 1716 (2013). https://doi.org/10.1038/ncomms2664
- M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
- O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27(23), 3501–3506 (2015). https://doi.org/10.1002/adma.201500604
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
- M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3SiC2 (MAX) To obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57(19), 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
- X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
- A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
- F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen et al., Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 164(4), A709–A713 (2017). https://doi.org/10.1149/2.0641704jes
- B. Soundiraraju, B.K. George, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11(9), 8892–8900 (2017). https://doi.org/10.1021/acsnano.7b03129
- X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset et al., A New etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A 5(41), 22012–22023 (2017). https://doi.org/10.1039/C7TA01082F
- M. Guo, W.-C. Geng, C. Liu, J. Gu, Z. Zhang et al., Ultrahigh areal capacitance of flexible MXene electrodes: electrostatic and steric effects of terminations. Chem. Mater. 32(19), 8257–8265 (2020). https://doi.org/10.1021/acs.chemmater.0c02026
- J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014). https://doi.org/10.1021/cm500641a
- A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
- V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
- M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53(19), 4877–4880 (2014). https://doi.org/10.1002/anie.201402513
- M.-Q. Zhao, M. Sedran, Z. Ling, M.R. Lukatskaya, O. Mashtalir et al., Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew. Chem. Int. Ed. 54(16), 4810–4814 (2015). https://doi.org/10.1002/anie.201500110
- W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57(47), 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
- S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
- X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie et al., Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 6(19), 11035–11040 (2014). https://doi.org/10.1039/C4NR02080D
- T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
- S. Zhang, H. Ying, P. Huang, T. Yang, W.-Q. Han, Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 15(3), 2746–2755 (2021). https://doi.org/10.1007/s12274-021-3847-4
- P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
- H. Zong, R. Qi, K. Yu, Z. Zhu, Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim. Acta 393, 139068 (2021). https://doi.org/10.1016/j.electacta.2021.139068
- P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang et al., 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9(45), 17722–17730 (2017). https://doi.org/10.1039/C7NR06721F
- J. Mei, G.A. Ayoko, C. Hu, J.M. Bell, Z. Sun, Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 25, e00156 (2020). https://doi.org/10.1016/j.susmat.2020.e00156
- J. Mei, G.A. Ayoko, C. Hu, Z. Sun, Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 395, 125111 (2020). https://doi.org/10.1016/j.cej.2020.125111
- H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60(16), 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
- A. Jawaid, A. Hassan, G. Neher, D. Nepal, R. Pachter et al., Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15(2), 2771–2777 (2021). https://doi.org/10.1021/acsnano.0c08630
- S. Husmann, O. Budak, H. Shim, K. Liang, M. Aslan et al., Ionic liquid-based synthesis of MXene. Chem. Commun. 56(75), 11082–11085 (2020). https://doi.org/10.1039/D0CC03189E
- C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
- G. Ma, H. Shao, J. Xu, Y. Liu, Q. Huang et al., Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 12(1), 5085 (2021). https://doi.org/10.1038/s41467-021-25306-y
- M. Zhang, R. Liang, N. Yang, R. Gao, Y. Zheng et al., Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode. Adv. Energy Mater. 12(1), 2102493 (2022). https://doi.org/10.1002/aenm.202102493
- J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10(1), 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
- J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15(7), 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8
- Y. Jiang, Y. Zhang, Q. Huang, L. Hao, S. Du, The compositional dependence of structural stability and resulting properties for Mn+1CnT2 (M = Sc, Ti, V; T = O, OH, F, Cl, Br and I; n = 1, 2): First-principle investigations. J. Mater. Res. Technol. 9(6), 14979–14989 (2020). https://doi.org/10.1016/j.jmrt.2020.10.083
- P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chem. Eng. J. 429, 132396 (2022). https://doi.org/10.1016/j.cej.2021.132396
- X. Guo, J. Zhang, J. Song, W. Wu, H. Liu et al., MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 14, 306–313 (2018). https://doi.org/10.1016/j.ensm.2018.05.010
- H. Dong, P. Xiao, N. Jin, B. Wang, Y. Liu et al., Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem 8(5), 957–962 (2021). https://doi.org/10.1002/celc.202100142
- Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b
- Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum et al., Prediction and Characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014). https://doi.org/10.1021/nn503921j
- Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng et al., MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem. Int. Ed. 60(48), 25318–25322 (2021). https://doi.org/10.1002/anie.202112381
- M. Li, X. Li, G. Qin, K. Luo, J. Lu et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15(1), 1077–1085 (2021). https://doi.org/10.1021/acsnano.0c07972
- J. Lu, I. Persson, H. Lind, J. Palisaitis, M. Li et al., Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv. 1(9), 3680–3685 (2019). https://doi.org/10.1039/C9NA00324J
- S.-S. Cui, X. Liu, Y.-B. Shi, M.-Y. Ding, X.-F. Yang, Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance. Rare Met. 41(7), 2405–2416 (2022). https://doi.org/10.1007/s12598-022-02011-3
- L. Liu, H. Zschiesche, M. Antonietti, B. Daffos, N.V. Tarakina et al., Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Adv. Energy Mater. 13(2), 2202709 (2022). https://doi.org/10.1002/aenm.202202709
- S. Sardar, A. Jana, Covalent surface alteration of MXenes and its effect on superconductivity. Matter 3(5), 1397–1399 (2020). https://doi.org/10.1016/j.matt.2020.10.007
- T. Zhang, L. Chang, X. Zhang, H. Wan, N. Liu et al., Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat. Commun. 13(1), 6731 (2022). https://doi.org/10.1038/s41467-022-34569-y
- J. Wu, M. Ihsan-Ul-Haq, F. Ciucci, B. Huang, J.-K. Kim, Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries. Energy Storage Mater. 34, 582–628 (2021). https://doi.org/10.1016/j.ensm.2020.10.007
- Y. Xie, J. Hu, Z. Han, T. Wang, J. Zheng et al., Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.05.008
- H. Wang, X. Li, Y. Jiang, M. Li, Q. Xiao et al., A universal single-atom coating strategy based on tannic acid chemistry for multifunctional heterogeneous catalysis. Angew. Chem. Int. Ed. 61(14), e202200465 (2022). https://doi.org/10.1002/anie.202200465
- H.J. Kwon, J.-H. Park, S.J. Suh, Multilayered Cu/NiFe thin films for electromagnetic interference shielding at high frequency. J. Alloys Compd. 914, 165330 (2022). https://doi.org/10.1016/j.jallcom.2022.165330
- J.-D. Musah, A.M. Ilyas, S. Venkatesh, S. Mensah, S. Kwofie et al., Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation–a critical review. Nano Res. Energy 1, 9120034 (2022). https://doi.org/10.26599/NRE.2022.9120034
- S. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14(12), 17665–17674 (2020). https://doi.org/10.1021/acsnano.0c08770
- X. Liu, F. Xu, Z. Li, Z. Liu, W. Yang et al., Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord. Chem. Rev. 464, 214544 (2022). https://doi.org/10.1016/j.ccr.2022.214544
- H. Saini, N. Srinivasan, V. Sedajova, M. Majumder, D.P. Dubal et al., Emerging MXene@metal-organic framework hybrids: design strategies toward versatile applications. ACS Nano 15(12), 18742–18776 (2021). https://doi.org/10.1021/acsnano.1c06402
- S. Zhou, Y. Zhao, R. Shi, Y. Wang, A. Ashok et al., Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 34(36), 2204388 (2022). https://doi.org/10.1002/adma.202204388
- J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7(3), 1281–1286 (2019). https://doi.org/10.1039/C8TA10574J
- X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33(31), 2100272 (2021). https://doi.org/10.1002/adma.202100272
- W. Peng, J. Han, Y.R. Lu, M. Luo, T.S. Chan et al., A general strategy for engineering single-metal sites on 3D porous N, P Co-doped Ti3C2Tx MXene. ACS Nano 16(3), 4116–4125 (2022). https://doi.org/10.1021/acsnano.1c09841
- Y. Tian, Y. An, S. Xiong, J. Feng, Y. Qian, A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 7(16), 9716–9725 (2019). https://doi.org/10.1039/C9TA02233C
- Q. Li, T. Song, Z. Wang, X. Wang, X. Zhou et al., A general strategy toward metal sulfide nanops confined in a sulfur-doped Ti3C2Tx MXene 3D porous aerogel for efficient ambient N2 electroreduction. Small 17(45), 2103305 (2021). https://doi.org/10.1002/smll.202103305
- J. Li, Z. Li, X. Liu, C. Li, Y. Zheng et al., Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 12(1), 1224 (2021). https://doi.org/10.1038/s41467-021-21435-6
- L. Han, X. Peng, H.-T. Wang, P. Ou, Y. Mi et al., Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn-CO2 battery. Proc. Natl. Acad. Sci. USA 119(42), e2207326119 (2022). https://doi.org/10.1073/pnas.2207326119
- Z. Wu, S. Zhu, X. Bai, M. Liang, X. Zhang et al., One-step in-situ synthesis of Sn-nanoconfined Ti3C2Tx MXene composites for Li-ion battery anode. Electrochim. Acta 407, 139916 (2022). https://doi.org/10.1016/j.electacta.2022.139916
- C. Yang, Y. Li, W. Peng, F. Zhang, X. Fan, In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chem. Eng. J. 427, 131792 (2022). https://doi.org/10.1016/j.cej.2021.131792
- P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv. Energy Mater. 12(39), 2202052 (2022). https://doi.org/10.1002/aenm.202202052
- P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, In situ fabrication of MXene/CuS Hybrids with Interfacial Covalent Bonding via Lewis acidic etching route for efficient sodium storage. J. Mater. Chem. A 10(41), 22135–22144 (2022). https://doi.org/10.1039/D2TA06695E
- A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
- M. Shekhirev, Y. Ogawa, C.E. Shuck, M. Anayee, T. Torita et al., Delamination of Ti3C2Tx nanosheets with NaCl and KCl for improved environmental stability of MXene films. ACS Appl. Nano Mater. 5(11), 16027–16032 (2022). https://doi.org/10.1021/acsanm.2c03701
- M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
- S. Zhang, P. Huang, J. Wang, Z. Zhuang, Z. Zhang et al., Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J. Phys. Chem. Lett. 11(4), 1247–1254 (2020). https://doi.org/10.1021/acs.jpclett.9b03682
- L. Liu, M. Orbay, S. Luo, S. Duluard, H. Shao et al., Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 16(1), 111–118 (2022). https://doi.org/10.1021/acsnano.1c08498
- K. Arole, J.W. Blivin, S. Saha, D.E. Holta, X. Zhao et al., Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 24(12), 103403 (2021). https://doi.org/10.1016/j.isci.2021.103403
- K. Arole, J.W. Blivin, A.M. Bruce, S. Athavale, I.J. Echols et al., Exfoliation, delamination, and oxidation stability of molten salt etched Nb2CTz MXene nanosheets. Chem. Commun. 58(73), 10202–10205 (2022). https://doi.org/10.1039/D2CC02237K
- J. Gu, Q. Zhu, Y. Shi, H. Chen, D. Zhang et al., Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 14(1), 891–898 (2020). https://doi.org/10.1021/acsnano.9b08141
- D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
- Q. Zhao, C. Zhang, R. Hu, Z. Du, J. Gu et al., Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15(3), 4927–4936 (2021). https://doi.org/10.1021/acsnano.0c09755
- Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang et al., Tailored lattice “Tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr 3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8(19), 2101418 (2021). https://doi.org/10.1002/advs.202101418
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
- Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
- S. Wang, S. Zhao, X. Guo, G. Wang, 2D material-based heterostructures for rechargeable batteries. Adv. Energy Mater. 12(4), 2100864 (2022). https://doi.org/10.1002/aenm.202100864
- Y. Dong, H. Shi, Z.S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020). https://doi.org/10.1002/adfm.202000706
- M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik et al., Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 12(17), 2102904 (2022). https://doi.org/10.1002/aenm.202102904
- J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
- M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
- Q. Liu, Y. Hu, X. Yu, Y. Qin, T. Meng et al., The pursuit of commercial silicon-based microp anodes for advanced lithium-ion batteries: a review. Nano Res. Energy 1, e9120037 (2022). https://doi.org/10.26599/NRE.2022.9120037
- D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026
- T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo et al., Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2017). https://doi.org/10.1016/j.jallcom.2016.10.127
- S. Zhang, H. Ying, B. Yuan, R. Hu, W.-Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 12(1), 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
- M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna et al., MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
- J. Hu, B. Xu, C. Ouyang, S.A. Yang, Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for Li ion batteries from first-principles calculations. J. Phys. Chem. C 118(42), 24274–24281 (2014). https://doi.org/10.1021/jp507336x
- E.M.D. Siriwardane, J. Hu, First-principles investigation of Ti2CSO and Ti2CSSe Janus MXene structures for Li and Mg electrodes. J. Phys. Chem. C 125(23), 12469–12477 (2021). https://doi.org/10.1021/acs.jpcc.1c00082
- C. Wang, H. Xie, S. Chen, B. Ge, D. Liu et al., Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 30(32), 1802525 (2018). https://doi.org/10.1002/adma.201802525
- J. Chen, Q. Jin, Y. Li, H. Shao, P. Liu et al., Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12328
- Y. Cao, S. Wei, Q. Zhou, P. Zhang, C. Wang et al., Ti-Cl bonds decorated Ti2NTx MXene towards high-performance lithium-ion batteries. 2D Mater. 10(1), 014001 (2023). https://doi.org/10.1088/2053-1583/ac953b
- P. Liu, B. Guan, M. Lu, H. Wang, Z. Lin, Influence of aqueous solutions treatment on the Li+ storage properties of molten salt derived Ti3C2Clx MXene. Electrochem. Commun. 136, 107236 (2022). https://doi.org/10.1016/j.elecom.2022.107236
- P. Liu, P. Xiao, M. Lu, H. Wang, N. Jin et al., Lithium storage properties of Ti3C2Tx (Tx = F, Cl, Br) MXenes. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.04.024
- E. Goikolea, V. Palomares, S. Wang, I.R. Larramendi, X. Guo et al., Na-ion batteries—approaching old and new challenges. Adv. Energy Mater. 10(44), 2002055 (2020). https://doi.org/10.1002/aenm.202002055
- Y. Liu, C. Gao, R. Zhou, F. Hong, G. Tong et al., Heteroatoms preintercalated Cl-terminated Ti3C2Tx MXene wrapped with mesoporous Fe2O3 nanospheres for improved sodium ion storage. New J. Chem. 47(2), 618–627 (2022). https://doi.org/10.1039/D2NJ05061G
- J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly coupled 2D transition metal chalcogenide-mxene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021). https://doi.org/10.1007/s40820-021-00623-5
- Y.-S. Hu, Y. Li, Unlocking Sustainable Na-ion batteries into industry. ACS Energy Lett. 6(11), 4115–4117 (2021). https://doi.org/10.1021/acsenergylett.1c02292
- D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv. Energy Mater. 6(2), 1501785 (2016). https://doi.org/10.1002/aenm.201501785
- Y.V. Lim, X.L. Li, H.Y. Yang, Recent tactics and advances in the application of metal sulfides as high-performance anode materials for rechargeable sodium-ion batteries. Adv. Funct. Mater. 31(10), 2006761 (2021). https://doi.org/10.1002/adfm.202006761
- Q. Pan, Z. Tong, Y. Su, S. Qin, Y. Tang, Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 31(37), 2103912 (2021). https://doi.org/10.1002/adfm.202103912
- Y. Xiao, F. Yue, Z. Wen, Y. Shen, D. Su et al., Elastic buffering layer on CuS enabling high-rate and long-life sodium-ion storage. Nano-Micro Lett. 14(1), 193 (2022). https://doi.org/10.1007/s40820-022-00924-3
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- J. Chen, Y. Ding, D. Yan, J. Huang, S. Peng, Synthesis of MXene and its application for zinc-ion storage. SusMat 2(3), 293–318 (2022). https://doi.org/10.1002/sus2.57
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline-acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Storage Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
- Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 1, e9120025 (2022). https://doi.org/10.26599/NRE.2022.9120025
- X. Li, M. Li, Z. Huang, G. Liang, Z. Chen et al., Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 14(1), 407–413 (2021). https://doi.org/10.1039/D0EE03086D
- S.H. Chung, A. Manthiram, Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
- H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- S. Huang, R. Guan, S. Wang, M. Xiao, D. Han et al., Polymers for high performance Li-S batteries: material selection and structure design. Prog. Polym. Sci. 89, 19–60 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.005
- Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 31(21), 2100457 (2021). https://doi.org/10.1002/adfm.202100457
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 29(34), 1903842 (2019). https://doi.org/10.1002/adfm.201903842
- X. Xiao, H. Wang, W. Bao, P. Urbankowski, L. Yang et al., Two-dimensional arrays of transition metal nitride nanocrystals. Adv. Mater. 31(33), 1902393 (2019). https://doi.org/10.1002/adma.201902393
- J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 16(10), 15734–15759 (2022). https://doi.org/10.1021/acsnano.2c08581
- Q. Chen, Y. Wei, X. Zhang, Z. Yang, F. Wang et al., Vertically aligned MXene nanosheet arrays for high-rate lithium metal anodes. Adv. Energy Mater. 12(18), 2200072 (2022). https://doi.org/10.1002/aenm.202200072
- C. Wei, Y. Tao, H. Fei, Y. An, Y. Tian et al., Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Mater. 30, 206–227 (2020). https://doi.org/10.1016/j.ensm.2020.05.018
- B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe et al., Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 30(29), 1801334 (2018). https://doi.org/10.1002/adma.201801334
- H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-Ion batteries. Nano-Micro Lett. 14(1), 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
- L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo et al., Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 27, 522–554 (2020). https://doi.org/10.1016/j.ensm.2019.12.014
- C. Zhang, A. Wang, J. Zhang, X. Guan, W. Tang et al., 2D materials for lithium/sodium metal anodes. Adv. Energy Mater. 8(34), 1802833 (2018). https://doi.org/10.1002/aenm.201802833
- Z. Li, K. Zhu, P. Liu, L. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 12(4), 2100359 (2022). https://doi.org/10.1002/aenm.202100359
- C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
- K. Sun, Y. Shen, J. Min, J. Pang, Y. Zheng et al., MOF-derived Zn/Co Co-Doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 454, 140394 (2023). https://doi.org/10.1016/j.cej.2022.140394
- X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16(1), 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
- M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8(19), 1703320 (2018). https://doi.org/10.1002/aenm.201703320
- L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7(23), 13810–13832 (2019). https://doi.org/10.1039/C9TA02678A
- N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai et al., Asymmetric Supercapacitor electrodes and devices. Adv. Mater. 29(21), 1605336 (2017). https://doi.org/10.1002/adma.201605336
- Q. Wu, P. Li, Y. Wang, F. Wu, Construction and electrochemical energy storage performance of free-standing hexagonal Ti3C2 film for flexible supercapacitor. Appl. Surf. Sci. 593, 153380 (2022). https://doi.org/10.1016/j.apsusc.2022.153380
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- U. Khan, Y. Luo, L.B. Kong, W. Que, Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors. J. Alloys Compd. 926, 166903 (2022). https://doi.org/10.1016/j.jallcom.2022.166903
- Y. Zhang, Z. Zhao, C. Luo, X. Wu, W. Chen, Toward understanded the electrochemical capacitance mechanism of MXene by intercalation of inorganic ions and organic macromolecular ions. Appl. Surf. Sci. 578, 152030 (2022). https://doi.org/10.1016/j.apsusc.2021.152030
- C. Jing, B. Dong, Y. Zhang, Chemical modifications of layered double hydroxides in the supercapacitor. Energy Environ. Mater. 3(3), 346–379 (2020). https://doi.org/10.1002/eem2.12116
- D. Zhang, J. Cao, X. Zhang, N. Insin, R. Liu et al., NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for superior supercapacitors. ACS Appl. Energy Mater. 3(6), 5949–5964 (2020). https://doi.org/10.1021/acsaem.0c00863
- Z. Zhao, X. Wu, C. Luo, Y. Wang, W. Chen, Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage. J. Colloid Interface Sci. 609, 393–402 (2022). https://doi.org/10.1016/j.jcis.2021.12.041
- H. Liu, L. Syama, L. Zhang, C. Lee, C. Liu et al., High-entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat 1(4), 482–505 (2021). https://doi.org/10.1002/sus2.32
- J. Pang, B. Chang, H. Liu, W. Zhou, Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 7(1), 78–96 (2022). https://doi.org/10.1021/acsenergylett.1c02132
- A. Rajagopal, K. Yao, A.K. Jen, Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30(32), 1800455 (2018). https://doi.org/10.1002/adma.201800455
- Y. Zhang, L. Xu, J. Sun, Y. Wu, Z. Kan et al., 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance. Adv. Energy Mater. 12(37), 2201269 (2022). https://doi.org/10.1002/aenm.202201269
- L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. 13(1), 78 (2021). https://doi.org/10.1007/s40820-021-00604-8
- X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang et al., Chlorine-terminated MXene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem. Eng. J. 432, 134382 (2022). https://doi.org/10.1016/j.cej.2021.134382
- L. Wang, Y. Hao, L. Deng, F. Hu, S. Zhao et al., Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 13(1), 5785 (2022). https://doi.org/10.1038/s41467-022-33590-5
- K. Khan, A.K. Tareen, M. Iqbal, Y. Zhang, A. Mahmood et al., Recent advance in MXenes: new horizons in electrocatalysis and environmental remediation technologies. Prog. Solid State Chem. 68, 100370 (2022). https://doi.org/10.1016/j.progsolidstchem.2022.100370
- X. Bai, J. Guan, MXenes for electrocatalysis applications: modification and hybridization. Chin. J. Catal. 43(8), 2057–2090 (2022). https://doi.org/10.1016/S1872-2067(21)64030-5
- R. Luo, R. Li, C. Jiang, R. Qi, M. Liu et al., Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media. Int. J. Hydrogen Energy 46(64), 32536–32545 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.110
- J. Jiang, S. Bai, M. Yang, J. Zou, N. Li et al., Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 15(7), 5977–5986 (2022). https://doi.org/10.1007/s12274-022-4276-8
- Z. Wu, H. Zong, B. Fu, Z. Zhang, MXene with controlled surface termination groups for boosting photoelectrochemical water splitting. J. Mater. Chem. A 10(46), 24793–24801 (2022). https://doi.org/10.1039/D2TA06313A
- X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
- Y. Tang, C. Yang, X. Xu, Y. Kang, J. Henzie et al., MXene nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater. 12(12), 2103867 (2022). https://doi.org/10.1002/aenm.202103867
- B. Sarfraz, M.T. Mehran, M.M. Baig, S.R. Naqvi, A.H. Khoja et al., HF free greener Cl-terminated MXene as novel electrocatalyst for overall water splitting in alkaline media. Int. J. Energy Res. 46(8), 10942–10954 (2022). https://doi.org/10.1002/er.7895
- L. Li, I.M.U. Hasan, R. He, L. Peng et al., Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: a review. Nano Res. Energy 1, e9120015 (2022). https://doi.org/10.26599/NRE.2022.9120015
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- Q. Tang, P. Xiong, H. Wang, Z. Wu, Boosted CO2 photoreduction performance on Ru-Ti3CN MXene-TiO2 photocatalyst synthesized by non-HF lewis acidic etching method. J. Colloid Interface Sci. 619, 179–187 (2022). https://doi.org/10.1016/j.jcis.2022.03.137
- Y. Wan, J. Xu, R. Lv, Heterogeneous Electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
- T. Najam, S.S.A. Shah, L. Peng, M.S. Javed, M. Imran et al., Synthesis and nano-engineering of MXenes for energy conversion and storage applications: recent advances and perspectives. Coord. Chem. Rev. 454, 214339 (2022). https://doi.org/10.1016/j.ccr.2021.214339
- S. Xiao, Y. Zheng, X. Wu, M. Zhou, X. Rong et al., Tunable structured MXenes with modulated atomic environments: a powerful new platform for electrocatalytic energy conversion. Small 18(41), 2203281 (2022). https://doi.org/10.1002/smll.202203281
- Y. Wang, Y. Sun, H. Li, W. Zhang, S. Wu et al., Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production. Carbon Neutralization 1(2), 117–125 (2022). https://doi.org/10.1002/cnl2.18
- J. Pang, S. Peng, C. Hou, X. Wang, T. Wang et al., Applications of MXenes in human-like sensors and actuators. Nano Res. (2022). https://doi.org/10.1007/s12274-022-5272-8
- M. Wu, Y. An, R. Yang, Z. Tao, Q. Xia et al., V2CTx and Ti3C2Tx MXenes nanosheets for gas sensing. ACS Appl. Nano Mater. 4(6), 6257–6268 (2021). https://doi.org/10.1021/acsanm.1c01059
- X. Xi, J. Wang, Y. Wang, H. Xiong, M. Chen et al., Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon 197, 476–484 (2022). https://doi.org/10.1016/j.carbon.2022.06.068
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- K. Wang, W. Chu, H. Li, Y. Chen, Y. Cai et al., Ferromagnetic Ti3CNCl2-decorated RGO aerogel: from 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 604, 402–414 (2021). https://doi.org/10.1016/j.jcis.2021.05.166
- C. Chen, X. Zhao, Y. Chen, W. Chu, Y. Wu et al., Photoinduced dual shape programmability of covalent adaptable networks with remarkable mechanical properties. Nano Lett. 22(21), 8413–8421 (2022). https://doi.org/10.1021/acs.nanolett.2c02181
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45(14), 3989–4012 (2016). https://doi.org/10.1039/C5CS00869G
S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
T. Hartman, Z. Sofer, Beyond graphene: chemistry of group 14 graphene analogues: silicene, germanene, and stanene. ACS Nano 13(8), 8566–8576 (2019). https://doi.org/10.1021/acsnano.9b04466
H. Liu, K. Hu, D. Yan, R. Chen, Y. Zou et al., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Adv. Mater. 30(32), 1800295 (2018). https://doi.org/10.1002/adma.201800295
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340(6139), 1226419 (2013). https://doi.org/10.1126/science.1226419
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao et al., Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12(1), 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
Y. Gogotsi, Q. Huang, MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15(4), 5775–5780 (2021). https://doi.org/10.1021/acsnano.1c03161
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi, C. Zhi, MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
Y. An, Y. Tian, J. Feng, Y. Qian, MXenes for advanced separator in rechargeable batteries. Mater. Today 57, 146–179 (2022). https://doi.org/10.1016/j.mattod.2022.06.006
M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1(2), 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao et al., Synthesis and characterization of 2D molybdenum Carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016). https://doi.org/10.1002/adfm.201505328
J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund et al., A two-dimensional zirconium carbide by selective etching of al3c3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55(16), 5008–5013 (2016). https://doi.org/10.1002/anie.201510432
J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao et al., Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11(4), 3841–3850 (2017). https://doi.org/10.1021/acsnano.7b00030
M. Shekhirev, C.E. Shuck, A. Sarycheva, Y. Gogotsi, Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 120, 100757 (2021). https://doi.org/10.1016/j.pmatsci.2020.100757
N.R. Hemanth, B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J. 392, 123678 (2020). https://doi.org/10.1016/j.cej.2019.123678
D. Xiong, X. Li, Z. Bai, S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14(17), 1703419 (2018). https://doi.org/10.1002/smll.201703419
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
S. Zhang, W.Q. Han, Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Phys. Chem. Chem. Phys. 22(29), 16482–16526 (2020). https://doi.org/10.1039/D0CP02275F
B.C. Wyatt, A. Rosenkranz, B. Anasori, 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33(17), 2007973 (2021). https://doi.org/10.1002/adma.202007973
B. Anasori, Y. Gogotsi, MXenes: trends, growth, and future directions. Graphene 2D Mater. 7(3–4), 75–79 (2022). https://doi.org/10.1007/s41127-022-00053-z
M.K. Aslam, Y. Niu, M. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11(2), 2000681 (2020). https://doi.org/10.1002/aenm.202000681
A. Shayesteh Zeraati, S.A. Mirkhani, P. Sun, M. Naguib, P.V. Braun et al., Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13(6), 3572–3580 (2021). https://doi.org/10.1039/D0NR06671K
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared Structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
M. Naguib, M.W. Barsoum, Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33(39), 2103393 (2021). https://doi.org/10.1002/adma.202103393
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher et al., Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14(1), 204–217 (2020). https://doi.org/10.1021/acsnano.9b07708
Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019). https://doi.org/10.1021/acsnano.9b06394
M. Dadashi Firouzjaei, M. Karimiziarani, H. Moradkhani, M. Elliott, B. Anasori, MXenes: the two-dimensional influencers. Mater. Today Adv. 13, 100202 (2022). https://doi.org/10.1016/j.mtadv.2021.100202
B. Ahmed, A.E. Ghazaly, J. Rosen, i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 30(47), 2000894 (2020). https://doi.org/10.1002/adfm.202000894
K. Fan, Y. Ying, X. Luo, H. Huang, Nitride MXenes as sulfur hosts for thermodynamic and kinetic suppression of polysulfide shuttling: a computational study. J. Mater. Chem. A 9(45), 25391–25398 (2021). https://doi.org/10.1039/D1TA06759A
D. Johnson, Z. Qiao, E. Uwadiunor, A. Djire, Holdups in nitride MXene’s development and limitations in advancing the field of MXene. Small 18(17), 2106129 (2022). https://doi.org/10.1002/smll.202106129
J. Nan, X. Guo, J. Xiao, X. Li, W. Chen et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085
T. Su, X. Ma, J. Tong, H. Ji, Z. Qin et al., Surface engineering of MXenes for energy and environmental applications. J. Mater. Chem. A 10(19), 10265–10296 (2022). https://doi.org/10.1039/D2TA01140A
J. Björk, J. Rosen, Functionalizing MXenes by tailoring surface terminations in different chemical environments. Chem. Mater. 33(23), 9108–9118 (2021). https://doi.org/10.1021/acs.chemmater.1c01264
A.S.F. Vladislav Kamysbayev, H. Hu, X. Rui, F. Lagunas, D. Wang et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311
Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the synthesis of 2D MXenes. Adv. Mater. 33(39), 2103148 (2021). https://doi.org/10.1002/adma.202103148
M.S. Bhargava Reddy, S. Kailasa, B.C.G. Marupalli, K.K. Sadasivuni, S. Aich, A family of 2D-MXenes: synthesis, properties, and gas sensing applications. ACS Sens. 7(8), 2132–2163 (2022). https://doi.org/10.1021/acssensors.2c01046
A.R. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng et al., Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 3(1), 29–55 (2020). https://doi.org/10.1002/eem2.12058
D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 6(14), 11173–11179 (2014). https://doi.org/10.1021/am501144q
B.-M. Jun, S. Kim, J. Heo, C.M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12(3), 471–487 (2018). https://doi.org/10.1007/s12274-018-2225-3
X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27(1), 73–85 (2018). https://doi.org/10.1016/j.jechem.2017.08.004
X. Guo, C. Wang, W. Wang, Q. Zhou, W. Xu et al., Vacancy manipulating of molybdenum carbide mxenes to enhance faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 1, e9120026 (2022). https://doi.org/10.26599/NRE.2022.9120026
H.E. Karahan, K. Goh, C.J. Zhang, E. Yang, C. Yildirim et al., MXene materials for designing advanced separation membranes. Adv. Mater. 32(29), 1906697 (2020). https://doi.org/10.1002/adma.201906697
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
C. Tsounis, P.V. Kumar, H. Masood, R.P. Kulkarni, G.S. Gautam et al., Advancing MXene electrocatalysts for energy conversion reactions: surface, stoichiometry, and stability. Angew. Chem. Int. Ed. 62(4), e202210828 (2022). https://doi.org/10.1002/anie.202210828
X. Li, W. You, C. Xu, L. Wang, L. Yang et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13(1), 157 (2021). https://doi.org/10.1007/s40820-021-00680-w
S. Abdolhosseinzadeh, X. Jiang, H. Zhang, J. Qiu, C. Zhang, Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021). https://doi.org/10.1016/j.mattod.2021.02.010
C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan et al., Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10(1), 1795 (2019). https://doi.org/10.1038/s41467-019-09398-1
S. Venkateshalu, M. Shariq, N.K. Chaudhari, K. Lee, A.N. Grace, 2D non-carbide MXenes: an emerging material class for energy storage and conversion. J. Mater. Chem. A 10(38), 20174–20189 (2022). https://doi.org/10.1039/D2TA05392F
Z. Du, C. Wu, Y. Chen, Z. Cao, R. Hu et al., High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33(39), 2101473 (2021). https://doi.org/10.1002/adma.202101473
Q. Tang, Z. Zhou, P. Shen, Are MXenes Promising Anode Materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B. 87(23), 235441 (2013). https://doi.org/10.1103/PhysRevB.87.235441
H. Kim, Z. Wang, H.N. Alshareef, MXetronics: electronic and photonic applications of MXenes. Nano Energy 60, 179–197 (2019). https://doi.org/10.1016/j.nanoen.2019.03.020
K. Wang, H. Jin, H. Li, Z. Mao, L. Tang et al., Role of surface functional groups to superconductivity in Nb2C-MXene: experiments and density functional theory calculations. Surf. Interfaces 29, 101711 (2022). https://doi.org/10.1016/j.surfin.2021.101711
R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019). https://doi.org/10.1016/j.ceramint.2019.06.114
C.E. Shuck, Y. Gogotsi, Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020). https://doi.org/10.1016/j.cej.2020.125786
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide “Clay” with high volumetric capacitance. Nature 516(7529), 78–81 (2014). https://doi.org/10.1038/nature13970
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu et al., A general lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19(8), 894–899 (2020). https://doi.org/10.1038/s41563-020-0657-0
V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker et al., Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). https://doi.org/10.1038/nmat1849
M. Anayee, C.E. Shuck, M. Shekhirev, A. Goad, R. Wang et al., Kinetics of Ti3AlC2 etching for Ti3C2Tx MXene synthesis. Chem. Mater. 34(21), 9589–9600 (2022). https://doi.org/10.1021/acs.chemmater.2c02194
K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi et al., Fundamentals of MXene synthesis. Nat. Synth. 1(8), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
P. Huang, S. Zhang, H. Ying, W. Yang, J. Wang et al., Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 14(4), 1218–1227 (2021). https://doi.org/10.1007/s12274-020-3221-y
P. Huang, S. Zhang, H. Ying, Z. Zhang, W. Han, Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanops for superior sodium-ion batteries. Chem. Eng. J. 417, 129161 (2021). https://doi.org/10.1016/j.cej.2021.129161
C. Huang, S. Shi, H. Yu, Work function adjustment of Nb2CTx nanoflakes as hole and electron transport layers in organic solar cells by controlling surface functional groups. ACS Energy Lett. 6(10), 3464–3472 (2021). https://doi.org/10.1021/acsenergylett.1c01656
D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022). https://doi.org/10.1021/acsnano.1c09639
S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen et al., Li-Ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater. 8, 42–48 (2017). https://doi.org/10.1016/j.ensm.2017.03.012
G. Liang, X. Li, Y. Wang, S. Yang, Z. Huang et al., Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 1, e9120002 (2022). https://doi.org/10.26599/NRE.2022.9120002
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4(1), 1716 (2013). https://doi.org/10.1038/ncomms2664
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 44(20), 9353–9358 (2015). https://doi.org/10.1039/C5DT01247C
O. Mashtalir, M.R. Lukatskaya, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27(23), 3501–3506 (2015). https://doi.org/10.1002/adma.201500604
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman et al., New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013). https://doi.org/10.1021/ja405735d
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter et al., Selective etching of silicon from Ti3SiC2 (MAX) To obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57(19), 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016). https://doi.org/10.1021/acsnano.6b05240
A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016). https://doi.org/10.1002/aelm.201600255
F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen et al., Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 164(4), A709–A713 (2017). https://doi.org/10.1149/2.0641704jes
B. Soundiraraju, B.K. George, Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11(9), 8892–8900 (2017). https://doi.org/10.1021/acsnano.7b03129
X. Wang, C. Garnero, G. Rochard, D. Magne, S. Morisset et al., A New etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A 5(41), 22012–22023 (2017). https://doi.org/10.1039/C7TA01082F
M. Guo, W.-C. Geng, C. Liu, J. Gu, Z. Zhang et al., Ultrahigh areal capacitance of flexible MXene electrodes: electrostatic and steric effects of terminations. Chem. Mater. 32(19), 8257–8265 (2020). https://doi.org/10.1021/acs.chemmater.0c02026
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014). https://doi.org/10.1021/cm500641a
A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu et al., Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 114, 161–166 (2017). https://doi.org/10.1016/j.matdes.2016.10.053
V. Natu, R. Pai, M. Sokol, M. Carey, V. Kalra et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020). https://doi.org/10.1016/j.chempr.2020.01.019
M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53(19), 4877–4880 (2014). https://doi.org/10.1002/anie.201402513
M.-Q. Zhao, M. Sedran, Z. Ling, M.R. Lukatskaya, O. Mashtalir et al., Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew. Chem. Int. Ed. 54(16), 4810–4814 (2015). https://doi.org/10.1002/anie.201500110
W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao et al., Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57(47), 15491–15495 (2018). https://doi.org/10.1002/anie.201809662
S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578
X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie et al., Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 6(19), 11035–11040 (2014). https://doi.org/10.1039/C4NR02080D
T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018). https://doi.org/10.1002/anie.201800887
S. Zhang, H. Ying, P. Huang, T. Yang, W.-Q. Han, Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 15(3), 2746–2755 (2021). https://doi.org/10.1007/s12274-021-3847-4
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016). https://doi.org/10.1039/C6NR02253G
H. Zong, R. Qi, K. Yu, Z. Zhu, Ultrathin Ti2NTx MXene-wrapped MOF-derived CoP frameworks towards hydrogen evolution and water oxidation. Electrochim. Acta 393, 139068 (2021). https://doi.org/10.1016/j.electacta.2021.139068
P. Urbankowski, B. Anasori, K. Hantanasirisakul, L. Yang, L. Zhang et al., 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale 9(45), 17722–17730 (2017). https://doi.org/10.1039/C7NR06721F
J. Mei, G.A. Ayoko, C. Hu, J.M. Bell, Z. Sun, Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 25, e00156 (2020). https://doi.org/10.1016/j.susmat.2020.e00156
J. Mei, G.A. Ayoko, C. Hu, Z. Sun, Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 395, 125111 (2020). https://doi.org/10.1016/j.cej.2020.125111
H. Shi, P. Zhang, Z. Liu, S. Park, M.R. Lohe et al., Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60(16), 8689–8693 (2021). https://doi.org/10.1002/anie.202015627
A. Jawaid, A. Hassan, G. Neher, D. Nepal, R. Pachter et al., Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15(2), 2771–2777 (2021). https://doi.org/10.1021/acsnano.0c08630
S. Husmann, O. Budak, H. Shim, K. Liang, M. Aslan et al., Ionic liquid-based synthesis of MXene. Chem. Commun. 56(75), 11082–11085 (2020). https://doi.org/10.1039/D0CC03189E
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015). https://doi.org/10.1038/nmat4374
G. Ma, H. Shao, J. Xu, Y. Liu, Q. Huang et al., Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 12(1), 5085 (2021). https://doi.org/10.1038/s41467-021-25306-y
M. Zhang, R. Liang, N. Yang, R. Gao, Y. Zheng et al., Eutectic etching toward in-plane porosity manipulation of Cl-terminated MXene for high-performance dual-ion battery anode. Adv. Energy Mater. 12(1), 2102493 (2022). https://doi.org/10.1002/aenm.202102493
J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto et al., Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10(1), 522 (2019). https://doi.org/10.1038/s41467-018-08169-8
J. Jiang, S. Bai, J. Zou, S. Liu, J.-P. Hsu et al., Improving stability of MXenes. Nano Res. 15(7), 6551–6567 (2022). https://doi.org/10.1007/s12274-022-4312-8
Y. Jiang, Y. Zhang, Q. Huang, L. Hao, S. Du, The compositional dependence of structural stability and resulting properties for Mn+1CnT2 (M = Sc, Ti, V; T = O, OH, F, Cl, Br and I; n = 1, 2): First-principle investigations. J. Mater. Res. Technol. 9(6), 14979–14989 (2020). https://doi.org/10.1016/j.jmrt.2020.10.083
P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, Multidimensional synergistic architecture of Ti3C2 MXene/CoS2@N-doped carbon for sodium-ion batteries with ultralong cycle lifespan. Chem. Eng. J. 429, 132396 (2022). https://doi.org/10.1016/j.cej.2021.132396
X. Guo, J. Zhang, J. Song, W. Wu, H. Liu et al., MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 14, 306–313 (2018). https://doi.org/10.1016/j.ensm.2018.05.010
H. Dong, P. Xiao, N. Jin, B. Wang, Y. Liu et al., Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem 8(5), 957–962 (2021). https://doi.org/10.1002/celc.202100142
Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi et al., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136(17), 6385–6394 (2014). https://doi.org/10.1021/ja501520b
Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum et al., Prediction and Characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014). https://doi.org/10.1021/nn503921j
Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng et al., MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem. Int. Ed. 60(48), 25318–25322 (2021). https://doi.org/10.1002/anie.202112381
M. Li, X. Li, G. Qin, K. Luo, J. Lu et al., Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15(1), 1077–1085 (2021). https://doi.org/10.1021/acsnano.0c07972
J. Lu, I. Persson, H. Lind, J. Palisaitis, M. Li et al., Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv. 1(9), 3680–3685 (2019). https://doi.org/10.1039/C9NA00324J
S.-S. Cui, X. Liu, Y.-B. Shi, M.-Y. Ding, X.-F. Yang, Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance. Rare Met. 41(7), 2405–2416 (2022). https://doi.org/10.1007/s12598-022-02011-3
L. Liu, H. Zschiesche, M. Antonietti, B. Daffos, N.V. Tarakina et al., Tuning the surface chemistry of MXene to improve energy storage: example of nitrification by salt melt. Adv. Energy Mater. 13(2), 2202709 (2022). https://doi.org/10.1002/aenm.202202709
S. Sardar, A. Jana, Covalent surface alteration of MXenes and its effect on superconductivity. Matter 3(5), 1397–1399 (2020). https://doi.org/10.1016/j.matt.2020.10.007
T. Zhang, L. Chang, X. Zhang, H. Wan, N. Liu et al., Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides. Nat. Commun. 13(1), 6731 (2022). https://doi.org/10.1038/s41467-022-34569-y
J. Wu, M. Ihsan-Ul-Haq, F. Ciucci, B. Huang, J.-K. Kim, Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries. Energy Storage Mater. 34, 582–628 (2021). https://doi.org/10.1016/j.ensm.2020.10.007
Y. Xie, J. Hu, Z. Han, T. Wang, J. Zheng et al., Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 30, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.05.008
H. Wang, X. Li, Y. Jiang, M. Li, Q. Xiao et al., A universal single-atom coating strategy based on tannic acid chemistry for multifunctional heterogeneous catalysis. Angew. Chem. Int. Ed. 61(14), e202200465 (2022). https://doi.org/10.1002/anie.202200465
H.J. Kwon, J.-H. Park, S.J. Suh, Multilayered Cu/NiFe thin films for electromagnetic interference shielding at high frequency. J. Alloys Compd. 914, 165330 (2022). https://doi.org/10.1016/j.jallcom.2022.165330
J.-D. Musah, A.M. Ilyas, S. Venkatesh, S. Mensah, S. Kwofie et al., Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation–a critical review. Nano Res. Energy 1, 9120034 (2022). https://doi.org/10.26599/NRE.2022.9120034
S. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14(12), 17665–17674 (2020). https://doi.org/10.1021/acsnano.0c08770
X. Liu, F. Xu, Z. Li, Z. Liu, W. Yang et al., Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord. Chem. Rev. 464, 214544 (2022). https://doi.org/10.1016/j.ccr.2022.214544
H. Saini, N. Srinivasan, V. Sedajova, M. Majumder, D.P. Dubal et al., Emerging MXene@metal-organic framework hybrids: design strategies toward versatile applications. ACS Nano 15(12), 18742–18776 (2021). https://doi.org/10.1021/acsnano.1c06402
S. Zhou, Y. Zhao, R. Shi, Y. Wang, A. Ashok et al., Vacancy-rich MXene-immobilized Ni single atoms as a high-performance electrocatalyst for the hydrazine oxidation reaction. Adv. Mater. 34(36), 2204388 (2022). https://doi.org/10.1002/adma.202204388
J. Chen, X. Yuan, F. Lyu, Q. Zhong, H. Hu et al., Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 7(3), 1281–1286 (2019). https://doi.org/10.1039/C8TA10574J
X. Xu, Y. Zhang, H. Sun, J. Zhou, Z. Liu et al., Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv. Mater. 33(31), 2100272 (2021). https://doi.org/10.1002/adma.202100272
W. Peng, J. Han, Y.R. Lu, M. Luo, T.S. Chan et al., A general strategy for engineering single-metal sites on 3D porous N, P Co-doped Ti3C2Tx MXene. ACS Nano 16(3), 4116–4125 (2022). https://doi.org/10.1021/acsnano.1c09841
Y. Tian, Y. An, S. Xiong, J. Feng, Y. Qian, A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 7(16), 9716–9725 (2019). https://doi.org/10.1039/C9TA02233C
Q. Li, T. Song, Z. Wang, X. Wang, X. Zhou et al., A general strategy toward metal sulfide nanops confined in a sulfur-doped Ti3C2Tx MXene 3D porous aerogel for efficient ambient N2 electroreduction. Small 17(45), 2103305 (2021). https://doi.org/10.1002/smll.202103305
J. Li, Z. Li, X. Liu, C. Li, Y. Zheng et al., Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 12(1), 1224 (2021). https://doi.org/10.1038/s41467-021-21435-6
L. Han, X. Peng, H.-T. Wang, P. Ou, Y. Mi et al., Chemically coupling SnO2 quantum dots and MXene for efficient CO2 electroreduction to formate and Zn-CO2 battery. Proc. Natl. Acad. Sci. USA 119(42), e2207326119 (2022). https://doi.org/10.1073/pnas.2207326119
Z. Wu, S. Zhu, X. Bai, M. Liang, X. Zhang et al., One-step in-situ synthesis of Sn-nanoconfined Ti3C2Tx MXene composites for Li-ion battery anode. Electrochim. Acta 407, 139916 (2022). https://doi.org/10.1016/j.electacta.2022.139916
C. Yang, Y. Li, W. Peng, F. Zhang, X. Fan, In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chem. Eng. J. 427, 131792 (2022). https://doi.org/10.1016/j.cej.2021.131792
P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv. Energy Mater. 12(39), 2202052 (2022). https://doi.org/10.1002/aenm.202202052
P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, In situ fabrication of MXene/CuS Hybrids with Interfacial Covalent Bonding via Lewis acidic etching route for efficient sodium storage. J. Mater. Chem. A 10(41), 22135–22144 (2022). https://doi.org/10.1039/D2TA06695E
A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32(8), 3480–3488 (2020). https://doi.org/10.1021/acs.chemmater.0c00359
M. Shekhirev, Y. Ogawa, C.E. Shuck, M. Anayee, T. Torita et al., Delamination of Ti3C2Tx nanosheets with NaCl and KCl for improved environmental stability of MXene films. ACS Appl. Nano Mater. 5(11), 16027–16032 (2022). https://doi.org/10.1021/acsanm.2c03701
M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
S. Zhang, P. Huang, J. Wang, Z. Zhuang, Z. Zhang et al., Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J. Phys. Chem. Lett. 11(4), 1247–1254 (2020). https://doi.org/10.1021/acs.jpclett.9b03682
L. Liu, M. Orbay, S. Luo, S. Duluard, H. Shao et al., Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 16(1), 111–118 (2022). https://doi.org/10.1021/acsnano.1c08498
K. Arole, J.W. Blivin, S. Saha, D.E. Holta, X. Zhao et al., Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience 24(12), 103403 (2021). https://doi.org/10.1016/j.isci.2021.103403
K. Arole, J.W. Blivin, A.M. Bruce, S. Athavale, I.J. Echols et al., Exfoliation, delamination, and oxidation stability of molten salt etched Nb2CTz MXene nanosheets. Chem. Commun. 58(73), 10202–10205 (2022). https://doi.org/10.1039/D2CC02237K
J. Gu, Q. Zhu, Y. Shi, H. Chen, D. Zhang et al., Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 14(1), 891–898 (2020). https://doi.org/10.1021/acsnano.9b08141
D. Zhang, S. Wang, R. Hu, J. Gu, Y. Cui et al., Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 30(30), 2002471 (2020). https://doi.org/10.1002/adfm.202002471
Q. Zhao, C. Zhang, R. Hu, Z. Du, J. Gu et al., Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 15(3), 4927–4936 (2021). https://doi.org/10.1021/acsnano.0c09755
Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang et al., Tailored lattice “Tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr 3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv. Sci. 8(19), 2101418 (2021). https://doi.org/10.1002/advs.202101418
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin et al., Rechargeable batteries for grid scale energy storage. Chem. Rev. 122(22), 16610–16751 (2022). https://doi.org/10.1021/acs.chemrev.2c00289
S. Wang, S. Zhao, X. Guo, G. Wang, 2D material-based heterostructures for rechargeable batteries. Adv. Energy Mater. 12(4), 2100864 (2022). https://doi.org/10.1002/aenm.202100864
Y. Dong, H. Shi, Z.S. Wu, Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30(47), 2000706 (2020). https://doi.org/10.1002/adfm.202000706
M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik et al., Rechargeable batteries of the future—the state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 12(17), 2102904 (2022). https://doi.org/10.1002/aenm.202102904
J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018). https://doi.org/10.1002/adma.201800561
Q. Liu, Y. Hu, X. Yu, Y. Qin, T. Meng et al., The pursuit of commercial silicon-based microp anodes for advanced lithium-ion batteries: a review. Nano Res. Energy 1, e9120037 (2022). https://doi.org/10.26599/NRE.2022.9120037
D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026
T. Zhang, L. Pan, H. Tang, F. Du, Y. Guo et al., Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 695, 818–826 (2017). https://doi.org/10.1016/j.jallcom.2016.10.127
S. Zhang, H. Ying, B. Yuan, R. Hu, W.-Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 12(1), 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna et al., MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012). https://doi.org/10.1016/j.elecom.2012.01.002
J. Hu, B. Xu, C. Ouyang, S.A. Yang, Y. Yao, Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for Li ion batteries from first-principles calculations. J. Phys. Chem. C 118(42), 24274–24281 (2014). https://doi.org/10.1021/jp507336x
E.M.D. Siriwardane, J. Hu, First-principles investigation of Ti2CSO and Ti2CSSe Janus MXene structures for Li and Mg electrodes. J. Phys. Chem. C 125(23), 12469–12477 (2021). https://doi.org/10.1021/acs.jpcc.1c00082
C. Wang, H. Xie, S. Chen, B. Ge, D. Liu et al., Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 30(32), 1802525 (2018). https://doi.org/10.1002/adma.201802525
J. Chen, Q. Jin, Y. Li, H. Shao, P. Liu et al., Molten salt-shielded synthesis (MS3) of MXenes in air. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12328
Y. Cao, S. Wei, Q. Zhou, P. Zhang, C. Wang et al., Ti-Cl bonds decorated Ti2NTx MXene towards high-performance lithium-ion batteries. 2D Mater. 10(1), 014001 (2023). https://doi.org/10.1088/2053-1583/ac953b
P. Liu, B. Guan, M. Lu, H. Wang, Z. Lin, Influence of aqueous solutions treatment on the Li+ storage properties of molten salt derived Ti3C2Clx MXene. Electrochem. Commun. 136, 107236 (2022). https://doi.org/10.1016/j.elecom.2022.107236
P. Liu, P. Xiao, M. Lu, H. Wang, N. Jin et al., Lithium storage properties of Ti3C2Tx (Tx = F, Cl, Br) MXenes. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.04.024
E. Goikolea, V. Palomares, S. Wang, I.R. Larramendi, X. Guo et al., Na-ion batteries—approaching old and new challenges. Adv. Energy Mater. 10(44), 2002055 (2020). https://doi.org/10.1002/aenm.202002055
Y. Liu, C. Gao, R. Zhou, F. Hong, G. Tong et al., Heteroatoms preintercalated Cl-terminated Ti3C2Tx MXene wrapped with mesoporous Fe2O3 nanospheres for improved sodium ion storage. New J. Chem. 47(2), 618–627 (2022). https://doi.org/10.1039/D2NJ05061G
J. Cao, J. Li, D. Li, Z. Yuan, Y. Zhang et al., Strongly coupled 2D transition metal chalcogenide-mxene-carbonaceous nanoribbon heterostructures with ultrafast ion transport for boosting sodium/potassium ions storage. Nano-Micro Lett. 13(1), 113 (2021). https://doi.org/10.1007/s40820-021-00623-5
Y.-S. Hu, Y. Li, Unlocking Sustainable Na-ion batteries into industry. ACS Energy Lett. 6(11), 4115–4117 (2021). https://doi.org/10.1021/acsenergylett.1c02292
D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv. Energy Mater. 6(2), 1501785 (2016). https://doi.org/10.1002/aenm.201501785
Y.V. Lim, X.L. Li, H.Y. Yang, Recent tactics and advances in the application of metal sulfides as high-performance anode materials for rechargeable sodium-ion batteries. Adv. Funct. Mater. 31(10), 2006761 (2021). https://doi.org/10.1002/adfm.202006761
Q. Pan, Z. Tong, Y. Su, S. Qin, Y. Tang, Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 31(37), 2103912 (2021). https://doi.org/10.1002/adfm.202103912
Y. Xiao, F. Yue, Z. Wen, Y. Shen, D. Su et al., Elastic buffering layer on CuS enabling high-rate and long-life sodium-ion storage. Nano-Micro Lett. 14(1), 193 (2022). https://doi.org/10.1007/s40820-022-00924-3
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
J. Chen, Y. Ding, D. Yan, J. Huang, S. Peng, Synthesis of MXene and its application for zinc-ion storage. SusMat 2(3), 293–318 (2022). https://doi.org/10.1002/sus2.57
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline-acid hybrid electrolyte for zinc-bromine battery with 3 V voltage window. Energy Storage Mater. 19, 56–61 (2019). https://doi.org/10.1016/j.ensm.2019.02.024
Y. Tian, S. Chen, Y. He, Q. Chen, L. Zhang et al., A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 1, e9120025 (2022). https://doi.org/10.26599/NRE.2022.9120025
X. Li, M. Li, Z. Huang, G. Liang, Z. Chen et al., Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 14(1), 407–413 (2021). https://doi.org/10.1039/D0EE03086D
S.H. Chung, A. Manthiram, Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31(27), 1901125 (2019). https://doi.org/10.1002/adma.201901125
H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
S. Huang, R. Guan, S. Wang, M. Xiao, D. Han et al., Polymers for high performance Li-S batteries: material selection and structure design. Prog. Polym. Sci. 89, 19–60 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.005
Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 31(21), 2100457 (2021). https://doi.org/10.1002/adfm.202100457
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 8(13), 1702485 (2018). https://doi.org/10.1002/aenm.201702485
C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li et al., Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 29(34), 1903842 (2019). https://doi.org/10.1002/adfm.201903842
X. Xiao, H. Wang, W. Bao, P. Urbankowski, L. Yang et al., Two-dimensional arrays of transition metal nitride nanocrystals. Adv. Mater. 31(33), 1902393 (2019). https://doi.org/10.1002/adma.201902393
J. Wu, T. Ye, Y. Wang, P. Yang, Q. Wang et al., Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 16(10), 15734–15759 (2022). https://doi.org/10.1021/acsnano.2c08581
Q. Chen, Y. Wei, X. Zhang, Z. Yang, F. Wang et al., Vertically aligned MXene nanosheet arrays for high-rate lithium metal anodes. Adv. Energy Mater. 12(18), 2200072 (2022). https://doi.org/10.1002/aenm.202200072
C. Wei, Y. Tao, H. Fei, Y. An, Y. Tian et al., Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Mater. 30, 206–227 (2020). https://doi.org/10.1016/j.ensm.2020.05.018
B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe et al., Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 30(29), 1801334 (2018). https://doi.org/10.1002/adma.201801334
H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-Ion batteries. Nano-Micro Lett. 14(1), 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo et al., Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 27, 522–554 (2020). https://doi.org/10.1016/j.ensm.2019.12.014
C. Zhang, A. Wang, J. Zhang, X. Guan, W. Tang et al., 2D materials for lithium/sodium metal anodes. Adv. Energy Mater. 8(34), 1802833 (2018). https://doi.org/10.1002/aenm.201802833
Z. Li, K. Zhu, P. Liu, L. Jiao, 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 12(4), 2100359 (2022). https://doi.org/10.1002/aenm.202100359
C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
K. Sun, Y. Shen, J. Min, J. Pang, Y. Zheng et al., MOF-derived Zn/Co Co-Doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 454, 140394 (2023). https://doi.org/10.1016/j.cej.2022.140394
X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 MXenes. ACS Nano 16(1), 813–822 (2022). https://doi.org/10.1021/acsnano.1c08358
M. Wang, Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8(19), 1703320 (2018). https://doi.org/10.1002/aenm.201703320
L. Dong, W. Yang, W. Yang, Y. Li, W. Wu et al., Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 7(23), 13810–13832 (2019). https://doi.org/10.1039/C9TA02678A
N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai et al., Asymmetric Supercapacitor electrodes and devices. Adv. Mater. 29(21), 1605336 (2017). https://doi.org/10.1002/adma.201605336
Q. Wu, P. Li, Y. Wang, F. Wu, Construction and electrochemical energy storage performance of free-standing hexagonal Ti3C2 film for flexible supercapacitor. Appl. Surf. Sci. 593, 153380 (2022). https://doi.org/10.1016/j.apsusc.2022.153380
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
U. Khan, Y. Luo, L.B. Kong, W. Que, Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors. J. Alloys Compd. 926, 166903 (2022). https://doi.org/10.1016/j.jallcom.2022.166903
Y. Zhang, Z. Zhao, C. Luo, X. Wu, W. Chen, Toward understanded the electrochemical capacitance mechanism of MXene by intercalation of inorganic ions and organic macromolecular ions. Appl. Surf. Sci. 578, 152030 (2022). https://doi.org/10.1016/j.apsusc.2021.152030
C. Jing, B. Dong, Y. Zhang, Chemical modifications of layered double hydroxides in the supercapacitor. Energy Environ. Mater. 3(3), 346–379 (2020). https://doi.org/10.1002/eem2.12116
D. Zhang, J. Cao, X. Zhang, N. Insin, R. Liu et al., NiMn layered double hydroxide nanosheets in-situ anchored on Ti3C2 MXene via chemical bonds for superior supercapacitors. ACS Appl. Energy Mater. 3(6), 5949–5964 (2020). https://doi.org/10.1021/acsaem.0c00863
Z. Zhao, X. Wu, C. Luo, Y. Wang, W. Chen, Rational design of Ti3C2Cl2 MXenes nanodots-interspersed MXene@NiAl-layered double hydroxides for enhanced pseudocapacitor storage. J. Colloid Interface Sci. 609, 393–402 (2022). https://doi.org/10.1016/j.jcis.2021.12.041
H. Liu, L. Syama, L. Zhang, C. Lee, C. Liu et al., High-entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat 1(4), 482–505 (2021). https://doi.org/10.1002/sus2.32
J. Pang, B. Chang, H. Liu, W. Zhou, Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 7(1), 78–96 (2022). https://doi.org/10.1021/acsenergylett.1c02132
A. Rajagopal, K. Yao, A.K. Jen, Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater. 30(32), 1800455 (2018). https://doi.org/10.1002/adma.201800455
Y. Zhang, L. Xu, J. Sun, Y. Wu, Z. Kan et al., 24.11% high performance perovskite solar cells by dual interfacial carrier mobility enhancement and charge-carrier transport balance. Adv. Energy Mater. 12(37), 2201269 (2022). https://doi.org/10.1002/aenm.202201269
L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. 13(1), 78 (2021). https://doi.org/10.1007/s40820-021-00604-8
X. Liu, Z. Zhang, J. Jiang, C. Tian, X. Wang et al., Chlorine-terminated MXene quantum dots for improving crystallinity and moisture stability in high-performance perovskite solar cells. Chem. Eng. J. 432, 134382 (2022). https://doi.org/10.1016/j.cej.2021.134382
L. Wang, Y. Hao, L. Deng, F. Hu, S. Zhao et al., Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction. Nat. Commun. 13(1), 5785 (2022). https://doi.org/10.1038/s41467-022-33590-5
K. Khan, A.K. Tareen, M. Iqbal, Y. Zhang, A. Mahmood et al., Recent advance in MXenes: new horizons in electrocatalysis and environmental remediation technologies. Prog. Solid State Chem. 68, 100370 (2022). https://doi.org/10.1016/j.progsolidstchem.2022.100370
X. Bai, J. Guan, MXenes for electrocatalysis applications: modification and hybridization. Chin. J. Catal. 43(8), 2057–2090 (2022). https://doi.org/10.1016/S1872-2067(21)64030-5
R. Luo, R. Li, C. Jiang, R. Qi, M. Liu et al., Facile synthesis of cobalt modified 2D titanium carbide with enhanced hydrogen evolution performance in alkaline media. Int. J. Hydrogen Energy 46(64), 32536–32545 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.110
J. Jiang, S. Bai, M. Yang, J. Zou, N. Li et al., Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 15(7), 5977–5986 (2022). https://doi.org/10.1007/s12274-022-4276-8
Z. Wu, H. Zong, B. Fu, Z. Zhang, MXene with controlled surface termination groups for boosting photoelectrochemical water splitting. J. Mater. Chem. A 10(46), 24793–24801 (2022). https://doi.org/10.1039/D2TA06313A
X. Li, L. Zhao, J. Yu, X. Liu, X. Zhang et al., Water splitting: from electrode to green energy system. Nano-Micro Lett. 12(1), 131 (2020). https://doi.org/10.1007/s40820-020-00469-3
Y. Tang, C. Yang, X. Xu, Y. Kang, J. Henzie et al., MXene nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater. 12(12), 2103867 (2022). https://doi.org/10.1002/aenm.202103867
B. Sarfraz, M.T. Mehran, M.M. Baig, S.R. Naqvi, A.H. Khoja et al., HF free greener Cl-terminated MXene as novel electrocatalyst for overall water splitting in alkaline media. Int. J. Energy Res. 46(8), 10942–10954 (2022). https://doi.org/10.1002/er.7895
L. Li, I.M.U. Hasan, R. He, L. Peng et al., Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: a review. Nano Res. Energy 1, e9120015 (2022). https://doi.org/10.26599/NRE.2022.9120015
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48(1), 72–133 (2019). https://doi.org/10.1039/C8CS00324F
Q. Tang, P. Xiong, H. Wang, Z. Wu, Boosted CO2 photoreduction performance on Ru-Ti3CN MXene-TiO2 photocatalyst synthesized by non-HF lewis acidic etching method. J. Colloid Interface Sci. 619, 179–187 (2022). https://doi.org/10.1016/j.jcis.2022.03.137
Y. Wan, J. Xu, R. Lv, Heterogeneous Electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
T. Najam, S.S.A. Shah, L. Peng, M.S. Javed, M. Imran et al., Synthesis and nano-engineering of MXenes for energy conversion and storage applications: recent advances and perspectives. Coord. Chem. Rev. 454, 214339 (2022). https://doi.org/10.1016/j.ccr.2021.214339
S. Xiao, Y. Zheng, X. Wu, M. Zhou, X. Rong et al., Tunable structured MXenes with modulated atomic environments: a powerful new platform for electrocatalytic energy conversion. Small 18(41), 2203281 (2022). https://doi.org/10.1002/smll.202203281
Y. Wang, Y. Sun, H. Li, W. Zhang, S. Wu et al., Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production. Carbon Neutralization 1(2), 117–125 (2022). https://doi.org/10.1002/cnl2.18
J. Pang, S. Peng, C. Hou, X. Wang, T. Wang et al., Applications of MXenes in human-like sensors and actuators. Nano Res. (2022). https://doi.org/10.1007/s12274-022-5272-8
M. Wu, Y. An, R. Yang, Z. Tao, Q. Xia et al., V2CTx and Ti3C2Tx MXenes nanosheets for gas sensing. ACS Appl. Nano Mater. 4(6), 6257–6268 (2021). https://doi.org/10.1021/acsanm.1c01059
X. Xi, J. Wang, Y. Wang, H. Xiong, M. Chen et al., Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon 197, 476–484 (2022). https://doi.org/10.1016/j.carbon.2022.06.068
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
K. Wang, W. Chu, H. Li, Y. Chen, Y. Cai et al., Ferromagnetic Ti3CNCl2-decorated RGO aerogel: from 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 604, 402–414 (2021). https://doi.org/10.1016/j.jcis.2021.05.166
C. Chen, X. Zhao, Y. Chen, W. Chu, Y. Wu et al., Photoinduced dual shape programmability of covalent adaptable networks with remarkable mechanical properties. Nano Lett. 22(21), 8413–8421 (2022). https://doi.org/10.1021/acs.nanolett.2c02181