Partial Atomic Tin Nanocomplex Pillared Few-Layered Ti3C2Tx MXenes for Superior Lithium-Ion Storage
Corresponding Author: Wei‑Qiang Han
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 78
Abstract
MXenes have attracted great interest in various fields, and pillared MXenes open a new path with larger interlayer spacing. However, the further study of pillared MXenes is blocked at multilayered state due to serious restacking phenomenon of few-layered MXene nanosheets. In this work, for the first time, we designed a facile NH4+ method to fundamentally solve the restacking issues of MXene nanosheets and succeeded in achieving pillared few-layered MXene. Sn nanocomplex pillared few-layered Ti3C2Tx (STCT) composites were synthesized by introducing atomic Sn nanocomplex into interlayer of pillared few-layered Ti3C2Tx MXenes via pillaring technique. The MXene matrix can inhibit Sn nanocomplex particles agglomeration and serve as conductive network. Meanwhile, the Sn nanocomplex particles can further open the interlayer spacing of Ti3C2Tx during lithiation/delithiation processes and therefore generate extra capacity. Benefiting from the “pillar effect,” the STCT composites can maintain 1016 mAh g−1 after 1200 cycles at 2000 mA g−1 and deliver a stable capacity of 680 mAh g−1 at 5 A g−1, showing one of the best performances among MXene-based composites. This work will provide a new way for the development of pillared MXenes and their energy storage due to significant breakthrough from multilayered state to few-layered one.
Highlights:
1 A facile NH4+ method was proposed to prepare Sn nanocomplex pillared few-layered Ti3C2Tx MXene nanosheets.
2 The MXene nanosheets showed excellent lithium-ion storage performances among MXene-based materials, which can maintain 1016 mAh g−1 after 1200 cycles at 2000 mA g−1 and deliver a stable capacity of 680 mAh g−1 at 5 A g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.J. Yoon, J.H. Yang, Z. Zhou, S.S. Yang, M.M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuat. B 157(1), 310–313 (2011). https://doi.org/10.1016/j.snb.2011.03.035
- P. Li, J.Y. Jeong, B. Jin, K. Zhang, J.H. Park, Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv. Energy Mater. 8(19), 1703300 (2018). https://doi.org/10.1002/aenm.201703300
- A. Kuang, T. Zhou, G. Wang, Y. Li, G. Wu, H. Yuan, H. Chen, X. Yang, Dehydrogenation of ammonia borane catalyzed by pristine and defective h-BN sheets. Appl. Surf. Sci. 362, 562–571 (2016). https://doi.org/10.1016/j.apsusc.2015.11.011
- C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin Two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
- W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green, Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
- D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li–ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026
- N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo, K. Lee Mxene, An emerging Two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5(47), 24564–24579 (2017). https://doi.org/10.1039/C7TA09094C
- C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi, D.-E. Jiang, Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9(6), 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
- L. Huan, Z. Xin, Z. Yifan, C. Bin, Z. Qizhen et al., Electrostatic self-assembly of 0d–2d SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
- Z. Peng, W. Danjun, Z. Qizhen, S. Ning, F. Feng, X. Bin, Plate-to-layer Bi2MoO6/MXene heterostructure as high performance anode material for lithium ion batteries. Nano-Micro Lett. 11, 81 (2019). https://doi.org/10.1007/s40820-019-0312-y
- Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang et al., Rational design of flexible Two-dimensional mxenes with multiple functionalities. Chem. Rev. 119(23), 11980–12031 (2019). https://doi.org/10.1021/acs.chemrev.9b00348
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- C. Wang, H. Xie, S. Chen, B. Ge, D. Liu et al., Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 30(32), 1802525 (2018). https://doi.org/10.1002/adma.201802525
- M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
- C. Wang, S. Chen, H. Xie, S. Wei, C. Wu, L. Song, Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv. Energy Mater. 9(4), 1802977 (2019). https://doi.org/10.1002/aenm.201802977
- J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
- S. Zheng, C. Zhang, F. Zhou, Y. Dong, X. Shi, V. Nicolosi, Z.-S. Wu, X. Bao, Ionic liquid pre-intercalated mxene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A 7(16), 9478–9485 (2019). https://doi.org/10.1039/C9TA02190F
- M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
- Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
- Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
- X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
- Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li–ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
- J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
- J. Luo, C. Wang, H. Wang, X. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019). https://doi.org/10.1002/adfm.201805946
- M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12(4), 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
- V.M. Hong Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/C6TA06772G
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- Y. Wu, P. Nie, J. Wang, H. Dou, X. Zhang, Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl. Mater. Interfaces 9(45), 39610–39617 (2017). https://doi.org/10.1021/acsami.7b12155
- H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13(3), 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
- C. Zeng, F. Xie, X. Yang, M. Jaroniec, L. Zhang, S.-Z. Qiao, Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem. Int. Ed. 57(28), 8540–8544 (2018). https://doi.org/10.1002/anie.201803511
- C. Eames, M.S. Islam, Ion intercalation into Two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136(46), 16270–16276 (2014). https://doi.org/10.1021/ja508154e
- R. Fang, C. Lu, A. Chen, K. Wang, H. Huang et al., 2D MXene-based energy storage materials: interfacial structure design and functionalization. Chemsuschem 12, 1–12 (2019). https://doi.org/10.1002/cssc.201902537
- V. Natu, M. Clites, E. Pomerantseva, M.W. Barsoum, Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater. Res. Lett. 6(4), 230–235 (2018). https://doi.org/10.1080/21663831.2018.1434249
- H. Zhang, L. Cong, J. Wang, X. Wang, G. Liu et al., Impact of CTAB on morphology and electrochemical performance of MoS2 nanoflowers with improved lithium storage properties. J. Mater. Sci.: Mater. Electron. 29(5), 3631–3639 (2018). https://doi.org/10.1007/s10854-017-8293-4
- D. Zuo, S. Song, C. An, L. Tang, Z. He, J. Zheng, Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062
- H. Ying, S. Zhang, Z. Meng, Z. Sun, W.-Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5(18), 8334–8342 (2017). https://doi.org/10.1039/C7TA01480E
- Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
- B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li–ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043
- J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, J. Geng, Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27(13), 4594–4603 (2015). https://doi.org/10.1021/acs.chemmater.5b00885
- X.S. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
- Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang et al., Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435–1442 (2016). https://doi.org/10.1016/j.cej.2015.08.052
- C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong, J. Jiang, Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. J. Phys. Chem. C 116(6), 4000–4011 (2012). https://doi.org/10.1021/jp300136p
- G. Wen, H. Liu, T. Liang, Y. Ouyang, L. Tan et al., Good cycling stability and high initial efficiency demonstrated in full cells with limited lithium source for an advanced SnO2–Co–C composite anode. Electrochim. Acta 334, 135640 (2020). https://doi.org/10.1016/j.electacta.2020.135640
- T. Liang, R. Hu, H. Zhang, H. Zhang, H. Wang et al., A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. J. Mater. Chem. A 6(16), 7206–7220 (2018). https://doi.org/10.1039/C8TA00957K
- H. Ying, F. Xin, W. Han, Structural evolution of 3D nano-Sn/reduced graphene oxide composite from a sandwich-like structure to a curly Sn@carbon nanocage-like structure during lithiation/delithiation cycling. Adv. Mater. Interfaces 3(19), 1600498 (2016). https://doi.org/10.1002/admi.201600498
- R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8(26), 1801514 (2018). https://doi.org/10.1002/aenm.201801514
- C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng et al., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 16(3), 2054–2060 (2016). https://doi.org/10.1021/acs.nanolett.6b00057
- J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu et al., Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3(6), 737–743 (2013). https://doi.org/10.1002/aenm.201200953
- J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen, J. Yang, C.J. Zhang, Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
- W. Yao, S. Wu, L. Zhan, Y. Wang, Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J. 361, 329–341 (2019). https://doi.org/10.1016/j.cej.2018.08.217
- B.K. Lesel, J.S. Ko, B. Dunn, S.H. Tolbert, Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 10(8), 7572–7581 (2016). https://doi.org/10.1021/acsnano.6b02608
- G.A. Muller, J.B. Cook, H.-S. Kim, S.H. Tolbert, B. Dunn, High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15(3), 1911–1917 (2015). https://doi.org/10.1021/nl504764m
- Y. Dong, M. Hu, Z. Zhang, J.A. Zapien, X. Wang, J.-M. Lee, W. Zhang, Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Appl. Nano Mater. 2(3), 1457–1465 (2019). https://doi.org/10.1021/acsanm.8b02335
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
- D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@ Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(24), 11189–11197 (2018). https://doi.org/10.1039/C8TA00122G
- B. Zhang, J. Huang, J.K. Kim, Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li–ion and Na–ion batteries. Adv. Funct. Mater. 25(32), 5222–5228 (2015). https://doi.org/10.1002/adfm.201501498
- R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen et al., Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 9(2), 595–603 (2016). https://doi.org/10.1039/C5EE03367E
- R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, B. Yuan, M. Zhu, Unveiling critical size of coarsened sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy 45, 255–265 (2018). https://doi.org/10.1016/j.nanoen.2018.01.007
- H. Li, X. Wang, H. Li, S. Lin, B. Zhao et al., Capacitance improvements of V4C3Tx by NH3 annealing. J. Alloys Compd. 784, 923–930 (2019). https://doi.org/10.1016/j.jallcom.2019.01.111
- J. Zhou, S. Lin, Y. Huang, P. Tong, B. Zhao, X. Zhu, Y. Sun, Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem. Eng. J. 373, 203–212 (2019). https://doi.org/10.1016/j.cej.2019.05.037
- X. Wang, H. Li, H. Li, S. Lin, J. Bai et al., Heterostructures of Ni–Co–Al layered double hydroxide assembled on V4C3 MXene for high-energy hybrid supercapacitors. J. Mater. Chem. A 7(5), 2291–2300 (2019). https://doi.org/10.1039/C8TA11249E
- J. Bai, B. Zhao, S. Lin, K. Li, J. Zhou, J. Dai, X. Zhu, Y. Sun, Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries. Nanoscale 12(2), 1144–1154 (2020). https://doi.org/10.1039/C9NR07646H
References
H.J. Yoon, J.H. Yang, Z. Zhou, S.S. Yang, M.M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuat. B 157(1), 310–313 (2011). https://doi.org/10.1016/j.snb.2011.03.035
P. Li, J.Y. Jeong, B. Jin, K. Zhang, J.H. Park, Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv. Energy Mater. 8(19), 1703300 (2018). https://doi.org/10.1002/aenm.201703300
A. Kuang, T. Zhou, G. Wang, Y. Li, G. Wu, H. Yuan, H. Chen, X. Yang, Dehydrogenation of ammonia borane catalyzed by pristine and defective h-BN sheets. Appl. Surf. Sci. 362, 562–571 (2016). https://doi.org/10.1016/j.apsusc.2015.11.011
C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin Two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012). https://doi.org/10.1021/nn204153h
W. Sun, S.A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M.J. Green, Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 5(41), 21663–21668 (2017). https://doi.org/10.1039/C7TA05574A
D. Sun, M. Wang, Z. Li, G. Fan, L.-Z. Fan, A. Zhou, Two-dimensional Ti3C2 as anode material for Li–ion batteries. Electrochem. Commun. 47, 80–83 (2014). https://doi.org/10.1016/j.elecom.2014.07.026
N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo, K. Lee Mxene, An emerging Two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 5(47), 24564–24579 (2017). https://doi.org/10.1039/C7TA09094C
C. Zhan, M. Naguib, M. Lukatskaya, P.R.C. Kent, Y. Gogotsi, D.-E. Jiang, Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 9(6), 1223–1228 (2018). https://doi.org/10.1021/acs.jpclett.8b00200
L. Huan, Z. Xin, Z. Yifan, C. Bin, Z. Qizhen et al., Electrostatic self-assembly of 0d–2d SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7
Z. Peng, W. Danjun, Z. Qizhen, S. Ning, F. Feng, X. Bin, Plate-to-layer Bi2MoO6/MXene heterostructure as high performance anode material for lithium ion batteries. Nano-Micro Lett. 11, 81 (2019). https://doi.org/10.1007/s40820-019-0312-y
Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang et al., Rational design of flexible Two-dimensional mxenes with multiple functionalities. Chem. Rev. 119(23), 11980–12031 (2019). https://doi.org/10.1021/acs.chemrev.9b00348
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
C. Wang, H. Xie, S. Chen, B. Ge, D. Liu et al., Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 30(32), 1802525 (2018). https://doi.org/10.1002/adma.201802525
M. Malaki, A. Maleki, R.S. Varma, MXenes and ultrasonication. J. Mater. Chem. A 7(18), 10843–10857 (2019). https://doi.org/10.1039/C9TA01850F
C. Wang, S. Chen, H. Xie, S. Wei, C. Wu, L. Song, Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage. Adv. Energy Mater. 9(4), 1802977 (2019). https://doi.org/10.1002/aenm.201802977
J. Luo, J. Zheng, J. Nai, C. Jin, H. Yuan et al., Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance. Adv. Funct. Mater. 29(10), 1808107 (2019). https://doi.org/10.1002/adfm.201808107
S. Zheng, C. Zhang, F. Zhou, Y. Dong, X. Shi, V. Nicolosi, Z.-S. Wu, X. Bao, Ionic liquid pre-intercalated mxene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A 7(16), 9478–9485 (2019). https://doi.org/10.1039/C9TA02190F
M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 29(37), 1702410 (2017). https://doi.org/10.1002/adma.201702410
Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
Y. Wang, H. Dou, J. Wang, B. Ding, Y. Xu, Z. Chang, X. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J. Power Sources 327, 221–228 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.062
X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren et al., Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153), 1502–1505 (2013). https://doi.org/10.1126/science.1241488
J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang et al., Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 11(3), 2459–2469 (2017). https://doi.org/10.1021/acsnano.6b07668
Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li–ion storage. Nano Energy 30, 603–613 (2016). https://doi.org/10.1016/j.nanoen.2016.10.062
J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang et al., Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016). https://doi.org/10.1021/acsnano.5b07333
J. Luo, C. Wang, H. Wang, X. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019). https://doi.org/10.1002/adfm.201805946
M. Xu, S. Lei, J. Qi, Q. Dou, L. Liu et al., Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano 12(4), 3733–3740 (2018). https://doi.org/10.1021/acsnano.8b00959
V.M. Hong Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/C6TA06772G
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
Y. Wu, P. Nie, J. Wang, H. Dou, X. Zhang, Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance. ACS Appl. Mater. Interfaces 9(45), 39610–39617 (2017). https://doi.org/10.1021/acsami.7b12155
H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13(3), 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
C. Zeng, F. Xie, X. Yang, M. Jaroniec, L. Zhang, S.-Z. Qiao, Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem. Int. Ed. 57(28), 8540–8544 (2018). https://doi.org/10.1002/anie.201803511
C. Eames, M.S. Islam, Ion intercalation into Two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136(46), 16270–16276 (2014). https://doi.org/10.1021/ja508154e
R. Fang, C. Lu, A. Chen, K. Wang, H. Huang et al., 2D MXene-based energy storage materials: interfacial structure design and functionalization. Chemsuschem 12, 1–12 (2019). https://doi.org/10.1002/cssc.201902537
V. Natu, M. Clites, E. Pomerantseva, M.W. Barsoum, Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater. Res. Lett. 6(4), 230–235 (2018). https://doi.org/10.1080/21663831.2018.1434249
H. Zhang, L. Cong, J. Wang, X. Wang, G. Liu et al., Impact of CTAB on morphology and electrochemical performance of MoS2 nanoflowers with improved lithium storage properties. J. Mater. Sci.: Mater. Electron. 29(5), 3631–3639 (2018). https://doi.org/10.1007/s10854-017-8293-4
D. Zuo, S. Song, C. An, L. Tang, Z. He, J. Zheng, Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in situ growth for highly reversible lithium storage. Nano Energy 62, 401–409 (2019). https://doi.org/10.1016/j.nanoen.2019.05.062
H. Ying, S. Zhang, Z. Meng, Z. Sun, W.-Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5(18), 8334–8342 (2017). https://doi.org/10.1039/C7TA01480E
Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li–ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043
J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, J. Geng, Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27(13), 4594–4603 (2015). https://doi.org/10.1021/acs.chemmater.5b00885
X.S. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
Z. Li, G. Wu, S. Deng, S. Wang, Y. Wang et al., Combination of uniform SnO2 nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435–1442 (2016). https://doi.org/10.1016/j.cej.2015.08.052
C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong, J. Jiang, Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances. J. Phys. Chem. C 116(6), 4000–4011 (2012). https://doi.org/10.1021/jp300136p
G. Wen, H. Liu, T. Liang, Y. Ouyang, L. Tan et al., Good cycling stability and high initial efficiency demonstrated in full cells with limited lithium source for an advanced SnO2–Co–C composite anode. Electrochim. Acta 334, 135640 (2020). https://doi.org/10.1016/j.electacta.2020.135640
T. Liang, R. Hu, H. Zhang, H. Zhang, H. Wang et al., A scalable ternary SnO2–Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. J. Mater. Chem. A 6(16), 7206–7220 (2018). https://doi.org/10.1039/C8TA00957K
H. Ying, F. Xin, W. Han, Structural evolution of 3D nano-Sn/reduced graphene oxide composite from a sandwich-like structure to a curly Sn@carbon nanocage-like structure during lithiation/delithiation cycling. Adv. Mater. Interfaces 3(19), 1600498 (2016). https://doi.org/10.1002/admi.201600498
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8(26), 1801514 (2018). https://doi.org/10.1002/aenm.201801514
C. Zhang, X. Wang, Q. Liang, X. Liu, Q. Weng et al., Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 16(3), 2054–2060 (2016). https://doi.org/10.1021/acs.nanolett.6b00057
J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu et al., Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3(6), 737–743 (2013). https://doi.org/10.1002/aenm.201200953
J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen, J. Yang, C.J. Zhang, Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
W. Yao, S. Wu, L. Zhan, Y. Wang, Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J. 361, 329–341 (2019). https://doi.org/10.1016/j.cej.2018.08.217
B.K. Lesel, J.S. Ko, B. Dunn, S.H. Tolbert, Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 10(8), 7572–7581 (2016). https://doi.org/10.1021/acsnano.6b02608
G.A. Muller, J.B. Cook, H.-S. Kim, S.H. Tolbert, B. Dunn, High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15(3), 1911–1917 (2015). https://doi.org/10.1021/nl504764m
Y. Dong, M. Hu, Z. Zhang, J.A. Zapien, X. Wang, J.-M. Lee, W. Zhang, Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium-ion batteries. ACS Appl. Nano Mater. 2(3), 1457–1465 (2019). https://doi.org/10.1021/acsanm.8b02335
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013). https://doi.org/10.1038/nmat3601
D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
Y. Wang, Y. Li, Z. Qiu, X. Wu, P. Zhou et al., Fe3O4@ Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(24), 11189–11197 (2018). https://doi.org/10.1039/C8TA00122G
B. Zhang, J. Huang, J.K. Kim, Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li–ion and Na–ion batteries. Adv. Funct. Mater. 25(32), 5222–5228 (2015). https://doi.org/10.1002/adfm.201501498
R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen et al., Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 9(2), 595–603 (2016). https://doi.org/10.1039/C5EE03367E
R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, B. Yuan, M. Zhu, Unveiling critical size of coarsened sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy 45, 255–265 (2018). https://doi.org/10.1016/j.nanoen.2018.01.007
H. Li, X. Wang, H. Li, S. Lin, B. Zhao et al., Capacitance improvements of V4C3Tx by NH3 annealing. J. Alloys Compd. 784, 923–930 (2019). https://doi.org/10.1016/j.jallcom.2019.01.111
J. Zhou, S. Lin, Y. Huang, P. Tong, B. Zhao, X. Zhu, Y. Sun, Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene. Chem. Eng. J. 373, 203–212 (2019). https://doi.org/10.1016/j.cej.2019.05.037
X. Wang, H. Li, H. Li, S. Lin, J. Bai et al., Heterostructures of Ni–Co–Al layered double hydroxide assembled on V4C3 MXene for high-energy hybrid supercapacitors. J. Mater. Chem. A 7(5), 2291–2300 (2019). https://doi.org/10.1039/C8TA11249E
J. Bai, B. Zhao, S. Lin, K. Li, J. Zhou, J. Dai, X. Zhu, Y. Sun, Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries. Nanoscale 12(2), 1144–1154 (2020). https://doi.org/10.1039/C9NR07646H