From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments
Corresponding Author: Wei‑Qiang Han
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 24
Abstract
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.
Highlights:
1 The pursuit of high specific energy and high safety has promoted the transformation of lithium metal batteries from liquid to solid-state systems.
2 In addition to high reactivity and mobile interface, all-solid-state lithium metal batteries (ASSLMBs) still faces severe inhomogeneity in mechanical and electrochemical properties.
3 The inherent trade-off in ASSLMBs lies between ionic conductivity and electrochemical window, mechanical strength and interface contact adequacy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power. Sources 100(1), 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
- Y. Huang, J. Li, Key challenges for grid-scale lithium-ion battery energy storage. Adv. Energy Mater. 12(48), 2202197 (2022). https://doi.org/10.1002/aenm.202202197
- T. Waldmann, R.-G. Scurtu, K. Richter, M. Wohlfahrt-Mehrens, 18650 vs. 21700 Li-ion cells–a direct comparison of electrochemical, thermal, and geometrical properties. J. Power. Sources 472, 228614 (2020). https://doi.org/10.1016/j.jpowsour.2020.228614
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- W. Cao, Q. Li, X. Yu, H. Li, Controlling Li deposition below the interface. eScience 2(1), 47–78 (2022). https://doi.org/10.1016/j.esci.2022.02.002
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium–sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- A.J. Louli, A. Eldesoky, J. deGooyer, M. Coon, C.P. Aiken et al., Different positive electrodes for anode-free lithium metal cells. J. Electrochem. Soc. 169(4), 040517 (2022). https://doi.org/10.1149/1945-7111/ac62c4
- Q. Li, Y. Yang, X. Yu, H. Li, A 700 W h kg−1 rechargeable pouch type lithium battery. Chin. Phys. Lett. 40(4), 048201 (2023). https://doi.org/10.1088/0256-307X/40/4/048201
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012). https://doi.org/10.1016/j.electacta.2012.05.001
- D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
- X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52(11), 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- P. Bonnick, J. Muldoon, The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci. 15(5), 1840–1860 (2022). https://doi.org/10.1039/D2EE00842D
- J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
- J. Betz, J.-P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek et al., Cross talk between transition metal cathode and li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9(21), 1900574 (2019). https://doi.org/10.1002/aenm.201900574
- Q. Li, X. Yu, H. Li, Batteries: From china’s 13th to 14th five-year plan. eTransportation 14, 100201 (2022). https://doi.org/10.1016/j.etran.2022.100201
- L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
- E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40(5), 2525–2540 (2011). https://doi.org/10.1039/c0cs00081g
- X. Liu, R. Garcia-Mendez, A.R. Lupini, Y. Cheng, Z.D. Hood et al., Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021). https://doi.org/10.1038/s41563-021-01019-x
- S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3(10), 2322–2333 (2019). https://doi.org/10.1016/j.joule.2019.08.018
- J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
- J.-I. Yamaki, S.-I. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power. Sources 74(2), 219–227 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
- Y. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2(2), 138–163 (2022). https://doi.org/10.1016/j.esci.2022.02.008
- M. Winter, The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223(10–11), 1395–1406 (2009). https://doi.org/10.1524/zpch.2009.6086
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/C8EE01286E
- D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter et al., New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power. Sources 81–82, 95–111 (1999). https://doi.org/10.1016/S0378-7753(99)00187-1
- Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge et al., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16(3), 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
- Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J. Phys. Chem. C 115(14), 7044–7049 (2011). https://doi.org/10.1021/jp112202s
- E. Peled, Film forming reaction at the lithium/electrolyte interface. J. Power. Sources 9(3), 253–266 (1983). https://doi.org/10.1016/0378-7753(83)87026-8
- S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector et al., Direct Calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134(37), 15476–15487 (2012). https://doi.org/10.1021/ja305366r
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14(1), 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion–reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59(20), 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
- W.A. Martin, Y. Tian, J. Xiao, Understanding diffusion and electrochemical reduction of li+ ions in liquid lithium metal batteries. J. Electrochem. Soc. 168(6), 060513 (2021). https://doi.org/10.1149/1945-7111/ac0647
- J. Xu, Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- G.G. Eshetu, X. Judez, C. Li, M. Martinez-Ibañez, I. Gracia et al., Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 140(31), 9921–9933 (2018). https://doi.org/10.1021/jacs.8b04612
- Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
- K. Xu, A. von Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
- K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111(20), 7411–7421 (2007). https://doi.org/10.1021/jp068691u
- M. Jackle, A. Gross, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141(17), 174710 (2014). https://doi.org/10.1063/1.4901055
- C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells. J. Power. Sources 81–82, 925–929 (1999). https://doi.org/10.1016/S0378-7753(98)00242-0
- M. Rosso, J.N. Chazalviel, V. Fleury, E. Chassaing, Experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits. Electrochim. Acta 39(4), 507–515 (1994). https://doi.org/10.1016/0013-4686(94)80094-4
- J. Xiao, How lithium dendrites form in liquid batteries. Science 366(6464), 426–427 (2019). https://doi.org/10.1126/science.aay8672
- Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-Q. Huang et al., Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater. 31(18), 2009925 (2021). https://doi.org/10.1002/adfm.202009925
- X. Sun, X. Zhang, Q. Ma, X. Guan, W. Wang et al., Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew. Chem. Int. Ed. 59(17), 6665–6674 (2020). https://doi.org/10.1002/anie.201912217
- K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun et al., Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58(33), 11364–11368 (2019). https://doi.org/10.1002/anie.201905251
- L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar et al., Self-heating–induced healing of lithium dendrites. Science 359(6383), 1513 (2018). https://doi.org/10.1126/science.aap8787
- X. Xu, Y. Liu, J.-Y. Hwang, O.O. Kapitanova, Z. Song et al., Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 10(44), 2002390 (2020). https://doi.org/10.1002/aenm.202002390
- R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao et al., Artificial interphases for highly stable lithium metal anode. Matter 1(2), 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
- G. Lu, J. Nai, D. Luan, X. Tao, X.W. Lou, Surface engineering toward stable lithium metal anodes. Sci. Adv. 9(14), eadf1550 (2023). https://doi.org/10.1126/sciadv.adf1550
- Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
- A.C. Kozen, C.-F. Lin, A.J. Pearse, M.A. Schroeder, X. Han et al., Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9(6), 5884–5892 (2015). https://doi.org/10.1021/acsnano.5b02166
- J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi et al., Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3(11), eaao3170 (2017). https://doi.org/10.1126/sciadv.aao3170
- Y.Y. Lu, Z.Y. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13(10), 961–969 (2014). https://doi.org/10.1038/nmat4041
- M. Baloch, D. Shanmukaraj, O. Bondarchuk, E. Bekaert, T. Rojo et al., Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries. Energy Storage Mater. 9, 141–149 (2017). https://doi.org/10.1016/j.ensm.2017.06.016
- L. Chen, J.G. Connell, A. Nie, Z. Huang, K.R. Zavadil et al., Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J. Mater. Chem. A 5(24), 12297–12309 (2017). https://doi.org/10.1039/C7TA03116E
- K. Yan, H.W. Lee, T. Gao, G. Zheng, H. Yao et al., Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14(10), 6016–6022 (2014). https://doi.org/10.1021/nl503125u
- G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9(8), 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
- Q. Xu, J. Lin, C. Ye, X. Jin, D. Ye et al., Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg. Adv. Energy Mater. 10(6), 1903292 (2019). https://doi.org/10.1002/aenm.201903292
- T. Lapp, S. Skaarup, A. Hooper, Ionic conductivity of pure and doped Li3N. Solid State Ion. 11(2), 97–103 (1983). https://doi.org/10.1016/0167-2738(83)90045-0
- Y. Zhu, X. He, Y. Mo, Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4(8), 1600517 (2017). https://doi.org/10.1002/advs.201600517
- L. Fan, H.L. Zhuang, L. Gao, Y. Lu, L.A. Archer, Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 5(7), 3483–3492 (2017). https://doi.org/10.1039/C6TA10204B
- W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28(1), 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
- A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10(13), 6125–6138 (2018). https://doi.org/10.1039/c7nr09058g
- S. Guo, N. Piao, L. Wang, H. Xu, G. Tian et al., PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Appl. Energy Mater. 3(7), 7191–7199 (2020). https://doi.org/10.1021/acsaem.0c01232
- J. Bae, Y. Qian, Y. Li, X. Zhou, J.B. Goodenough et al., Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12(11), 3319–3327 (2019). https://doi.org/10.1039/C9EE02558H
- Q. Yang, J. Hu, J. Meng, C. Li, C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14(6), 3621–3631 (2021). https://doi.org/10.1039/D0EE03952G
- Y. Zhao, D. Wang, Y. Gao, T. Chen, Q. Huang et al., Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy 64, 103893 (2019). https://doi.org/10.1016/j.nanoen.2019.103893
- E.K. Jang, J. Ahn, S. Yoon, K.Y. Cho, High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode. Adv. Funct. Mater. 29(48), 1905078 (2019). https://doi.org/10.1002/adfm.201905078
- O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon et al., High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6(12), 4416–4425 (2021). https://doi.org/10.1021/acsenergylett.1c02224
- R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao et al., Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28(8), 1705838 (2018). https://doi.org/10.1002/adfm.201705838
- T. Yu, T. Zhao, N. Zhang, T. Xue, Y. Chen et al., Spatially confined LiF nanops in an aligned polymer matrix as the artificial SEI layer for lithium metal anodes. Nano Lett. 23(1), 276–282 (2023). https://doi.org/10.1021/acs.nanolett.2c04242
- Y. Wang, C.-F. Lin, J. Rao, K. Gaskell, G. Rubloff et al., Electrochemically controlled solid electrolyte interphase layers enable superior Li-S batteries. ACS Appl. Mater. Interfaces 10(29), 24554–24563 (2018). https://doi.org/10.1021/acsami.8b07248
- G. Li, Y. Gao, X. He, Q. Huang, S. Chen et al., Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nat. Commun. 8(1), 850 (2017). https://doi.org/10.1038/s41467-017-00974-x
- X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang et al., Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2(2), 258–270 (2017). https://doi.org/10.1016/j.chempr.2017.01.003
- G. Lu, J. Nai, H. Yuan, J. Wang, J. Zheng et al., In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 16(6), 9883–9893 (2022). https://doi.org/10.1021/acsnano.2c04025
- Y.J. Zhang, W. Wang, H. Tang, W.Q. Bai, X. Ge et al., An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power. Sources 277, 304–311 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.023
- J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139(33), 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251
- D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu et al., Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17(6), 3731–3737 (2017). https://doi.org/10.1021/acs.nanolett.7b01020
- W. Guo, Q. Han, J. Jiao, W. Wu, X. Zhu et al., In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life. Angew. Chem. Int. Ed. 60(13), 7267–7274 (2021). https://doi.org/10.1002/anie.202015049
- C. Yan, X.B. Cheng, Y.X. Yao, X. Shen, B.Q. Li et al., An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30(45), 1804461 (2018). https://doi.org/10.1002/adma.201804461
- A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14(7), 4115–4124 (2021). https://doi.org/10.1039/D1EE00508A
- Q. Pang, X. Liang, I.R. Kochetkov, P. Hartmann, L.F. Nazar, Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. Int. Ed. 57(31), 9795–9798 (2018). https://doi.org/10.1002/anie.201805456
- S. Qian, C. Xing, M. Zheng, Z. Su, H. Chen et al., CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv. Energy Mater. 12(15), 2103480 (2022). https://doi.org/10.1002/aenm.202103480
- J. Wang, H. Hu, S. Duan, Q. Xiao, J. Zhang et al., Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater. 32(12), 2110468 (2021). https://doi.org/10.1002/adfm.202110468
- N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57(6), 1505–1509 (2018). https://doi.org/10.1002/anie.201710806
- Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie et al., An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29(10), 1605531 (2017). https://doi.org/10.1002/adma.201605531
- J. Xie, Z. Jiang, L. Jin, Z. Han, W. Hu et al., Facile generation of polymer-alloy hybrid layer towards dendrite-free lithium metal anode with improved moisture stability. Angew. Chem. Int. Ed. 58(33), 11374–11378 (2019). https://doi.org/10.1002/anie.201905712
- M. Rosso, T. Gobron, C. Brissot, J.-N. Chazalviel, S. Lascaud, Onset of dendritic growth in lithium/polymer cells. J. Power. Sources 97, 804–806 (2001). https://doi.org/10.1016/S0378-7753(01)00734-0
- Z. Lyu, J.J. Koh, G.J.H. Lim, D. Zhang, T. Xiong et al., Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 1(4), 507–516 (2022). https://doi.org/10.1002/idm2.12027
- C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6(1), 8058 (2015). https://doi.org/10.1038/ncomms9058
- H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun et al., Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 8(19), 1800266 (2018). https://doi.org/10.1002/aenm.201800266
- Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li et al., Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28(32), 6932–6939 (2016). https://doi.org/10.1002/adma.201601409
- G.J.H. Lim, Z. Lyu, X. Zhang, J.J. Koh, Y. Zhang et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 8(18), 9058–9067 (2020). https://doi.org/10.1039/D0TA00209G
- Z. Cao, B. Li, S. Yang, Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 31(29), 1901310 (2019). https://doi.org/10.1002/adma.201901310
- J. Luo, W. Yuan, S. Huang, B. Zhao, Y. Chen et al., From checkerboard-like sand barriers to 3D Cu@CNF composite current collectors for high-performance batteries. Adv. Sci. 5(7), 1800031 (2018). https://doi.org/10.1002/advs.201800031
- Z. Lyu, G.J.H. Lim, J.J. Koh, Y. Li, Y. Ma et al., Design and manufacture of 3D-printed batteries. Joule 5(1), 89–114 (2021). https://doi.org/10.1016/j.joule.2020.11.010
- Z. Zhang, J. Wang, X. Yan, S. Zhang, W. Yang et al., In-situ growth of hierarchical N-doped CNTs/Ni Foam scaffold for dendrite-free lithium metal anode. Energy Storage Mater. 29, 332–340 (2020). https://doi.org/10.1016/j.ensm.2020.04.022
- T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13(1), 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
- X. Zhang, A. Wang, R. Lv, J. Luo, A corrosion-resistant current collector for lithium metal anodes. Energy Storage Mater. 18, 199–204 (2019). https://doi.org/10.1016/j.ensm.2018.09.017
- X.-Y. Yue, X.-L. Li, J. Bao, Q.-Q. Qiu, T. Liu et al., “Top-down” Li deposition pathway enabled by an asymmetric design for Li composite electrode. Adv. Energy Mater. 9(35), 1901491 (2019). https://doi.org/10.1002/aenm.201901491
- Q. Wang, C. Yang, J. Yang, K. Wu, L. Qi et al., Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 15, 249–256 (2018). https://doi.org/10.1016/j.ensm.2018.04.030
- S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
- L. Liu, Y.-X. Yin, J.-Y. Li, N.-W. Li, X.-X. Zeng et al., Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 1(3), 563–575 (2017). https://doi.org/10.1016/j.joule.2017.06.004
- S. Zhang, D. Wang, X. Xu, H. Li, W. Xu et al., Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter 5(4), 1263–1276 (2022). https://doi.org/10.1016/j.matt.2022.01.017
- H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4(4), 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008
- X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
- Y. Liu, X. Xu, M. Sadd, O.O. Kapitanova, V.A. Krivchenko et al., Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8(5), 2003301 (2021). https://doi.org/10.1002/advs.202003301
- H. Shen, F. Qi, H. Li, P. Tang, X. Gao et al., Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode. Adv. Funct. Mater. 31(48), 2103309 (2021). https://doi.org/10.1002/adfm.202103309
- D. Lee, S. Sun, J. Kwon, H. Park, M. Jang et al., Copper nitride nanowires printed li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32(7), 1905573 (2020). https://doi.org/10.1002/adma.201905573
- X. Zhang, Y. Wei, B. Wang, M. Wang, Y. Zhang et al., Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium–sulfur batteries. Nano-Micro Lett. 11(1), 78 (2019). https://doi.org/10.1007/s40820-019-0313-x
- K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1(3), 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
- P. Qing, Z. Wu, A. Wang, S. Huang, K. Long et al., Highly reversible lithium metal anode enabled by 3d lithiophilic–lithiophobic dual-skeletons. Adv. Mater. 35(15), 2211203 (2023). https://doi.org/10.1002/adma.202211203
- L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15(1), 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
- H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell fe2n-nanop-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
- Z. Lyu, G.J.H. Lim, R. Guo, Z. Pan, X. Zhang et al., 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 24, 336–342 (2020). https://doi.org/10.1016/j.ensm.2019.07.041
- K. Li, Z. Hu, J. Ma, S. Chen, D. Mu et al., A 3D and stable lithium anode for high-performance lithium–iodine batteries. Adv. Mater. 31(33), 1902399 (2019). https://doi.org/10.1002/adma.201902399
- S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10(1), 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
- C. Niu, H. Pan, W. Xu, J. Xiao, J.G. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
- P. Huang, W.-Q. Han, Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Lett. 15(1), 68 (2023). https://doi.org/10.1007/s40820-023-01039-z
- P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv. Energy Mater. 12(39), 2202052 (2022). https://doi.org/10.1002/aenm.202202052
- A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15(1), 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
- D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang et al., Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31(24), 2010987 (2021). https://doi.org/10.1002/adfm.202010987
- S. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14(12), 17665–17674 (2020). https://doi.org/10.1021/acsnano.0c08770
- E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14(1), 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
- S. Zhang, H. Ying, B. Yuan, R. Hu, W.-Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 12, 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
- S. Mukherjee, Z. Ren, G. Singh, Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett. 10(4), 70 (2018). https://doi.org/10.1007/s40820-018-0224-2
- Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen et al., Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14(12), 6889–6896 (2014). https://doi.org/10.1021/nl5039117
- F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
- Q. Peng, Z. Liu, L. Jiang, Q. Wang, Optimized cycle and safety performance of lithium–metal batteries with the sustained-release effect of nano CaCO3. Adv. Energy Mater. 12(20), 2104021 (2022). https://doi.org/10.1002/aenm.202104021
- Y.-H. Tan, G.-X. Lu, J.-H. Zheng, F. Zhou, M. Chen et al., Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33(42), 2102134 (2021). https://doi.org/10.1002/adma.202102134
- Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13(1), 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
- J. Huang, Y. Yang, Y. Liu, J. Ma, Lithium hexamethyldisilazide endows Li||NCM811 battery with superior performance. Nano-Micro Lett. 15(1), 33 (2023). https://doi.org/10.1007/s40820-022-00998-z
- H. Zhang, G. Gebresilassie Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martinez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
- X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang et al., Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3(1), 14–19 (2018). https://doi.org/10.1021/acsenergylett.7b00982
- X.-Q. Zhang, T. Li, B.-Q. Li, R. Zhang, P. Shi et al., A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions. Angew. Chem. Int. Ed. 59(8), 3252–3257 (2020). https://doi.org/10.1002/anie.201911724
- C. Xu, G. Hernández, S. Abbrent, L. Kobera, R. Konefal et al., Unraveling and mitigating the storage instability of fluoroethylene carbonate-containing LiPF6 electrolytes to stabilize lithium metal anodes for high-temperature rechargeable batteries. ACS Appl. Energy Mater. 2(7), 4925–4935 (2019). https://doi.org/10.1021/acsaem.9b00607
- Y. Zhang, Y. Zhong, Z. Wu, B. Wang, S. Liang et al., Solvent molecule cooperation enhancing lithium metal battery performance at both electrodes. Angew. Chem. Int. Ed. 59(20), 7797–7802 (2020). https://doi.org/10.1002/anie.202000023
- Q. Zhao, N.W. Utomo, A.L. Kocen, S. Jin, Y. Deng et al., Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61(9), e202116214 (2022). https://doi.org/10.1002/anie.202116214
- S. Gu, S.-W. Zhang, J. Han, Y. Deng, C. Luo et al., Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte. Adv. Funct. Mater. 31(28), 2102128 (2021). https://doi.org/10.1002/adfm.202102128
- C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. 130(43), 14251–14255 (2018). https://doi.org/10.1002/ange.201807034
- P. Shi, L. Zhang, H. Xiang, X. Liang, Y. Sun et al., Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS Appl. Mater. Interfaces 10(26), 22201–22209 (2018). https://doi.org/10.1021/acsami.8b05185
- L. Cheng, Y. Wang, J. Yang, M. Tang, C. Zhang et al., An ultrafast and stable Li-metal battery cycled at −40 °C. Adv. Funct. Mater. 33(11), 2212349 (2022). https://doi.org/10.1002/adfm.202212349
- W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32(24), 2001740 (2020). https://doi.org/10.1002/adma.202001740
- C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
- H. Ye, Y.-X. Yin, S.-F. Zhang, Y. Shi, L. Liu et al., Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal ps for stable lithium anode. Nano Energy 36, 411–417 (2017). https://doi.org/10.1016/j.nanoen.2017.04.056
- S. Zhang, Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 12(1), 158 (2020). https://doi.org/10.1007/s40820-020-00501-6
- L. Zheng, F. Guo, T. Kang, Y. Fan, W. Gu et al., Stable lithium-carbon composite enabled by dual-salt additives. Nano-Micro Lett. 13(1), 111 (2021). https://doi.org/10.1007/s40820-021-00633-3
- S. Eijima, H. Sonoki, M. Matsumoto, S. Taminato, D. Mori et al., Solid electrolyte interphase film on lithium metal anode in mixed-salt system. J. Electrochem. Soc. 166(3), A5421–A5429 (2019). https://doi.org/10.1149/2.0611903jes
- S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
- L.-P. Hou, N. Yao, J. Xie, P. Shi, S.-Y. Sun et al., Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 61(20), e202201406 (2022). https://doi.org/10.1002/anie.202201406
- Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12(1), 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
- D. Jin, Y. Roh, T. Jo, M.-H. Ryou, H. Lee et al., Robust cycling of ultrathin Li metal enabled by nitrate-preplanted Li powder composite. Adv. Energy Mater. 11(18), 2003769 (2021). https://doi.org/10.1002/aenm.202003769
- S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
- D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16(47), 2004688 (2020). https://doi.org/10.1002/smll.202004688
- H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 6(4), 1413–1421 (2021). https://doi.org/10.1021/acsenergylett.1c00149
- S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier et al., Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. J. Power. Sources 427, 77–84 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.061
- D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47(9), 1423–1439 (2002). https://doi.org/10.1016/S0013-4686(01)00858-1
- T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11), 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
- H. Wang, Z. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6(3), 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
- W. Wu, Y. Bo, D. Li, Y. Liang, J. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14(1), 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
- X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13(8), 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2
- W. Xue, Z. Shi, M. Huang, S. Feng, C. Wang et al., FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13(1), 212–220 (2020). https://doi.org/10.1039/C9EE02538C
- W. Xue, M. Huang, Y. Li, Y.G. Zhu, R. Gao et al., Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6(5), 495–505 (2021). https://doi.org/10.1038/s41560-021-00792-y
- G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022). https://doi.org/10.1038/s41467-022-32794-z
- W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
- W.A. Henderson, N.R. Brooks, W.W. Brennessel, V.G. Young, Triglyme−Li+ cation solvate structures: models for amorphous concentrated liquid and polymer electrolytes (I). Chem. Mater. 15(24), 4679–4684 (2003). https://doi.org/10.1021/cm034351z
- J. Wu, Z. Gao, Y. Wang, X. Yang, Q. Liu et al., Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries. Nano-Micro Lett. 14(1), 147 (2022). https://doi.org/10.1007/s40820-022-00896-4
- Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi et al., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014). https://doi.org/10.1021/ja412807w
- X. Cao, H. Jia, W. Xu, J.-G. Zhang, Review—localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168(1), 010522 (2021). https://doi.org/10.1149/1945-7111/abd60e
- J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6(1), 6362 (2015). https://doi.org/10.1038/ncomms7362
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa et al., General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl. Mater. Interfaces 6(14), 10892–10899 (2014). https://doi.org/10.1021/am5001163
- M. Cuisinier, P.E. Cabelguen, B.D. Adams, A. Garsuch, M. Balasubramanian et al., Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ. Sci. 7(8), 2697–2705 (2014). https://doi.org/10.1039/C4EE00372A
- J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada et al., Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3(1), 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
- S. Chen, J. Zheng, L. Yu, X. Ren, M.H. Engelhard et al., High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2(8), 1548–1558 (2018). https://doi.org/10.1016/j.joule.2018.05.002
- X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
- W. Ren, Y. Zheng, Z. Cui, Y. Tao, B. Li et al., Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 35, 157–168 (2021). https://doi.org/10.1016/j.ensm.2020.11.019
- M. Zhang, L. Wang, H. Xu, Y. Song, X. He, Polyimides as promising materials for lithium-ion batteries: a review. Nano-Micro Lett. 15(1), 135 (2023). https://doi.org/10.1007/s40820-023-01104-7
- J. Liang, Q. Chen, X. Liao, P. Yao, B. Zhu et al., A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. 59(16), 6561–6566 (2020). https://doi.org/10.1002/anie.201915440
- S.H. Lee, J. Kim, B.-H. Kim, S. Yoon, K.Y. Cho, Delamination-free multifunctional separator for long-term stability of lithium-ion batteries. Small 15(12), 1804980 (2019). https://doi.org/10.1002/smll.201804980
- P.J.H. Kim, V.G. Pol, Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward ultrastable and high-rate lithium metal anodes. ACS Appl. Mater. Interfaces 11(4), 3917–3924 (2019). https://doi.org/10.1021/acsami.8b18660
- X. Hao, J. Zhu, X. Jiang, H. Wu, J. Qiao et al., Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 16(5), 2981–2987 (2016). https://doi.org/10.1021/acs.nanolett.5b05133
- C. Li, S. Liu, C. Shi, G. Liang, Z. Lu et al., Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat. Commun. 10(1), 1363 (2019). https://doi.org/10.1038/s41467-019-09211-z
- C.-Z. Zhao, P.-Y. Chen, R. Zhang, X. Chen, B.-Q. Li et al., An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4(11), eaat3446 (2018). https://doi.org/10.1126/sciadv.aat3446
- H. Huo, X. Li, Y. Chen, J. Liang, S. Deng et al., Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Mater. 29, 361–366 (2020). https://doi.org/10.1016/j.ensm.2019.12.022
- S. Tan, Y. Jiang, S. Ni, H. Wang, F. Xiong et al., Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. Natl. Sci. Rev. 9(11), nwac183 (2022). https://doi.org/10.1093/nsr/nwac183
- X. Zhang, F. Ma, K. Srinivas, B. Yu, X. Chen et al., Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 45, 656–666 (2022). https://doi.org/10.1016/j.ensm.2021.12.010
- X. Han, J. Chen, M. Chen, W. Zhou, X. Zhou et al., Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Mater. 39, 250–258 (2021). https://doi.org/10.1016/j.ensm.2021.04.029
- Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li et al., An autotransferable g-C3N4 Li(+)-modulating layer toward stable lithium anodes. Adv. Mater. 31(27), 1900342 (2019). https://doi.org/10.1002/adma.201900342
- Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
- C. Wei, L. Tan, Y. Zhang, Z. Wang, B. Xi et al., Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Mater. 50, 473–494 (2022). https://doi.org/10.1016/j.ensm.2022.05.024
- X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan et al., Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery. J. Mater. Chem. A 2(30), 11660–11665 (2014). https://doi.org/10.1039/c4ta01709a
- S.H. Choi, S.J. Lee, D.-J. Yoo, J.H. Park, J.-H. Park et al., Marginal magnesium doping for high-performance lithium metal batteries. Adv. Energy Mater. 9(41), 1902278 (2019). https://doi.org/10.1002/aenm.201902278
- S. Liu, Y. Ma, Z. Zhou, S. Lou, H. Huo et al., Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Mater. 33, 423–431 (2020). https://doi.org/10.1016/j.ensm.2020.08.007
- J. Ryu, J. Kang, H. Kim, J.H. Lee, H. Lee et al., Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. Energy Storage Mater. 33, 164–172 (2020). https://doi.org/10.1016/j.ensm.2020.08.012
- S. Han, Z. Li, Y. Zhang, D. Lei, C. Wang, In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Mater. 48, 384–392 (2022). https://doi.org/10.1016/j.ensm.2022.03.036
- J. Gao, C. Chen, Q. Dong, J. Dai, Y. Yao et al., Stamping flexible Li alloy anodes. Adv. Mater. 33(11), 2005305 (2021). https://doi.org/10.1002/adma.202005305
- L.-L. Kong, L. Wang, Z.-C. Ni, S. Liu, G.-R. Li et al., Lithium–magnesium alloy as a stable anode for lithium–sulfur battery. Adv. Funct. Mater. 29(13), 1808756 (2019). https://doi.org/10.1002/adfm.201808756
- P. Gao, H. Wu, X. Zhang, H. Jia, J.-M. Kim et al., Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment. Angew. Chem. Int. Ed. 60(30), 16506–16513 (2021). https://doi.org/10.1002/anie.202103344
- L. Lin, L. Suo, Y.-S. Hu, H. Li, X. Huang et al., Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 11(9), 2003709 (2021). https://doi.org/10.1002/aenm.202003709
- J. Zhou, T. Qian, Z. Wang, J. Liu, Y. Sun et al., Healable lithium alloy anode with ultrahigh capacity. Nano Lett. 21(12), 5021–5027 (2021). https://doi.org/10.1021/acs.nanolett.1c00608
- L. Ren, A. Wang, X. Zhang, G. Li, X. Liu et al., Eliminating dendrites through dynamically engineering the forces applied during Li deposition for stable lithium metal anodes. Adv. Energy Mater. 10(4), 1902932 (2020). https://doi.org/10.1002/aenm.201902932
- J. Wang, W. Huang, A. Pei, Y. Li, F. Shi et al., Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019). https://doi.org/10.1038/s41560-019-0413-3
- A. Wang, Q. Deng, L. Deng, X. Guan, J. Luo, Eliminating tip dendrite growth by lorentz force for stable lithium metal anodes. Adv. Funct. Mater. 29(25), 1902630 (2019). https://doi.org/10.1002/adfm.201902630
- K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang et al., Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 9(20), 1900260 (2019). https://doi.org/10.1002/aenm.201900260
- S. Wang, Y. Wang, Y. Song, J. Zhang, X. Jia et al., Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition. Energy Storage Mater. 50, 505–513 (2022). https://doi.org/10.1016/j.ensm.2022.05.043
- X. Shen, R. Zhang, P. Shi, X. Chen, Q. Zhang, How does external pressure shape Li dendrites in Li metal batteries? Adv. Energy Mater. 11(10), 2003416 (2021). https://doi.org/10.1002/aenm.202003416
- X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3(3), 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5
- H. Yang, E.O. Fey, B.D. Trimm, N. Dimitrov, M.S. Whittingham, Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power. Sources 272, 900–908 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.026
- M.Z. Mayers, J.W. Kaminski, T.F. Miller, Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116(50), 26214–26221 (2012). https://doi.org/10.1021/jp309321w
- A. Huang, H. Liu, O. Manor, P. Liu, J. Friend, Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32(14), 1907516 (2020). https://doi.org/10.1002/adma.201907516
- Y. Gao, F. Qiao, J. You, Z. Ren, N. Li et al., Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nat. Commun. 13(1), 5 (2022). https://doi.org/10.1038/s41467-021-27429-8
- X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
- X. Feng, M. Fang, X. He, M. Ouyang, L. Lu et al., Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power. Sources 255, 294–301 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.005
- R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
- H. Tsukasaki, M. Otoyama, Y. Mori, S. Mori, H. Morimoto et al., Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. J. Power. Sources 367, 42–48 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.031
- G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7(3), 1053–1058 (2014). https://doi.org/10.1039/C3EE43357A
- P. Bron, S. Johansson, K. Zick, J. Schmedt auf der Gunne, S. Dehnen et al., Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135(42), 15694–15697 (2013). https://doi.org/10.1021/ja407393y
- G. Abels, I. Bardenhagen, J. Schwenzel, F. Langer, Thermal stability of polyethylene oxide electrolytes in lithium nickel manganese cobalt oxide based composite cathodes. J. Electrochem. Soc. 169(2), 020560 (2022). https://doi.org/10.1149/1945-7111/ac534c
- Y. Song, L. Wang, L. Sheng, D. Ren, H. Liang et al., The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy Environ. Sci. 16(5), 1943–1963 (2023). https://doi.org/10.1039/D3EE00441D
- J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1(9), 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
- D. Cao, X. Sun, Y. Wang, H. Zhu, Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries. Energy Storage Mater. 48, 458–465 (2022). https://doi.org/10.1016/j.ensm.2022.03.012
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682 (2011). https://doi.org/10.1038/nmat3066
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
- X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium–sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
- W. Du, Q. Shao, Y. Wei, C. Yan, P. Gao et al., High-energy and long-cycling all-solid-state lithium-ion batteries with Li- and Mn-rich layered oxide cathodes and sulfide electrolytes. ACS Energy Lett. 7(9), 3006–3014 (2022). https://doi.org/10.1021/acsenergylett.2c01637
- P. Adeli, J.D. Bazak, K.H. Park, I. Kochetkov, A. Huq et al., Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58(26), 8681–8686 (2019). https://doi.org/10.1002/anie.201814222
- X. Feng, P.-H. Chien, Y. Wang, S. Patel, P. Wang et al., Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x. Energy Storage Mater. 30, 67–73 (2020). https://doi.org/10.1016/j.ensm.2020.04.042
- Y.Z. Zhu, X.F. He, Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
- J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14(1), 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
- Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida et al., High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86(10), 689–693 (1993). https://doi.org/10.1016/0038-1098(93)90841-A
- W. Xiao, J. Wang, L. Fan, J. Zhang, X. Li, Recent advances in Li1+xAlxTi2-x(PO4)(3) solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 19, 379–400 (2019). https://doi.org/10.1016/j.ensm.2018.10.012
- M. Kotobuki, M. Koishi, Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceram. Int. 39(4), 4645–4649 (2013). https://doi.org/10.1016/j.ceramint.2012.10.206
- E. Rangasamy, J. Wolfenstine, J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 206, 28–32 (2012). https://doi.org/10.1016/j.ssi.2011.10.022
- S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine et al., Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 27(10), 3658–3665 (2015). https://doi.org/10.1021/acs.chemmater.5b00362
- J. Qiu, X. Liu, R. Chen, Q. Li, Y. Wang et al., Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 30(22), 1909392 (2020). https://doi.org/10.1002/adfm.201909392
- B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu et al., The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11(7), 1803–1810 (2018). https://doi.org/10.1039/C8EE00540K
- C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120(10), 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427
- L. Zhu, Y. Wang, J. Chen, W. Li, T. Wang et al., Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Sci. Adv. 8(11), eabj7698 (2022). https://doi.org/10.1126/sciadv.abj7698
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9), 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
- H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong et al., Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4(12), 2871–2886 (2019). https://doi.org/10.1021/acsenergylett.9b01871
- Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
- X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
- X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021). https://doi.org/10.1016/j.ensm.2020.10.006
- J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Thin-film lithium and lithium-ion batteries. Solid State Ion. 135(1), 33–45 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
- J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). https://doi.org/10.1002/aenm.201401408
- R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
- C. Wang, G. Bai, Y. Yang, X. Liu, H. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 12(1), 217–223 (2019). https://doi.org/10.1007/s12274-018-2205-7
- J. Su, M. Pasta, Z. Ning, X. Gao, P.G. Bruce et al., Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy Environ. Sci. 15, 3805–3814 (2022). https://doi.org/10.1039/D2EE01390H
- T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki et al., Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30(44), 1803075 (2018). https://doi.org/10.1002/adma.201803075
- L. Zhou, T.-T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7(1), 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
- K. Wang, Q. Ren, Z. Gu, C. Duan, J. Wang et al., A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12(1), 4410 (2021). https://doi.org/10.1038/s41467-021-24697-2
- J. Fu, S. Wang, J. Liang, S.H. Alahakoon, D. Wu et al., Superionic conducting halide frameworks enabled by interface-bonded halides. J. Am. Chem. Soc. 145(4), 2183–2194 (2022). https://doi.org/10.1021/jacs.2c09446
- X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang et al., Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019). https://doi.org/10.1039/C9EE02311A
- G.H. Chun, J.H. Shim, S. Yu, Computational investigation of the interfacial stability of lithium chloride solid electrolytes in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 14(1), 1241–1248 (2021). https://doi.org/10.1021/acsami.1c22104
- J. Kang, N. Deng, Y. Liu, Z. Yan, L. Gao et al., Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater. 52, 130–160 (2022). https://doi.org/10.1016/j.ensm.2022.07.037
- S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, J. Janek, Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015). https://doi.org/10.1016/j.ssi.2015.06.001
- P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich et al., Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013). https://doi.org/10.1021/jp4051275
- D. Cheng, T.A. Wynn, X. Wang, S. Wang, M. Zhang et al., Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4(11), 2484–2500 (2020). https://doi.org/10.1016/j.joule.2020.08.013
- C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato et al., Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). https://doi.org/10.1002/aenm.201301416
- F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4(3), 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
- H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31(18), 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967
- C. Zhu, T. Fuchs, S.A.L. Weber, F.H. Richter, G. Glasser et al., Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nat. Commun. 14(1), 1300–1313 (2023). https://doi.org/10.1038/s41467-023-36792-7
- T. Krauskopf, F.H. Richter, W.G. Zeier, J. Janek, Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120(15), 7745–7794 (2020). https://doi.org/10.1021/acs.chemrev.0c00431
- M. Meyer, H. Rickert, U. Schwaitzer, Investigations on the kinetics of the anodic dissolution of lithium at the interface Li/Li3N. Solid State Ion. 9–10, 689–693 (1983). https://doi.org/10.1016/0167-2738(83)90315-6
- T. Krauskopf, H. Hartmann, W.G. Zeier, J. Janek, Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11(15), 14463–14477 (2019). https://doi.org/10.1021/acsami.9b02537
- H. Buschmann, S. Berendts, B. Mogwitz, J. Janek, Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure. J. Power. Sources 206, 236–244 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.094
- C.-L. Tsai, V. Roddatis, C.V. Chandran, Q. Ma, S. Uhlenbruck et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8(16), 10617–10626 (2016). https://doi.org/10.1021/acsami.6b00831
- S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power. Sources 202, 332–335 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.064
- J.A. Lewis, F.J.Q. Cortes, Y. Liu, J.C. Miers, A. Verma et al., Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20(4), 503–510 (2021). https://doi.org/10.1038/s41563-020-00903-2
- Y. Lu, C.-Z. Zhao, J.-K. Hu, S. Sun, H. Yuan et al., The void formation behaviors in working solid-state Li metal batteries. Sci. Adv. 8(45), eadd0510 (2022). https://doi.org/10.1126/sciadv.add0510
- C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396–A404 (2005). https://doi.org/10.1149/1.1850854
- F.M. Pesci, R.H. Brugge, A.K.O. Hekselman, A. Cavallaro, R.J. Chater et al., Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. J. Mater. Chem. A 6(40), 19817–19827 (2018). https://doi.org/10.1039/C8TA08366E
- Y. Ren, Y. Shen, Y. Lin, C.-W. Nan, Microstructure manipulation for enhancing the resistance of garnet-type solid electrolytes to “short circuit” by Li metal anodes. ACS Appl. Mater. Interfaces 11(6), 5928–5937 (2019). https://doi.org/10.1021/acsami.8b17954
- Z. Deng, Z. Wang, I.-H. Chu, J. Luo, S.P. Ong, Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163(2), A67 (2016). https://doi.org/10.1149/2.0061602jes
- Y.-H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe et al., Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J. Mater. Sci. 47(16), 5970–5977 (2012). https://doi.org/10.1007/s10853-012-6500-5
- E. Kazyak, R. Garcia-Mendez, W.S. LePage, A. Sharafi, A.L. Davis et al., Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2(4), 1025–1048 (2020). https://doi.org/10.1016/j.matt.2020.02.008
- L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling et al., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7(20), 1701003 (2017). https://doi.org/10.1002/aenm.201701003
- M.B. Dixit, B.S. Vishugopi, W. Zaman, P. Kenesei, J.-S. Park et al., Polymorphism of garnet solid electrolytes and its implications for grain-l
References
Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power. Sources 100(1), 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001). https://doi.org/10.1038/35104644
Y. Huang, J. Li, Key challenges for grid-scale lithium-ion battery energy storage. Adv. Energy Mater. 12(48), 2202197 (2022). https://doi.org/10.1002/aenm.202202197
T. Waldmann, R.-G. Scurtu, K. Richter, M. Wohlfahrt-Mehrens, 18650 vs. 21700 Li-ion cells–a direct comparison of electrochemical, thermal, and geometrical properties. J. Power. Sources 472, 228614 (2020). https://doi.org/10.1016/j.jpowsour.2020.228614
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4(3), 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
W. Cao, Q. Li, X. Yu, H. Li, Controlling Li deposition below the interface. eScience 2(1), 47–78 (2022). https://doi.org/10.1016/j.esci.2022.02.002
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium–sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15(1), 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
A.J. Louli, A. Eldesoky, J. deGooyer, M. Coon, C.P. Aiken et al., Different positive electrodes for anode-free lithium metal cells. J. Electrochem. Soc. 169(4), 040517 (2022). https://doi.org/10.1149/1945-7111/ac62c4
Q. Li, Y. Yang, X. Yu, H. Li, A 700 W h kg−1 rechargeable pouch type lithium battery. Chin. Phys. Lett. 40(4), 048201 (2023). https://doi.org/10.1088/0256-307X/40/4/048201
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012). https://doi.org/10.1016/j.electacta.2012.05.001
D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 52(11), 3223–3232 (2019). https://doi.org/10.1021/acs.accounts.9b00437
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
P. Bonnick, J. Muldoon, The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci. 15(5), 1840–1860 (2022). https://doi.org/10.1039/D2EE00842D
J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development. Nat. Energy 8, 230–240 (2023). https://doi.org/10.1038/s41560-023-01208-9
J. Betz, J.-P. Brinkmann, R. Nölle, C. Lürenbaum, M. Kolek et al., Cross talk between transition metal cathode and li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9(21), 1900574 (2019). https://doi.org/10.1002/aenm.201900574
Q. Li, X. Yu, H. Li, Batteries: From china’s 13th to 14th five-year plan. eTransportation 14, 100201 (2022). https://doi.org/10.1016/j.etran.2022.100201
L.-Z. Fan, H. He, C.-W. Nan, Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021). https://doi.org/10.1038/s41578-021-00320-0
E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40(5), 2525–2540 (2011). https://doi.org/10.1039/c0cs00081g
X. Liu, R. Garcia-Mendez, A.R. Lupini, Y. Cheng, Z.D. Hood et al., Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021). https://doi.org/10.1038/s41563-021-01019-x
S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3(10), 2322–2333 (2019). https://doi.org/10.1016/j.joule.2019.08.018
J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11(16), 2100046 (2021). https://doi.org/10.1002/aenm.202100046
J.-I. Yamaki, S.-I. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power. Sources 74(2), 219–227 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
Y. Guo, S. Wu, Y.-B. He, F. Kang, L. Chen et al., Solid-state lithium batteries: safety and prospects. eScience 2(2), 138–163 (2022). https://doi.org/10.1016/j.esci.2022.02.008
M. Winter, The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Z. Phys. Chem. 223(10–11), 1395–1406 (2009). https://doi.org/10.1524/zpch.2009.6086
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438
P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/C8EE01286E
D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter et al., New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J. Power. Sources 81–82, 95–111 (1999). https://doi.org/10.1016/S0378-7753(99)00187-1
Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge et al., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16(3), 2011–2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. J. Phys. Chem. C 115(14), 7044–7049 (2011). https://doi.org/10.1021/jp112202s
E. Peled, Film forming reaction at the lithium/electrolyte interface. J. Power. Sources 9(3), 253–266 (1983). https://doi.org/10.1016/0378-7753(83)87026-8
S. Shi, P. Lu, Z. Liu, Y. Qi, L.G. Hector et al., Direct Calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134(37), 15476–15487 (2012). https://doi.org/10.1021/ja305366r
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14(1), 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion–reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59(20), 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
W.A. Martin, Y. Tian, J. Xiao, Understanding diffusion and electrochemical reduction of li+ ions in liquid lithium metal batteries. J. Electrochem. Soc. 168(6), 060513 (2021). https://doi.org/10.1149/1945-7111/ac0647
J. Xu, Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
G.G. Eshetu, X. Judez, C. Li, M. Martinez-Ibañez, I. Gracia et al., Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 140(31), 9921–9933 (2018). https://doi.org/10.1021/jacs.8b04612
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun et al., Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy. Science 358(6362), 506–510 (2017). https://doi.org/10.1126/science.aam6014
K. Xu, A. von Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111(20), 7411–7421 (2007). https://doi.org/10.1021/jp068691u
M. Jackle, A. Gross, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141(17), 174710 (2014). https://doi.org/10.1063/1.4901055
C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells. J. Power. Sources 81–82, 925–929 (1999). https://doi.org/10.1016/S0378-7753(98)00242-0
M. Rosso, J.N. Chazalviel, V. Fleury, E. Chassaing, Experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits. Electrochim. Acta 39(4), 507–515 (1994). https://doi.org/10.1016/0013-4686(94)80094-4
J. Xiao, How lithium dendrites form in liquid batteries. Science 366(6464), 426–427 (2019). https://doi.org/10.1126/science.aay8672
Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-Q. Huang et al., Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater. 31(18), 2009925 (2021). https://doi.org/10.1002/adfm.202009925
X. Sun, X. Zhang, Q. Ma, X. Guan, W. Wang et al., Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew. Chem. Int. Ed. 59(17), 6665–6674 (2020). https://doi.org/10.1002/anie.201912217
K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun et al., Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 58(33), 11364–11368 (2019). https://doi.org/10.1002/anie.201905251
L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar et al., Self-heating–induced healing of lithium dendrites. Science 359(6383), 1513 (2018). https://doi.org/10.1126/science.aap8787
X. Xu, Y. Liu, J.-Y. Hwang, O.O. Kapitanova, Z. Song et al., Role of Li-ion depletion on electrode surface: underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 10(44), 2002390 (2020). https://doi.org/10.1002/aenm.202002390
R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao et al., Artificial interphases for highly stable lithium metal anode. Matter 1(2), 317–344 (2019). https://doi.org/10.1016/j.matt.2019.05.016
G. Lu, J. Nai, D. Luan, X. Tao, X.W. Lou, Surface engineering toward stable lithium metal anodes. Sci. Adv. 9(14), eadf1550 (2023). https://doi.org/10.1126/sciadv.adf1550
Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin et al., Towards better Li metal anodes: challenges and strategies. Mater. Today 33, 56–74 (2020). https://doi.org/10.1016/j.mattod.2019.09.018
A.C. Kozen, C.-F. Lin, A.J. Pearse, M.A. Schroeder, X. Han et al., Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9(6), 5884–5892 (2015). https://doi.org/10.1021/acsnano.5b02166
J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi et al., Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 3(11), eaao3170 (2017). https://doi.org/10.1126/sciadv.aao3170
Y.Y. Lu, Z.Y. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13(10), 961–969 (2014). https://doi.org/10.1038/nmat4041
M. Baloch, D. Shanmukaraj, O. Bondarchuk, E. Bekaert, T. Rojo et al., Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries. Energy Storage Mater. 9, 141–149 (2017). https://doi.org/10.1016/j.ensm.2017.06.016
L. Chen, J.G. Connell, A. Nie, Z. Huang, K.R. Zavadil et al., Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J. Mater. Chem. A 5(24), 12297–12309 (2017). https://doi.org/10.1039/C7TA03116E
K. Yan, H.W. Lee, T. Gao, G. Zheng, H. Yao et al., Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14(10), 6016–6022 (2014). https://doi.org/10.1021/nl503125u
G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9(8), 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
Q. Xu, J. Lin, C. Ye, X. Jin, D. Ye et al., Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg. Adv. Energy Mater. 10(6), 1903292 (2019). https://doi.org/10.1002/aenm.201903292
T. Lapp, S. Skaarup, A. Hooper, Ionic conductivity of pure and doped Li3N. Solid State Ion. 11(2), 97–103 (1983). https://doi.org/10.1016/0167-2738(83)90045-0
Y. Zhu, X. He, Y. Mo, Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4(8), 1600517 (2017). https://doi.org/10.1002/advs.201600517
L. Fan, H.L. Zhuang, L. Gao, Y. Lu, L.A. Archer, Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A 5(7), 3483–3492 (2017). https://doi.org/10.1039/C6TA10204B
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 28(1), 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082
A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10(13), 6125–6138 (2018). https://doi.org/10.1039/c7nr09058g
S. Guo, N. Piao, L. Wang, H. Xu, G. Tian et al., PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Appl. Energy Mater. 3(7), 7191–7199 (2020). https://doi.org/10.1021/acsaem.0c01232
J. Bae, Y. Qian, Y. Li, X. Zhou, J.B. Goodenough et al., Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12(11), 3319–3327 (2019). https://doi.org/10.1039/C9EE02558H
Q. Yang, J. Hu, J. Meng, C. Li, C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14(6), 3621–3631 (2021). https://doi.org/10.1039/D0EE03952G
Y. Zhao, D. Wang, Y. Gao, T. Chen, Q. Huang et al., Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy 64, 103893 (2019). https://doi.org/10.1016/j.nanoen.2019.103893
E.K. Jang, J. Ahn, S. Yoon, K.Y. Cho, High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode. Adv. Funct. Mater. 29(48), 1905078 (2019). https://doi.org/10.1002/adfm.201905078
O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon et al., High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 6(12), 4416–4425 (2021). https://doi.org/10.1021/acsenergylett.1c02224
R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao et al., Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28(8), 1705838 (2018). https://doi.org/10.1002/adfm.201705838
T. Yu, T. Zhao, N. Zhang, T. Xue, Y. Chen et al., Spatially confined LiF nanops in an aligned polymer matrix as the artificial SEI layer for lithium metal anodes. Nano Lett. 23(1), 276–282 (2023). https://doi.org/10.1021/acs.nanolett.2c04242
Y. Wang, C.-F. Lin, J. Rao, K. Gaskell, G. Rubloff et al., Electrochemically controlled solid electrolyte interphase layers enable superior Li-S batteries. ACS Appl. Mater. Interfaces 10(29), 24554–24563 (2018). https://doi.org/10.1021/acsami.8b07248
G. Li, Y. Gao, X. He, Q. Huang, S. Chen et al., Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nat. Commun. 8(1), 850 (2017). https://doi.org/10.1038/s41467-017-00974-x
X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang et al., Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2(2), 258–270 (2017). https://doi.org/10.1016/j.chempr.2017.01.003
G. Lu, J. Nai, H. Yuan, J. Wang, J. Zheng et al., In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 16(6), 9883–9893 (2022). https://doi.org/10.1021/acsnano.2c04025
Y.J. Zhang, W. Wang, H. Tang, W.Q. Bai, X. Ge et al., An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power. Sources 277, 304–311 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.023
J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen et al., Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139(33), 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251
D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu et al., Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17(6), 3731–3737 (2017). https://doi.org/10.1021/acs.nanolett.7b01020
W. Guo, Q. Han, J. Jiao, W. Wu, X. Zhu et al., In situ construction of robust biphasic surface layers on lithium metal for lithium–sulfide batteries with long cycle life. Angew. Chem. Int. Ed. 60(13), 7267–7274 (2021). https://doi.org/10.1002/anie.202015049
C. Yan, X.B. Cheng, Y.X. Yao, X. Shen, B.Q. Li et al., An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30(45), 1804461 (2018). https://doi.org/10.1002/adma.201804461
A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14(7), 4115–4124 (2021). https://doi.org/10.1039/D1EE00508A
Q. Pang, X. Liang, I.R. Kochetkov, P. Hartmann, L.F. Nazar, Stabilizing lithium plating by a biphasic surface layer formed in situ. Angew. Chem. Int. Ed. 57(31), 9795–9798 (2018). https://doi.org/10.1002/anie.201805456
S. Qian, C. Xing, M. Zheng, Z. Su, H. Chen et al., CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes. Adv. Energy Mater. 12(15), 2103480 (2022). https://doi.org/10.1002/aenm.202103480
J. Wang, H. Hu, S. Duan, Q. Xiao, J. Zhang et al., Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater. 32(12), 2110468 (2021). https://doi.org/10.1002/adfm.202110468
N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57(6), 1505–1509 (2018). https://doi.org/10.1002/anie.201710806
Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie et al., An artificial solid electrolyte interphase with high Li-Ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29(10), 1605531 (2017). https://doi.org/10.1002/adma.201605531
J. Xie, Z. Jiang, L. Jin, Z. Han, W. Hu et al., Facile generation of polymer-alloy hybrid layer towards dendrite-free lithium metal anode with improved moisture stability. Angew. Chem. Int. Ed. 58(33), 11374–11378 (2019). https://doi.org/10.1002/anie.201905712
M. Rosso, T. Gobron, C. Brissot, J.-N. Chazalviel, S. Lascaud, Onset of dendritic growth in lithium/polymer cells. J. Power. Sources 97, 804–806 (2001). https://doi.org/10.1016/S0378-7753(01)00734-0
Z. Lyu, J.J. Koh, G.J.H. Lim, D. Zhang, T. Xiong et al., Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip. Mater. 1(4), 507–516 (2022). https://doi.org/10.1002/idm2.12027
C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6(1), 8058 (2015). https://doi.org/10.1038/ncomms9058
H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun et al., Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 8(19), 1800266 (2018). https://doi.org/10.1002/aenm.201800266
Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li et al., Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28(32), 6932–6939 (2016). https://doi.org/10.1002/adma.201601409
G.J.H. Lim, Z. Lyu, X. Zhang, J.J. Koh, Y. Zhang et al., Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. J. Mater. Chem. A 8(18), 9058–9067 (2020). https://doi.org/10.1039/D0TA00209G
Z. Cao, B. Li, S. Yang, Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 31(29), 1901310 (2019). https://doi.org/10.1002/adma.201901310
J. Luo, W. Yuan, S. Huang, B. Zhao, Y. Chen et al., From checkerboard-like sand barriers to 3D Cu@CNF composite current collectors for high-performance batteries. Adv. Sci. 5(7), 1800031 (2018). https://doi.org/10.1002/advs.201800031
Z. Lyu, G.J.H. Lim, J.J. Koh, Y. Li, Y. Ma et al., Design and manufacture of 3D-printed batteries. Joule 5(1), 89–114 (2021). https://doi.org/10.1016/j.joule.2020.11.010
Z. Zhang, J. Wang, X. Yan, S. Zhang, W. Yang et al., In-situ growth of hierarchical N-doped CNTs/Ni Foam scaffold for dendrite-free lithium metal anode. Energy Storage Mater. 29, 332–340 (2020). https://doi.org/10.1016/j.ensm.2020.04.022
T. Liu, J. Wang, Y. Xu, Y. Zhang, Y. Wang, Dendrite-free and stable lithium metal battery achieved by a model of stepwise lithium deposition and stripping. Nano-Micro Lett. 13(1), 170 (2021). https://doi.org/10.1007/s40820-021-00687-3
X. Zhang, A. Wang, R. Lv, J. Luo, A corrosion-resistant current collector for lithium metal anodes. Energy Storage Mater. 18, 199–204 (2019). https://doi.org/10.1016/j.ensm.2018.09.017
X.-Y. Yue, X.-L. Li, J. Bao, Q.-Q. Qiu, T. Liu et al., “Top-down” Li deposition pathway enabled by an asymmetric design for Li composite electrode. Adv. Energy Mater. 9(35), 1901491 (2019). https://doi.org/10.1002/aenm.201901491
Q. Wang, C. Yang, J. Yang, K. Wu, L. Qi et al., Stable Li metal anode with protected interface for high-performance Li metal batteries. Energy Storage Mater. 15, 249–256 (2018). https://doi.org/10.1016/j.ensm.2018.04.030
S. Ye, X. Chen, R. Zhang, Y. Jiang, F. Huang et al., Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano-Micro Lett. 14(1), 187 (2022). https://doi.org/10.1007/s40820-022-00932-3
L. Liu, Y.-X. Yin, J.-Y. Li, N.-W. Li, X.-X. Zeng et al., Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes. Joule 1(3), 563–575 (2017). https://doi.org/10.1016/j.joule.2017.06.004
S. Zhang, D. Wang, X. Xu, H. Li, W. Xu et al., Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter 5(4), 1263–1276 (2022). https://doi.org/10.1016/j.matt.2022.01.017
H. Chen, A. Pei, J. Wan, D. Lin, R. Vilá et al., Tortuosity effects in lithium-metal host anodes. Joule 4(4), 938–952 (2020). https://doi.org/10.1016/j.joule.2020.03.008
X. Li, Y. Wang, K. Xi, W. Yu, J. Feng et al., Quasi-solid-state ion-conducting arrays composite electrolytes with fast ion transport vertical-aligned interfaces for all-weather practical lithium-metal batteries. Nano-Micro Lett. 14(1), 210 (2022). https://doi.org/10.1007/s40820-022-00952-z
Y. Liu, X. Xu, M. Sadd, O.O. Kapitanova, V.A. Krivchenko et al., Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8(5), 2003301 (2021). https://doi.org/10.1002/advs.202003301
H. Shen, F. Qi, H. Li, P. Tang, X. Gao et al., Ultrafast electrochemical growth of lithiophilic nano-flake arrays for stable lithium metal anode. Adv. Funct. Mater. 31(48), 2103309 (2021). https://doi.org/10.1002/adfm.202103309
D. Lee, S. Sun, J. Kwon, H. Park, M. Jang et al., Copper nitride nanowires printed li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32(7), 1905573 (2020). https://doi.org/10.1002/adma.201905573
X. Zhang, Y. Wei, B. Wang, M. Wang, Y. Zhang et al., Construction of electrocatalytic and heat-resistant self-supporting electrodes for high-performance lithium–sulfur batteries. Nano-Micro Lett. 11(1), 78 (2019). https://doi.org/10.1007/s40820-019-0313-x
K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1(3), 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
P. Qing, Z. Wu, A. Wang, S. Huang, K. Long et al., Highly reversible lithium metal anode enabled by 3d lithiophilic–lithiophobic dual-skeletons. Adv. Mater. 35(15), 2211203 (2023). https://doi.org/10.1002/adma.202211203
L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15(1), 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell fe2n-nanop-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11(1), 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56(27), 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
Z. Lyu, G.J.H. Lim, R. Guo, Z. Pan, X. Zhang et al., 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 24, 336–342 (2020). https://doi.org/10.1016/j.ensm.2019.07.041
K. Li, Z. Hu, J. Ma, S. Chen, D. Mu et al., A 3D and stable lithium anode for high-performance lithium–iodine batteries. Adv. Mater. 31(33), 1902399 (2019). https://doi.org/10.1002/adma.201902399
S.-H. Wang, J. Yue, W. Dong, T.-T. Zuo, J.-Y. Li et al., Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10(1), 4930 (2019). https://doi.org/10.1038/s41467-019-12938-4
C. Niu, H. Pan, W. Xu, J. Xiao, J.G. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
P. Huang, W.-Q. Han, Recent advances and perspectives of lewis acidic etching route: an emerging preparation strategy for MXenes. Nano-Micro Lett. 15(1), 68 (2023). https://doi.org/10.1007/s40820-023-01039-z
P. Huang, H. Ying, S. Zhang, Z. Zhang, W.-Q. Han, Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage. Adv. Energy Mater. 12(39), 2202052 (2022). https://doi.org/10.1002/aenm.202202052
A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-healing MXene- and graphene-based composites: properties and applications. Nano-Micro Lett. 15(1), 100 (2023). https://doi.org/10.1007/s40820-023-01074-w
D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang et al., Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31(24), 2010987 (2021). https://doi.org/10.1002/adfm.202010987
S. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 14(12), 17665–17674 (2020). https://doi.org/10.1021/acsnano.0c08770
E. Mostafavi, S. Iravani, MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 14(1), 130 (2022). https://doi.org/10.1007/s40820-022-00880-y
S. Zhang, H. Ying, B. Yuan, R. Hu, W.-Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano-Micro Lett. 12, 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
S. Mukherjee, Z. Ren, G. Singh, Beyond graphene anode materials for emerging metal ion batteries and supercapacitors. Nano-Micro Lett. 10(4), 70 (2018). https://doi.org/10.1007/s40820-018-0224-2
Y. Zhang, J. Qian, W. Xu, S.M. Russell, X. Chen et al., Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14(12), 6889–6896 (2014). https://doi.org/10.1021/nl5039117
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
Q. Peng, Z. Liu, L. Jiang, Q. Wang, Optimized cycle and safety performance of lithium–metal batteries with the sustained-release effect of nano CaCO3. Adv. Energy Mater. 12(20), 2104021 (2022). https://doi.org/10.1002/aenm.202104021
Y.-H. Tan, G.-X. Lu, J.-H. Zheng, F. Zhou, M. Chen et al., Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33(42), 2102134 (2021). https://doi.org/10.1002/adma.202102134
Y. Wang, Separator wettability enhanced by electrolyte additive to boost the electrochemical performance of lithium metal batteries. Nano-Micro Lett. 13(1), 210 (2021). https://doi.org/10.1007/s40820-021-00731-2
J. Huang, Y. Yang, Y. Liu, J. Ma, Lithium hexamethyldisilazide endows Li||NCM811 battery with superior performance. Nano-Micro Lett. 15(1), 33 (2023). https://doi.org/10.1007/s40820-022-00998-z
H. Zhang, G. Gebresilassie Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martinez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang et al., Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Lett. 3(1), 14–19 (2018). https://doi.org/10.1021/acsenergylett.7b00982
X.-Q. Zhang, T. Li, B.-Q. Li, R. Zhang, P. Shi et al., A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions. Angew. Chem. Int. Ed. 59(8), 3252–3257 (2020). https://doi.org/10.1002/anie.201911724
C. Xu, G. Hernández, S. Abbrent, L. Kobera, R. Konefal et al., Unraveling and mitigating the storage instability of fluoroethylene carbonate-containing LiPF6 electrolytes to stabilize lithium metal anodes for high-temperature rechargeable batteries. ACS Appl. Energy Mater. 2(7), 4925–4935 (2019). https://doi.org/10.1021/acsaem.9b00607
Y. Zhang, Y. Zhong, Z. Wu, B. Wang, S. Liang et al., Solvent molecule cooperation enhancing lithium metal battery performance at both electrodes. Angew. Chem. Int. Ed. 59(20), 7797–7802 (2020). https://doi.org/10.1002/anie.202000023
Q. Zhao, N.W. Utomo, A.L. Kocen, S. Jin, Y. Deng et al., Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61(9), e202116214 (2022). https://doi.org/10.1002/anie.202116214
S. Gu, S.-W. Zhang, J. Han, Y. Deng, C. Luo et al., Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte. Adv. Funct. Mater. 31(28), 2102128 (2021). https://doi.org/10.1002/adfm.202102128
C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. 130(43), 14251–14255 (2018). https://doi.org/10.1002/ange.201807034
P. Shi, L. Zhang, H. Xiang, X. Liang, Y. Sun et al., Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS Appl. Mater. Interfaces 10(26), 22201–22209 (2018). https://doi.org/10.1021/acsami.8b05185
L. Cheng, Y. Wang, J. Yang, M. Tang, C. Zhang et al., An ultrafast and stable Li-metal battery cycled at −40 °C. Adv. Funct. Mater. 33(11), 2212349 (2022). https://doi.org/10.1002/adfm.202212349
W. Zhang, Q. Wu, J. Huang, L. Fan, Z. Shen et al., Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32(24), 2001740 (2020). https://doi.org/10.1002/adma.202001740
C. Jin, T. Liu, O. Sheng, M. Li, T. Liu et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021). https://doi.org/10.1038/s41560-021-00789-7
H. Ye, Y.-X. Yin, S.-F. Zhang, Y. Shi, L. Liu et al., Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal ps for stable lithium anode. Nano Energy 36, 411–417 (2017). https://doi.org/10.1016/j.nanoen.2017.04.056
S. Zhang, Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 12(1), 158 (2020). https://doi.org/10.1007/s40820-020-00501-6
L. Zheng, F. Guo, T. Kang, Y. Fan, W. Gu et al., Stable lithium-carbon composite enabled by dual-salt additives. Nano-Micro Lett. 13(1), 111 (2021). https://doi.org/10.1007/s40820-021-00633-3
S. Eijima, H. Sonoki, M. Matsumoto, S. Taminato, D. Mori et al., Solid electrolyte interphase film on lithium metal anode in mixed-salt system. J. Electrochem. Soc. 166(3), A5421–A5429 (2019). https://doi.org/10.1149/2.0611903jes
S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
L.-P. Hou, N. Yao, J. Xie, P. Shi, S.-Y. Sun et al., Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 61(20), e202201406 (2022). https://doi.org/10.1002/anie.202201406
Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12(1), 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
D. Jin, Y. Roh, T. Jo, M.-H. Ryou, H. Lee et al., Robust cycling of ultrathin Li metal enabled by nitrate-preplanted Li powder composite. Adv. Energy Mater. 11(18), 2003769 (2021). https://doi.org/10.1002/aenm.202003769
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson et al., An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60(7), 3661–3671 (2021). https://doi.org/10.1002/anie.202012005
D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16(47), 2004688 (2020). https://doi.org/10.1002/smll.202004688
H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 6(4), 1413–1421 (2021). https://doi.org/10.1021/acsenergylett.1c00149
S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier et al., Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. J. Power. Sources 427, 77–84 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.061
D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47(9), 1423–1439 (2002). https://doi.org/10.1016/S0013-4686(01)00858-1
T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3(11), 2647–2661 (2019). https://doi.org/10.1016/j.joule.2019.09.022
H. Wang, Z. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6(3), 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
W. Wu, Y. Bo, D. Li, Y. Liang, J. Zhang et al., Safe and stable lithium metal batteries enabled by an amide-based electrolyte. Nano-Micro Lett. 14(1), 44 (2022). https://doi.org/10.1007/s40820-021-00780-7
X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13(8), 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2
W. Xue, Z. Shi, M. Huang, S. Feng, C. Wang et al., FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13(1), 212–220 (2020). https://doi.org/10.1039/C9EE02538C
W. Xue, M. Huang, Y. Li, Y.G. Zhu, R. Gao et al., Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6(5), 495–505 (2021). https://doi.org/10.1038/s41560-021-00792-y
G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022). https://doi.org/10.1038/s41467-022-32794-z
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
W.A. Henderson, N.R. Brooks, W.W. Brennessel, V.G. Young, Triglyme−Li+ cation solvate structures: models for amorphous concentrated liquid and polymer electrolytes (I). Chem. Mater. 15(24), 4679–4684 (2003). https://doi.org/10.1021/cm034351z
J. Wu, Z. Gao, Y. Wang, X. Yang, Q. Liu et al., Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries. Nano-Micro Lett. 14(1), 147 (2022). https://doi.org/10.1007/s40820-022-00896-4
Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi et al., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014). https://doi.org/10.1021/ja412807w
X. Cao, H. Jia, W. Xu, J.-G. Zhang, Review—localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168(1), 010522 (2021). https://doi.org/10.1149/1945-7111/abd60e
J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6(1), 6362 (2015). https://doi.org/10.1038/ncomms7362
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4(1), 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa et al., General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl. Mater. Interfaces 6(14), 10892–10899 (2014). https://doi.org/10.1021/am5001163
M. Cuisinier, P.E. Cabelguen, B.D. Adams, A. Garsuch, M. Balasubramanian et al., Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ. Sci. 7(8), 2697–2705 (2014). https://doi.org/10.1039/C4EE00372A
J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada et al., Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3(1), 22–29 (2018). https://doi.org/10.1038/s41560-017-0033-8
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4(4), 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4(8), 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
S. Chen, J. Zheng, L. Yu, X. Ren, M.H. Engelhard et al., High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2(8), 1548–1558 (2018). https://doi.org/10.1016/j.joule.2018.05.002
X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
W. Ren, Y. Zheng, Z. Cui, Y. Tao, B. Li et al., Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 35, 157–168 (2021). https://doi.org/10.1016/j.ensm.2020.11.019
M. Zhang, L. Wang, H. Xu, Y. Song, X. He, Polyimides as promising materials for lithium-ion batteries: a review. Nano-Micro Lett. 15(1), 135 (2023). https://doi.org/10.1007/s40820-023-01104-7
J. Liang, Q. Chen, X. Liao, P. Yao, B. Zhu et al., A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. 59(16), 6561–6566 (2020). https://doi.org/10.1002/anie.201915440
S.H. Lee, J. Kim, B.-H. Kim, S. Yoon, K.Y. Cho, Delamination-free multifunctional separator for long-term stability of lithium-ion batteries. Small 15(12), 1804980 (2019). https://doi.org/10.1002/smll.201804980
P.J.H. Kim, V.G. Pol, Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward ultrastable and high-rate lithium metal anodes. ACS Appl. Mater. Interfaces 11(4), 3917–3924 (2019). https://doi.org/10.1021/acsami.8b18660
X. Hao, J. Zhu, X. Jiang, H. Wu, J. Qiao et al., Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 16(5), 2981–2987 (2016). https://doi.org/10.1021/acs.nanolett.5b05133
C. Li, S. Liu, C. Shi, G. Liang, Z. Lu et al., Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat. Commun. 10(1), 1363 (2019). https://doi.org/10.1038/s41467-019-09211-z
C.-Z. Zhao, P.-Y. Chen, R. Zhang, X. Chen, B.-Q. Li et al., An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4(11), eaat3446 (2018). https://doi.org/10.1126/sciadv.aat3446
H. Huo, X. Li, Y. Chen, J. Liang, S. Deng et al., Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Mater. 29, 361–366 (2020). https://doi.org/10.1016/j.ensm.2019.12.022
S. Tan, Y. Jiang, S. Ni, H. Wang, F. Xiong et al., Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. Natl. Sci. Rev. 9(11), nwac183 (2022). https://doi.org/10.1093/nsr/nwac183
X. Zhang, F. Ma, K. Srinivas, B. Yu, X. Chen et al., Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 45, 656–666 (2022). https://doi.org/10.1016/j.ensm.2021.12.010
X. Han, J. Chen, M. Chen, W. Zhou, X. Zhou et al., Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energy Storage Mater. 39, 250–258 (2021). https://doi.org/10.1016/j.ensm.2021.04.029
Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li et al., An autotransferable g-C3N4 Li(+)-modulating layer toward stable lithium anodes. Adv. Mater. 31(27), 1900342 (2019). https://doi.org/10.1002/adma.201900342
Y. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma et al., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375(6582), 739–745 (2022). https://doi.org/10.1126/science.abn1818
C. Wei, L. Tan, Y. Zhang, Z. Wang, B. Xi et al., Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Mater. 50, 473–494 (2022). https://doi.org/10.1016/j.ensm.2022.05.024
X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan et al., Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery. J. Mater. Chem. A 2(30), 11660–11665 (2014). https://doi.org/10.1039/c4ta01709a
S.H. Choi, S.J. Lee, D.-J. Yoo, J.H. Park, J.-H. Park et al., Marginal magnesium doping for high-performance lithium metal batteries. Adv. Energy Mater. 9(41), 1902278 (2019). https://doi.org/10.1002/aenm.201902278
S. Liu, Y. Ma, Z. Zhou, S. Lou, H. Huo et al., Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Mater. 33, 423–431 (2020). https://doi.org/10.1016/j.ensm.2020.08.007
J. Ryu, J. Kang, H. Kim, J.H. Lee, H. Lee et al., Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries. Energy Storage Mater. 33, 164–172 (2020). https://doi.org/10.1016/j.ensm.2020.08.012
S. Han, Z. Li, Y. Zhang, D. Lei, C. Wang, In-situ formation of a nanoscale lithium aluminum alloy in lithium metal for high-load battery anode. Energy Storage Mater. 48, 384–392 (2022). https://doi.org/10.1016/j.ensm.2022.03.036
J. Gao, C. Chen, Q. Dong, J. Dai, Y. Yao et al., Stamping flexible Li alloy anodes. Adv. Mater. 33(11), 2005305 (2021). https://doi.org/10.1002/adma.202005305
L.-L. Kong, L. Wang, Z.-C. Ni, S. Liu, G.-R. Li et al., Lithium–magnesium alloy as a stable anode for lithium–sulfur battery. Adv. Funct. Mater. 29(13), 1808756 (2019). https://doi.org/10.1002/adfm.201808756
P. Gao, H. Wu, X. Zhang, H. Jia, J.-M. Kim et al., Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment. Angew. Chem. Int. Ed. 60(30), 16506–16513 (2021). https://doi.org/10.1002/anie.202103344
L. Lin, L. Suo, Y.-S. Hu, H. Li, X. Huang et al., Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery. Adv. Energy Mater. 11(9), 2003709 (2021). https://doi.org/10.1002/aenm.202003709
J. Zhou, T. Qian, Z. Wang, J. Liu, Y. Sun et al., Healable lithium alloy anode with ultrahigh capacity. Nano Lett. 21(12), 5021–5027 (2021). https://doi.org/10.1021/acs.nanolett.1c00608
L. Ren, A. Wang, X. Zhang, G. Li, X. Liu et al., Eliminating dendrites through dynamically engineering the forces applied during Li deposition for stable lithium metal anodes. Adv. Energy Mater. 10(4), 1902932 (2020). https://doi.org/10.1002/aenm.201902932
J. Wang, W. Huang, A. Pei, Y. Li, F. Shi et al., Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019). https://doi.org/10.1038/s41560-019-0413-3
A. Wang, Q. Deng, L. Deng, X. Guan, J. Luo, Eliminating tip dendrite growth by lorentz force for stable lithium metal anodes. Adv. Funct. Mater. 29(25), 1902630 (2019). https://doi.org/10.1002/adfm.201902630
K. Shen, Z. Wang, X. Bi, Y. Ying, D. Zhang et al., Magnetic field–suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 9(20), 1900260 (2019). https://doi.org/10.1002/aenm.201900260
S. Wang, Y. Wang, Y. Song, J. Zhang, X. Jia et al., Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition. Energy Storage Mater. 50, 505–513 (2022). https://doi.org/10.1016/j.ensm.2022.05.043
X. Shen, R. Zhang, P. Shi, X. Chen, Q. Zhang, How does external pressure shape Li dendrites in Li metal batteries? Adv. Energy Mater. 11(10), 2003416 (2021). https://doi.org/10.1002/aenm.202003416
X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy 3(3), 227–235 (2018). https://doi.org/10.1038/s41560-018-0104-5
H. Yang, E.O. Fey, B.D. Trimm, N. Dimitrov, M.S. Whittingham, Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency. J. Power. Sources 272, 900–908 (2014). https://doi.org/10.1016/j.jpowsour.2014.09.026
M.Z. Mayers, J.W. Kaminski, T.F. Miller, Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J. Phys. Chem. C 116(50), 26214–26221 (2012). https://doi.org/10.1021/jp309321w
A. Huang, H. Liu, O. Manor, P. Liu, J. Friend, Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32(14), 1907516 (2020). https://doi.org/10.1002/adma.201907516
Y. Gao, F. Qiao, J. You, Z. Ren, N. Li et al., Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nat. Commun. 13(1), 5 (2022). https://doi.org/10.1038/s41467-021-27429-8
X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 10, 246–267 (2018). https://doi.org/10.1016/j.ensm.2017.05.013
X. Feng, M. Fang, X. He, M. Ouyang, L. Lu et al., Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power. Sources 255, 294–301 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.005
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
H. Tsukasaki, M. Otoyama, Y. Mori, S. Mori, H. Morimoto et al., Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. J. Power. Sources 367, 42–48 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.031
G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney et al., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7(3), 1053–1058 (2014). https://doi.org/10.1039/C3EE43357A
P. Bron, S. Johansson, K. Zick, J. Schmedt auf der Gunne, S. Dehnen et al., Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135(42), 15694–15697 (2013). https://doi.org/10.1021/ja407393y
G. Abels, I. Bardenhagen, J. Schwenzel, F. Langer, Thermal stability of polyethylene oxide electrolytes in lithium nickel manganese cobalt oxide based composite cathodes. J. Electrochem. Soc. 169(2), 020560 (2022). https://doi.org/10.1149/1945-7111/ac534c
Y. Song, L. Wang, L. Sheng, D. Ren, H. Liang et al., The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy Environ. Sci. 16(5), 1943–1963 (2023). https://doi.org/10.1039/D3EE00441D
J. Janek, W.G. Zeier, A solid future for battery development. Nat. Energy 1(9), 16141 (2016). https://doi.org/10.1038/nenergy.2016.141
D. Cao, X. Sun, Y. Wang, H. Zhu, Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries. Energy Storage Mater. 48, 458–465 (2022). https://doi.org/10.1016/j.ensm.2022.03.012
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor. Nat. Mater. 10, 682 (2011). https://doi.org/10.1038/nmat3066
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
X. Zhu, L. Wang, Z. Bai, J. Lu, T. Wu, Sulfide-based all-solid-state lithium–sulfur batteries: challenges and perspectives. Nano-Micro Lett. 15(1), 75 (2023). https://doi.org/10.1007/s40820-023-01053-1
W. Du, Q. Shao, Y. Wei, C. Yan, P. Gao et al., High-energy and long-cycling all-solid-state lithium-ion batteries with Li- and Mn-rich layered oxide cathodes and sulfide electrolytes. ACS Energy Lett. 7(9), 3006–3014 (2022). https://doi.org/10.1021/acsenergylett.2c01637
P. Adeli, J.D. Bazak, K.H. Park, I. Kochetkov, A. Huq et al., Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 58(26), 8681–8686 (2019). https://doi.org/10.1002/anie.201814222
X. Feng, P.-H. Chien, Y. Wang, S. Patel, P. Wang et al., Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x. Energy Storage Mater. 30, 67–73 (2020). https://doi.org/10.1016/j.ensm.2020.04.042
Y.Z. Zhu, X.F. He, Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
J. Li, Y. Ji, H. Song, S. Chen, S. Ding et al., Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries. Nano-Micro Lett. 14(1), 191 (2022). https://doi.org/10.1007/s40820-022-00936-z
Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida et al., High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86(10), 689–693 (1993). https://doi.org/10.1016/0038-1098(93)90841-A
W. Xiao, J. Wang, L. Fan, J. Zhang, X. Li, Recent advances in Li1+xAlxTi2-x(PO4)(3) solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 19, 379–400 (2019). https://doi.org/10.1016/j.ensm.2018.10.012
M. Kotobuki, M. Koishi, Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceram. Int. 39(4), 4645–4649 (2013). https://doi.org/10.1016/j.ceramint.2012.10.206
E. Rangasamy, J. Wolfenstine, J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion. 206, 28–32 (2012). https://doi.org/10.1016/j.ssi.2011.10.022
S. Mukhopadhyay, T. Thompson, J. Sakamoto, A. Huq, J. Wolfenstine et al., Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 27(10), 3658–3665 (2015). https://doi.org/10.1021/acs.chemmater.5b00362
J. Qiu, X. Liu, R. Chen, Q. Li, Y. Wang et al., Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 30(22), 1909392 (2020). https://doi.org/10.1002/adfm.201909392
B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu et al., The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11(7), 1803–1810 (2018). https://doi.org/10.1039/C8EE00540K
C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson et al., Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120(10), 4257–4300 (2020). https://doi.org/10.1021/acs.chemrev.9b00427
L. Zhu, Y. Wang, J. Chen, W. Li, T. Wang et al., Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Sci. Adv. 8(11), eabj7698 (2022). https://doi.org/10.1126/sciadv.abj7698
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5(9), 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
X. Wan, T. Mu, G. Yin, Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023). https://doi.org/10.1007/s40820-023-01075-9
H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong et al., Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 4(12), 2871–2886 (2019). https://doi.org/10.1021/acsenergylett.9b01871
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
X. Wang, R. Kerr, F. Chen, N. Goujon, J.M. Pringle et al., Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
X. Yu, A. Manthiram, A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021). https://doi.org/10.1016/j.ensm.2020.10.006
J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Thin-film lithium and lithium-ion batteries. Solid State Ion. 135(1), 33–45 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). https://doi.org/10.1002/aenm.201401408
R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang et al., All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
C. Wang, G. Bai, Y. Yang, X. Liu, H. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 12(1), 217–223 (2019). https://doi.org/10.1007/s12274-018-2205-7
J. Su, M. Pasta, Z. Ning, X. Gao, P.G. Bruce et al., Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy Environ. Sci. 15, 3805–3814 (2022). https://doi.org/10.1039/D2EE01390H
T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki et al., Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30(44), 1803075 (2018). https://doi.org/10.1002/adma.201803075
L. Zhou, T.-T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7(1), 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
K. Wang, Q. Ren, Z. Gu, C. Duan, J. Wang et al., A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12(1), 4410 (2021). https://doi.org/10.1038/s41467-021-24697-2
J. Fu, S. Wang, J. Liang, S.H. Alahakoon, D. Wu et al., Superionic conducting halide frameworks enabled by interface-bonded halides. J. Am. Chem. Soc. 145(4), 2183–2194 (2022). https://doi.org/10.1021/jacs.2c09446
X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang et al., Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019). https://doi.org/10.1039/C9EE02311A
G.H. Chun, J.H. Shim, S. Yu, Computational investigation of the interfacial stability of lithium chloride solid electrolytes in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 14(1), 1241–1248 (2021). https://doi.org/10.1021/acsami.1c22104
J. Kang, N. Deng, Y. Liu, Z. Yan, L. Gao et al., Recent advances of anode protection in solid-state lithium metal batteries. Energy Storage Mater. 52, 130–160 (2022). https://doi.org/10.1016/j.ensm.2022.07.037
S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, J. Janek, Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015). https://doi.org/10.1016/j.ssi.2015.06.001
P. Hartmann, T. Leichtweiss, M.R. Busche, M. Schneider, M. Reich et al., Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013). https://doi.org/10.1021/jp4051275
D. Cheng, T.A. Wynn, X. Wang, S. Wang, M. Zhang et al., Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4(11), 2484–2500 (2020). https://doi.org/10.1016/j.joule.2020.08.013
C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato et al., Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). https://doi.org/10.1002/aenm.201301416
F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4(3), 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z
H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, Y. Qi, Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 31(18), 7351–7359 (2019). https://doi.org/10.1021/acs.chemmater.9b01967
C. Zhu, T. Fuchs, S.A.L. Weber, F.H. Richter, G. Glasser et al., Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques. Nat. Commun. 14(1), 1300–1313 (2023). https://doi.org/10.1038/s41467-023-36792-7
T. Krauskopf, F.H. Richter, W.G. Zeier, J. Janek, Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120(15), 7745–7794 (2020). https://doi.org/10.1021/acs.chemrev.0c00431
M. Meyer, H. Rickert, U. Schwaitzer, Investigations on the kinetics of the anodic dissolution of lithium at the interface Li/Li3N. Solid State Ion. 9–10, 689–693 (1983). https://doi.org/10.1016/0167-2738(83)90315-6
T. Krauskopf, H. Hartmann, W.G. Zeier, J. Janek, Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11(15), 14463–14477 (2019). https://doi.org/10.1021/acsami.9b02537
H. Buschmann, S. Berendts, B. Mogwitz, J. Janek, Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure. J. Power. Sources 206, 236–244 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.094
C.-L. Tsai, V. Roddatis, C.V. Chandran, Q. Ma, S. Uhlenbruck et al., Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8(16), 10617–10626 (2016). https://doi.org/10.1021/acsami.6b00831
S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power. Sources 202, 332–335 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.064
J.A. Lewis, F.J.Q. Cortes, Y. Liu, J.C. Miers, A. Verma et al., Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. 20(4), 503–510 (2021). https://doi.org/10.1038/s41563-020-00903-2
Y. Lu, C.-Z. Zhao, J.-K. Hu, S. Sun, H. Yuan et al., The void formation behaviors in working solid-state Li metal batteries. Sci. Adv. 8(45), eadd0510 (2022). https://doi.org/10.1126/sciadv.add0510
C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152(2), A396–A404 (2005). https://doi.org/10.1149/1.1850854
F.M. Pesci, R.H. Brugge, A.K.O. Hekselman, A. Cavallaro, R.J. Chater et al., Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. J. Mater. Chem. A 6(40), 19817–19827 (2018). https://doi.org/10.1039/C8TA08366E
Y. Ren, Y. Shen, Y. Lin, C.-W. Nan, Microstructure manipulation for enhancing the resistance of garnet-type solid electrolytes to “short circuit” by Li metal anodes. ACS Appl. Mater. Interfaces 11(6), 5928–5937 (2019). https://doi.org/10.1021/acsami.8b17954
Z. Deng, Z. Wang, I.-H. Chu, J. Luo, S.P. Ong, Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163(2), A67 (2016). https://doi.org/10.1149/2.0061602jes
Y.-H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe et al., Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J. Mater. Sci. 47(16), 5970–5977 (2012). https://doi.org/10.1007/s10853-012-6500-5
E. Kazyak, R. Garcia-Mendez, W.S. LePage, A. Sharafi, A.L. Davis et al., Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2(4), 1025–1048 (2020). https://doi.org/10.1016/j.matt.2020.02.008
L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Frömling et al., Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7(20), 1701003 (2017). https://doi.org/10.1002/aenm.201701003
M.B. Dixit, B.S. Vishugopi, W. Zaman, P. Kenesei, J.-S. Park et al., Polymorphism of garnet solid electrolytes and its implications for grain-l