Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding
Corresponding Author: Xuchun Gui
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 92
Abstract
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference (EMI) shielding, achieving a flexible EMI shielding film, while maintaining a high transmittance remains a significant challenge. Herein, a flexible, transparent, and conductive copper (Cu) metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique. The Cu mesh film shows an ultra-low sheet resistance (0.18 Ω □−1), high transmittance (85.8%@550 nm), and ultra-high figure of merit (> 13,000). It also has satisfactory stretchability and mechanical stability, with a resistance increases of only 1.3% after 1,000 bending cycles. As a stretchable heater (ε > 30%), the saturation temperature of the film can reach over 110 °C within 60 s at 1.00 V applied voltage. Moreover, the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5 μm. As a demonstration, it is used as a transparent window for shielding the wireless communication electromagnetic waves. Therefore, the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
Highlights:
1 A transparent, conductive, and flexible metal mesh film has been developed by a low-cost, uniform self-forming crackle template and electroplating strategy.
2 The Cu mesh films show an ultra-low sheet resistance (0.18 Ω □−1), high transmittance (85.8%@550 nm), high figure of merit (> 13,000), excellent stretchability and mechanical stability.
3 The metal mesh film can be used as a flexible heater and electromagnetic interference shielding film (40.4 dB at 2.5 μm).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
- B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong et al., Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv. Mater. 26, 873–877 (2014). https://doi.org/10.1002/adma.201302950
- J. Li, J. Liang, L. Li, F. Ren, W. Hu et al., Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer. ACS Nano 8, 12874–12882 (2014). https://doi.org/10.1021/nn506610p
- J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021). https://doi.org/10.1002/adfm.202010155
- S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152–160 (2022). https://doi.org/10.1016/j.jmst.2022.03.012
- C. Ge, E. Yang, X. Zhao, C. Yuan, S. Li et al., Efficient near-infrared PbS quantum dot solar cells employing hydrogenated In2 O3 transparent electrode. Small 18, e2203677 (2022). https://doi.org/10.1002/smll.202203677
- Y. Liu, X. Huang, J. Zhou, C.K. Yiu, Z. Song et al., Stretchable sweat-activated battery in skin-integrated electronics for continuous wireless sweat monitoring. Adv. Sci. 9, e2104635 (2022). https://doi.org/10.1002/advs.202104635
- Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740–750 (2022). https://doi.org/10.1021/acs.nanolett.1c04185
- Y.S. Choi, H. Jeong, R.T. Yin, R. Avila, A. Pfenniger et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022). https://doi.org/10.1126/science.abm1703
- H. Köstlin, R. Jost, W. Lems, Optical and electrical properties of doped In2O3 films. Phys. Stat. Sol. (a) 29, 87–93 (1975). https://doi.org/10.1002/pssa.2210290110
- R.S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin et al., Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51–58 (2020). https://doi.org/10.1038/s41928-019-0353-8
- K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809–817 (2012). https://doi.org/10.1038/nphoton.2012.282
- S. Jiang, P.-X. Hou, M.-L. Chen, B.-W. Wang, D.-M. Sun et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4, 9264 (2018). https://doi.org/10.1126/sciadv.aap9264
- P.M. Rajanna, H. Meddeb, O. Sergeev, A.P. Tsapenko, S. Bereznev et al., Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy 67, 104183 (2020). https://doi.org/10.1016/j.nanoen.2019.104183
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
- T. Chen, Y. Xue, A.K. Roy, L. Dai, Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8, 1039–1046 (2014). https://doi.org/10.1021/nn405939w
- M.-R. Azani, A. Hassanpour, T. Torres, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10, 2002536 (2020). https://doi.org/10.1002/aenm.202002536
- Y. Ahn, Y. Jeong, D. Lee, Y. Lee, Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 9, 3125–3133 (2015). https://doi.org/10.1021/acsnano.5b00053
- J. Ahn, H. Hwang, S. Jeong, J. Moon, Metal-nanowire-electrode-based perovskite solar cells: challenging issues and new opportunities. Adv. Energy Mater. 7, 1602751 (2017). https://doi.org/10.1002/aenm.201602751
- J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3 C2 tx film for neuromorphic computing. Adv. Mater. 35, e2303737 (2023). https://doi.org/10.1002/adma.202303737
- T. Guo, D. Zhou, M. Gao, S. Deng, M. Jafarpour et al., Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks. Adv. Funct. Mater. 33, 2213183 (2023). https://doi.org/10.1002/adfm.202213183
- T. Guo, D. Zhou, S. Deng, M. Jafarpour, J. Avaro et al., Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano 17, 3737–3749 (2023). https://doi.org/10.1021/acsnano.2c11180
- X. Chen, S. Nie, W. Guo, F. Fei, W. Su et al., Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80 000. Adv. Electron. Mater. 5, 1800991 (2019). https://doi.org/10.1002/aelm.201800991
- X. Chen, Y. Yin, W. Yuan, S. Nie, Y. Lin et al., Transparent thermotherapeutic skin patch based on highly conductive and stretchable copper mesh heater. Adv. Electron. Mater. 7, 2100611 (2021). https://doi.org/10.1002/aelm.202100611
- H. Ji, J. Huang, W. Zhang, X. Chen, Y. Lu et al., Novel Ag-mesh transparent hybrid electrodes for highly efficient and mechanically stable flexible perovskite solar cells. Adv. Mater. Interfaces 9, 2200483 (2022). https://doi.org/10.1002/admi.202200483
- J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker et al., Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26, 833–840 (2016). https://doi.org/10.1002/adfm.201503705
- L. Li, M. Gao, Y. Guo, J. Sun, Y. Li et al., Transparent Ag@Au–graphene patterns with conductive stability via inkjet printing. J. Mater. Chem. C 5, 2800–2806 (2017). https://doi.org/10.1039/C6TC05227D
- M. Li, M. Zarei, K. Mohammadi, S.B. Walker, M. LeMieux et al., Silver meshes for record-performance transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 30591–30599 (2023). https://doi.org/10.1021/acsami.3c02088
- D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96, 041109 (2010). https://doi.org/10.1063/1.3299259
- Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma et al., Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci. Rep. 6, 25601 (2016). https://doi.org/10.1038/srep25601
- S. Kiruthika, R. Gupta, K.D.M. Rao, S. Chakraborty, N. Padmavathy et al., Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J. Mater. Chem. C 2, 2089–2094 (2014). https://doi.org/10.1039/C3TC32167C
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). https://doi.org/10.1002/adma.201906769
- L. Pauchard, Patterns caused by buckle-driven delamination in desiccated colloidal gels. Europhys. Lett. 74, 188–194 (2006). https://doi.org/10.1209/epl/i2005-10493-3
- V. Lazarus, L. Pauchard, From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7, 2552–2559 (2011). https://doi.org/10.1039/C0SM00900H
- A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang et al., High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12, 3021–3030 (2016). https://doi.org/10.1002/smll.201600309
- D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011). https://doi.org/10.1002/adma.201003188
- J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008). https://doi.org/10.1021/nl073296g
- J.H. Seo, I. Hwang, H.D. Um, S. Lee, K. Lee et al., Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 29, 1701479 (2017). https://doi.org/10.1002/adma.201701479
- Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019). https://doi.org/10.1038/s41928-019-0315-1
- B. Deng, P.-C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao et al., Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15, 4206–4213 (2015). https://doi.org/10.1021/acs.nanolett.5b01531
- L. Yu, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116, 13413–13453 (2016). https://doi.org/10.1021/acs.chemrev.6b00179
- W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30, e1800075 (2018). https://doi.org/10.1002/adma.201800075
- S. Wu, S. Peng, Y. Yu, C.-H. Wang, Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 5, 1900908 (2020). https://doi.org/10.1002/admt.201900908
- D. Qi, K. Zhang, G. Tian, B. Jiang, Y. Huang, Stretchable electronics based on PDMS substrates. Adv. Mater. 33, e2003155 (2021). https://doi.org/10.1002/adma.202003155
- Q. Wang, H. Sheng, Y. Lv, J. Liang, Y. Liu et al., A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv. Funct. Mater. 32, 2270123 (2022). https://doi.org/10.1002/adfm.202270123
- Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
- F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
- R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
- S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570–23579 (2022). https://doi.org/10.1039/D2TA06805B
- Y. Zhang, M.-K. Xu, Z. Wang, T. Zhao, L.-X. Liu et al., Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916–4924 (2022). https://doi.org/10.1007/s12274-022-4311-9
- J. Liu, Z. Liu, H.-B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 (2020). https://doi.org/10.1002/aelm.201901094
- J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- D. Tan, C. Jiang, Q. Li, S. Bi, X. Wang et al., Development and current situation of flexible and transparent EM shielding materials. J. Mater. Sci. Mater. Electron. 32, 25603–25630 (2021). https://doi.org/10.1007/s10854-021-05409-4
- Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
- L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10, 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
- M. Hu, J. Gao, Y. Dong, K. Li, G. Shan et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28, 7101–7106 (2012). https://doi.org/10.1021/la300720y
- X. Zhang, Y. Zhong, Y. Yan, Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films. Phys. Status Solidi A 215, 1800014 (2018). https://doi.org/10.1002/pssa.201800014
- N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64, 540–546 (2019). https://doi.org/10.1016/j.scib.2019.03.028
- M. Jin, W. Chen, L.-X. Liu, H.-B. Zhang, L. Ye et al., Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding. J. Mater. Chem. A 10, 14364–14373 (2022). https://doi.org/10.1039/D2TA03689D
- Z.-Y. Jiang, W. Huang, L.-S. Chen, Y.-H. Liu, Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Opt. Express 27, 24194–24206 (2019). https://doi.org/10.1364/OE.27.024194
- S. Shen, S.-Y. Chen, D.-Y. Zhang, Y.-H. Liu, High-performance composite Ag–Ni mesh based flexible transparent conductive film as multifunctional devices. Opt. Express 26, 27545–27554 (2018). https://doi.org/10.1364/OE.26.027545
- J. Gu, S. Hu, H. Ji, H. Feng, W. Zhao et al., Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 31, 185303 (2020). https://doi.org/10.1088/1361-6528/ab6d9d
- Y. Han, H. Zhong, N. Liu, Y. Liu, J. Lin et al., In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater. 4, 1800156 (2018). https://doi.org/10.1002/aelm.201800156
References
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong et al., Uniform self-forming metallic network as a high-performance transparent conductive electrode. Adv. Mater. 26, 873–877 (2014). https://doi.org/10.1002/adma.201302950
J. Li, J. Liang, L. Li, F. Ren, W. Hu et al., Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer. ACS Nano 8, 12874–12882 (2014). https://doi.org/10.1021/nn506610p
J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021). https://doi.org/10.1002/adfm.202010155
S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152–160 (2022). https://doi.org/10.1016/j.jmst.2022.03.012
C. Ge, E. Yang, X. Zhao, C. Yuan, S. Li et al., Efficient near-infrared PbS quantum dot solar cells employing hydrogenated In2 O3 transparent electrode. Small 18, e2203677 (2022). https://doi.org/10.1002/smll.202203677
Y. Liu, X. Huang, J. Zhou, C.K. Yiu, Z. Song et al., Stretchable sweat-activated battery in skin-integrated electronics for continuous wireless sweat monitoring. Adv. Sci. 9, e2104635 (2022). https://doi.org/10.1002/advs.202104635
Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740–750 (2022). https://doi.org/10.1021/acs.nanolett.1c04185
Y.S. Choi, H. Jeong, R.T. Yin, R. Avila, A. Pfenniger et al., A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022). https://doi.org/10.1126/science.abm1703
H. Köstlin, R. Jost, W. Lems, Optical and electrical properties of doped In2O3 films. Phys. Stat. Sol. (a) 29, 87–93 (1975). https://doi.org/10.1002/pssa.2210290110
R.S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin et al., Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3, 51–58 (2020). https://doi.org/10.1038/s41928-019-0353-8
K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809–817 (2012). https://doi.org/10.1038/nphoton.2012.282
S. Jiang, P.-X. Hou, M.-L. Chen, B.-W. Wang, D.-M. Sun et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4, 9264 (2018). https://doi.org/10.1126/sciadv.aap9264
P.M. Rajanna, H. Meddeb, O. Sergeev, A.P. Tsapenko, S. Bereznev et al., Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy 67, 104183 (2020). https://doi.org/10.1016/j.nanoen.2019.104183
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). https://doi.org/10.1038/nature07719
T. Chen, Y. Xue, A.K. Roy, L. Dai, Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8, 1039–1046 (2014). https://doi.org/10.1021/nn405939w
M.-R. Azani, A. Hassanpour, T. Torres, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10, 2002536 (2020). https://doi.org/10.1002/aenm.202002536
Y. Ahn, Y. Jeong, D. Lee, Y. Lee, Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 9, 3125–3133 (2015). https://doi.org/10.1021/acsnano.5b00053
J. Ahn, H. Hwang, S. Jeong, J. Moon, Metal-nanowire-electrode-based perovskite solar cells: challenging issues and new opportunities. Adv. Energy Mater. 7, 1602751 (2017). https://doi.org/10.1002/aenm.201602751
J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3 C2 tx film for neuromorphic computing. Adv. Mater. 35, e2303737 (2023). https://doi.org/10.1002/adma.202303737
T. Guo, D. Zhou, M. Gao, S. Deng, M. Jafarpour et al., Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks. Adv. Funct. Mater. 33, 2213183 (2023). https://doi.org/10.1002/adfm.202213183
T. Guo, D. Zhou, S. Deng, M. Jafarpour, J. Avaro et al., Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano 17, 3737–3749 (2023). https://doi.org/10.1021/acsnano.2c11180
X. Chen, S. Nie, W. Guo, F. Fei, W. Su et al., Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80 000. Adv. Electron. Mater. 5, 1800991 (2019). https://doi.org/10.1002/aelm.201800991
X. Chen, Y. Yin, W. Yuan, S. Nie, Y. Lin et al., Transparent thermotherapeutic skin patch based on highly conductive and stretchable copper mesh heater. Adv. Electron. Mater. 7, 2100611 (2021). https://doi.org/10.1002/aelm.202100611
H. Ji, J. Huang, W. Zhang, X. Chen, Y. Lu et al., Novel Ag-mesh transparent hybrid electrodes for highly efficient and mechanically stable flexible perovskite solar cells. Adv. Mater. Interfaces 9, 2200483 (2022). https://doi.org/10.1002/admi.202200483
J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker et al., Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26, 833–840 (2016). https://doi.org/10.1002/adfm.201503705
L. Li, M. Gao, Y. Guo, J. Sun, Y. Li et al., Transparent Ag@Au–graphene patterns with conductive stability via inkjet printing. J. Mater. Chem. C 5, 2800–2806 (2017). https://doi.org/10.1039/C6TC05227D
M. Li, M. Zarei, K. Mohammadi, S.B. Walker, M. LeMieux et al., Silver meshes for record-performance transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 30591–30599 (2023). https://doi.org/10.1021/acsami.3c02088
D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96, 041109 (2010). https://doi.org/10.1063/1.3299259
Y. Han, J. Lin, Y. Liu, H. Fu, Y. Ma et al., Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci. Rep. 6, 25601 (2016). https://doi.org/10.1038/srep25601
S. Kiruthika, R. Gupta, K.D.M. Rao, S. Chakraborty, N. Padmavathy et al., Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J. Mater. Chem. C 2, 2089–2094 (2014). https://doi.org/10.1039/C3TC32167C
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
J. Liu, M.-Y. Yu, Z.-Z. Yu, V. Nicolosi, Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 66, 245–272 (2023). https://doi.org/10.1016/j.mattod.2023.03.022
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). https://doi.org/10.1002/adma.201906769
L. Pauchard, Patterns caused by buckle-driven delamination in desiccated colloidal gels. Europhys. Lett. 74, 188–194 (2006). https://doi.org/10.1209/epl/i2005-10493-3
V. Lazarus, L. Pauchard, From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation. Soft Matter 7, 2552–2559 (2011). https://doi.org/10.1039/C0SM00900H
A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang et al., High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12, 3021–3030 (2016). https://doi.org/10.1002/smll.201600309
D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482–1513 (2011). https://doi.org/10.1002/adma.201003188
J.-Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689–692 (2008). https://doi.org/10.1021/nl073296g
J.H. Seo, I. Hwang, H.D. Um, S. Lee, K. Lee et al., Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 29, 1701479 (2017). https://doi.org/10.1002/adma.201701479
Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao et al., Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2, 513–520 (2019). https://doi.org/10.1038/s41928-019-0315-1
B. Deng, P.-C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao et al., Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 15, 4206–4213 (2015). https://doi.org/10.1021/acs.nanolett.5b01531
L. Yu, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films. Chem. Rev. 116, 13413–13453 (2016). https://doi.org/10.1021/acs.chemrev.6b00179
W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30, e1800075 (2018). https://doi.org/10.1002/adma.201800075
S. Wu, S. Peng, Y. Yu, C.-H. Wang, Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 5, 1900908 (2020). https://doi.org/10.1002/admt.201900908
D. Qi, K. Zhang, G. Tian, B. Jiang, Y. Huang, Stretchable electronics based on PDMS substrates. Adv. Mater. 33, e2003155 (2021). https://doi.org/10.1002/adma.202003155
Q. Wang, H. Sheng, Y. Lv, J. Liang, Y. Liu et al., A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv. Funct. Mater. 32, 2270123 (2022). https://doi.org/10.1002/adfm.202270123
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
F. Deng, J. Wei, Y. Xu, Z. Lin, X. Lu et al., Regulating the electrical and mechanical properties of TaS2 films via van der waals and electrostatic interaction for high performance electromagnetic interference shielding. Nano-Micro Lett. 15, 106 (2023). https://doi.org/10.1007/s40820-023-01061-1
R. Yang, X. Gui, L. Yao, Q. Hu, L. Yang et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13, 66 (2021). https://doi.org/10.1007/s40820-021-00597-4
S. Yang, R. Yang, Z. Lin, X. Wang, S. Liu et al., Ultrathin, flexible, and high-strength polypyrrole/Ti3C2Tx film for wide-band gigahertz and terahertz electromagnetic interference shielding. J. Mater. Chem. A 10, 23570–23579 (2022). https://doi.org/10.1039/D2TA06805B
Y. Zhang, M.-K. Xu, Z. Wang, T. Zhao, L.-X. Liu et al., Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 15, 4916–4924 (2022). https://doi.org/10.1007/s12274-022-4311-9
J. Liu, Z. Liu, H.-B. Zhang, W. Chen, Z. Zhao et al., Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 6, 1901094 (2020). https://doi.org/10.1002/aelm.201901094
J. Wang, X. Wu, Y. Wang, W. Zhao, Y. Zhao et al., Green, sustainable architectural bamboo with high light transmission and excellent electromagnetic shielding as a candidate for energy-saving buildings. Nano-Micro Lett. 15, 11 (2022). https://doi.org/10.1007/s40820-022-00982-7
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
D. Tan, C. Jiang, Q. Li, S. Bi, X. Wang et al., Development and current situation of flexible and transparent EM shielding materials. J. Mater. Sci. Mater. Electron. 32, 25603–25630 (2021). https://doi.org/10.1007/s10854-021-05409-4
Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
L.-C. Jia, D.-X. Yan, X. Liu, R. Ma, H.-Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 10, 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
M. Hu, J. Gao, Y. Dong, K. Li, G. Shan et al., Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 28, 7101–7106 (2012). https://doi.org/10.1021/la300720y
X. Zhang, Y. Zhong, Y. Yan, Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films. Phys. Status Solidi A 215, 1800014 (2018). https://doi.org/10.1002/pssa.201800014
N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64, 540–546 (2019). https://doi.org/10.1016/j.scib.2019.03.028
M. Jin, W. Chen, L.-X. Liu, H.-B. Zhang, L. Ye et al., Transparent, conductive and flexible MXene grid/silver nanowire hierarchical films for high-performance electromagnetic interference shielding. J. Mater. Chem. A 10, 14364–14373 (2022). https://doi.org/10.1039/D2TA03689D
Z.-Y. Jiang, W. Huang, L.-S. Chen, Y.-H. Liu, Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Opt. Express 27, 24194–24206 (2019). https://doi.org/10.1364/OE.27.024194
S. Shen, S.-Y. Chen, D.-Y. Zhang, Y.-H. Liu, High-performance composite Ag–Ni mesh based flexible transparent conductive film as multifunctional devices. Opt. Express 26, 27545–27554 (2018). https://doi.org/10.1364/OE.26.027545
J. Gu, S. Hu, H. Ji, H. Feng, W. Zhao et al., Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 31, 185303 (2020). https://doi.org/10.1088/1361-6528/ab6d9d
Y. Han, H. Zhong, N. Liu, Y. Liu, J. Lin et al., In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater. 4, 1800156 (2018). https://doi.org/10.1002/aelm.201800156