Regulating the Electrical and Mechanical Properties of TaS2 Films via van der Waals and Electrostatic Interaction for High Performance Electromagnetic Interference Shielding
Corresponding Author: Yougen Hu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 106
Abstract
Low-dimensional transition metal dichalcogenides (TMDs) have unique electronic structure, vibration modes, and physicochemical properties, making them suitable for fundamental studies and cutting-edge applications such as silicon electronics, optoelectronics, and bioelectronics. However, the brittleness, low toughness, and poor mechanical and electrical stabilities of TMD-based films limit their application. Herein, a TaS2 freestanding film with ultralow void ratio of 6.01% is restacked under the effect of bond-free van der Waals (vdW) interactions within the staggered 2H-TaS2 nanosheets. The restacked films demonstrated an exceptionally high electrical conductivity of 2,666 S cm−1, electromagnetic interference shielding effectiveness (EMI SE) of 41.8 dB, and absolute EMI SE (SSE/t) of 27,859 dB cm2 g−1, which is the highest value reported for TMD-based materials. The bond-free vdW interactions between the adjacent 2H-TaS2 nanosheets provide a natural interfacial strain relaxation, achieving excellent flexibility without rupture after 1,000 bends. In addition, the TaS2 nanosheets are further combined with the polymer fibers of bacterial cellulose and aramid nanofibers via electrostatic interactions to significantly enhance the tensile strength and flexibility of the films while maintaining their high electrical conductivity and EMI SE.This work provides promising alternatives for conventional materials used in EMI shielding and nanodevices.
Highlights:
1 A flexible freestanding TaS2 film (thickness = 3.1 μm) exhibits an ultralow void ratio of 6.01%, an ultra-high electrical conductivity of 2,666 S cm−1, an electromagnetic interference shielding effectiveness (EMI SE) of 41.8 dB, an absolute EMI SE (SSE/t) of 27,859 dB cm2 g−1, and excellent flexibility withstand 1,000 bends without rupture.
2 The TaS2 composite films exhibit excellent EMI shielding properties and higher tensile strength with better mechanical flexibility, making them suitable for EMI shielding practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
- X.F. Liu, Y. Li, X. Sun, W.K. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5), 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
- Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
- Z. Zhang, J. Wang, J. Shang, Y. Xu, Y.J. Wan et al., A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small (2022). https://doi.org/10.1002/smll.202205716
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx mxene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- J. Lipton, J.A. Rohr, V. Dang, A. Goad, K. Maleski et al., Scalable, highly conductive, and micropatternable mxene films for enhanced electromagnetic interference shielding. Matter 3(2), 546–557 (2020). https://doi.org/10.1016/j.matt.2020.05.023
- L. Li, Z. Deng, M. Chen, Z.Z. Yu, T.P. Russel et al., 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett. 23(1), 155–162 (2023). https://doi.org/10.1021/acs.nanolett.2c03821
- Y. Zhang, S. Wang, P. Tang, Z. Zhao, Z. Xu et al., Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 16(6), 8869–8880 (2022). https://doi.org/10.1021/acsnano.1c10561
- Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted mxene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16(10), 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- P. Tang, Z. Deng, Y. Zhang, L.X. Liu, Z. Wang et al., Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv. Funct. Mater. 32(28), 2112156 (2022). https://doi.org/10.1002/adfm.202112156
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
- J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33(25), e2004557 (2021). https://doi.org/10.1002/adma.202004557
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
- J. Shi, X. Wang, S. Zhang, L. Xiao, Y. Huan et al., Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 8(1), 958 (2017). https://doi.org/10.1038/s41467-017-01089-z
- P. Prabhu, V. Jose, J.M. Lee, Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter 2(3), 526–553 (2020). https://doi.org/10.1016/j.matt.2020.01.001
- Y. Huan, J. Shi, X. Zou, Y. Gong, Z. Zhang et al., Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv. Mater. 30(15), e1705916 (2018). https://doi.org/10.1002/adma.201705916
- Y. Feng, S. Gong, E. Du, K. Yu, J. Ren et al., TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 7(30), 9284–9292 (2019). https://doi.org/10.1039/c9tc02785h
- M.H. Yu, X.L. Feng, Thin-film electrode-based supercapacitors. Joule 3(2), 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
- J. Pan, C. Guo, C. Song, X. Lai, H. Li et al., Enhanced superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 139(13), 4623–4626 (2017). https://doi.org/10.1021/jacs.7b00216
- H. Yang, S.W. Kim, M. Chhowalla, Y.H. Lee, Structural and quantum-state phase transitions in van der waals layered materials. Nat. Phys. 13(10), 931–937 (2017). https://doi.org/10.1038/nphys4188
- J. Bekaert, E. Khestanova, D.G. Hopkinson, J. Birkbeck, N. Clark et al., Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett. 20(5), 3808–3818 (2020). https://doi.org/10.1021/acs.nanolett.0c00871
- J. Peng, Z. Yu, J. Wu, Y. Zhou, Y. Guo et al., Disorder enhanced superconductivity toward TaS2 monolayer. ACS Nano 12(9), 9461–9466 (2018). https://doi.org/10.1021/acsnano.8b04718
- C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(6), 622–627 (2015). https://doi.org/10.1038/nmat4251
- S. Wang, X. Yang, L. Hou, X. Cui, X. Zheng et al., Organic covalent modification to improve thermoelectric properties of TaS2. Nat. Commun. 13(1), 4401 (2022). https://doi.org/10.1038/s41467-022-32058-w
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VBgroup laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2021). https://doi.org/10.1002/adfm.202108194
- C. Hou, J. Cheng, H. Zhang, Z. Lu, X. Yang et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 577, 151939 (2022). https://doi.org/10.1016/j.apsusc.2021.151939
- D. Zhang, Y. Xiong, J. Cheng, H. Raza, C. Hou et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Appl. Surf. Sci. 548, 149158 (2021). https://doi.org/10.1016/j.apsusc.2021.149158
- D. Zhang, T. Liu, M. Zhang, H. Zhang, X. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
- L. Ries, E. Petit, T. Michel, C.C. Diogo, C. Gervais et al., Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18(10), 1112–1117 (2019). https://doi.org/10.1038/s41563-019-0464-7
- L. Mei, Z. Cao, T. Ying, R. Yang, H. Peng et al., Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34(26), e2201416 (2022). https://doi.org/10.1002/adma.202201416
- L. Li, X. Deng, Z. Wang, Y. Liu, M. Abeykoon et al., Superconducting order from disorder in 2H-TaSe2−xSx. npj Quantum Mater. 2(1), 11 (2017). https://doi.org/10.1038/s41535-017-0016-9
- P.A. Zong, D. Yoo, P. Zhang, Y. Wang, Y. Huang et al., Flexible foil of hybrid TaS2/organic superlattice: Fabrication and electrical properties. Small 16(15), e1901901 (2020). https://doi.org/10.1002/smll.201901901
- R. Yang, L. Mei, Q. Zhang, Y. Fan, H.S. Shin et al., High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17(2), 358–377 (2022). https://doi.org/10.1038/s41596-021-00643-w
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
- J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu et al., Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139(26), 9019–9025 (2017). https://doi.org/10.1021/jacs.7b04332
- L.Z. Zhang, C. Chen, J.D. Zhou, G.L. Yang, J.M. Wang et al., Solid phase exfoliation for producing dispersible transition metal dichalcogenides nanosheets. Adv. Funct. Mater. 30(45), 2004139 (2020). https://doi.org/10.1002/adfm.202004139
- T.P. Nguyen, S. Choi, J.M. Jeon, K.C. Kwon, H.W. Jang et al., Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. J. Phys. Chem. C 120(7), 3929–3935 (2016). https://doi.org/10.1021/acs.jpcc.5b12164
- Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao et al., Highly stretchable van der waals thin films for adaptable and breathable electronic membranes. Science 375(6583), 852–859 (2022). https://doi.org/10.1126/science.abl8941
- Y.Y. Liu, J.J. Wu, K.P. Hackenberg, J. Zhang, Y.M. Wang et al., Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2(9), 17127 (2017). https://doi.org/10.1038/nenergy.2017.127
- J. Shen, J. Wu, M. Wang, P. Dong, J. Xu et al., Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12(20), 2741–2749 (2016). https://doi.org/10.1002/smll.201503834
- B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
- R.M. Simon, Emi shielding through conductive plastics. Polym-Plastics Technol. Engin. 17(1), 1–10 (1981). https://doi.org/10.1080/03602558108067695
- N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti et al., Single-walled carbon nanotube/poly (methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49(8), 1627–1634 (2009). https://doi.org/10.1002/pen.21384
- Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
- Z. Bo, X.N. Cheng, H.C. Yang, X.Z. Guo, J.H. Yan et al., Ultrathick MoS2 films with exceptionally high volumetric capacitance. Adv. Energy Mater. 12(11), 2103394 (2022). https://doi.org/10.1002/aenm.202103394
- W.B. Li, X.F. Qian, J. Li, Phase transitions in 2D materials. Nat. Rev. Mater. 6(9), 829–846 (2021). https://doi.org/10.1038/s41578-021-00304-0
- Y. Yu, F. Yang, X.F. Lu, Y.J. Yan, Y.-H. Cho et al., Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10(3), 270–276 (2015). https://doi.org/10.1038/nnano.2014.323
- Y. Wu, J. Wang, Y. Li, J. Zhou, B.Y. Wang et al., Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 13(1), 3008 (2022). https://doi.org/10.1038/s41467-022-30516-z
- C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu et al., Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135(13), 5144–5151 (2013). https://doi.org/10.1021/ja400041f
- Y. Guo, Q. Chen, A. Nie, H. Yang, W. Wang et al., 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 14(2), 1635–1644 (2020). https://doi.org/10.1021/acsnano.9b06943
- L. Najafi, S. Bellani, R. Oropesa-Nunez, B. Martin-Garcia, M. Prato et al., TaS2, TaSe2, and their heterogeneous films as catalysts for the hydrogen evolution reaction. ACS Catal. 10(5), 3313–3325 (2020). https://doi.org/10.1021/acscatal.9b03184
- Z. Wang, Y.Y. Sun, I. Abdelwahab, L. Cao, W. Yu et al., Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano 12(12), 12619–12628 (2018). https://doi.org/10.1021/acsnano.8b07379
- S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374(6563), 96–99 (2021). https://doi.org/10.1126/science.abg2026
- L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang et al., Super tough and environmentally stable aramid. Nanofiber@Mxene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14(1), 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible Mxene /aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16(4), 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
- M.C. Vu, P.J. Park, S.R. Bae, S.Y. Kim, Y.M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9(13), 8527–8540 (2021). https://doi.org/10.1039/d0ta12306d
- Y. Wang, Z. Yu, A. Dufresne, Z. Ye, N. Lin et al., Quantitative analysis of compatibility and dispersibility in nanocellulose-reinforced composites: hansen solubility and Raman mapping. ACS Nano 15(12), 20148–20163 (2021). https://doi.org/10.1021/acsnano.1c08100
- X. Qian, L. Chen, L. Yin, Z. Liu, S. Pe et al., CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370(6516), 596–600 (2020). https://doi.org/10.1126/science.abb9704
- X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu et al., Gelation-assisted assembly of large-area, highly aligned, and environmentally stable mxene films with an excellent trade-off between mechanical and electrical properties. Small 18(21), e2200829 (2022). https://doi.org/10.1002/smll.202200829
- Q. Qian, H. Ren, J. Zhou, Z. Wan, J. Zhou et al., Chiral molecular intercalation superlattices. Nature 606(7916), 902–908 (2022). https://doi.org/10.1038/s41586-022-04846-3
- P. Gao, Z. Chen, Y.X. Gong, R. Zhang, H. Liu et al., The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903780
- Y. Liu, Z. Gao, Y. Tan, F. Chen, Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects. ACS Nano 12(10), 10529–10536 (2018). https://doi.org/10.1021/acsnano.8b06503
- Y.R. Liu, Z.B. Gao, M. Chen, Y. Tan, F. Chen, Enhanced Raman scattering of CuPc films on imperfect WSe2 monolayer correlated to exciton and charge-transfer resonances. Adv. Funct. Mater. 28(52), 1805710 (2018). https://doi.org/10.1002/adfm.201805710
- M. Ying, R. Zhao, X. Hu, Z. Zhang, W. Liu et al., Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 61(16), e202201323 (2022). https://doi.org/10.1002/anie.202201323
- W.W. Zhao, H.T. Xu, J.D. Zhao, X.J. Zhu, Y.Y. Lu et al., Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding. Chem. Eng. J. 437, 135266 (2022). https://doi.org/10.1016/j.cej.2022.135266
- B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and mxene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
- L. Wei, J. Ma, L. Ma, C. Zhao, M. Xu et al., Computational optimizing the electromagnetic wave reflectivity of double-layered polymer nanocomposites. Small Methods 6(4), e2101510 (2022). https://doi.org/10.1002/smtd.202101510
- C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12(1), 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4
References
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
X.F. Liu, Y. Li, X. Sun, W.K. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun et al., Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5), 8439–8449 (2021). https://doi.org/10.1021/acsnano.0c10666
Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
Z. Zhang, J. Wang, J. Shang, Y. Xu, Y.J. Wan et al., A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small (2022). https://doi.org/10.1002/smll.202205716
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx mxene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
J. Lipton, J.A. Rohr, V. Dang, A. Goad, K. Maleski et al., Scalable, highly conductive, and micropatternable mxene films for enhanced electromagnetic interference shielding. Matter 3(2), 546–557 (2020). https://doi.org/10.1016/j.matt.2020.05.023
L. Li, Z. Deng, M. Chen, Z.Z. Yu, T.P. Russel et al., 3D printing of ultralow-concentration 2D nanomaterial inks for multifunctional architectures. Nano Lett. 23(1), 155–162 (2023). https://doi.org/10.1021/acs.nanolett.2c03821
Y. Zhang, S. Wang, P. Tang, Z. Zhao, Z. Xu et al., Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 16(6), 8869–8880 (2022). https://doi.org/10.1021/acsnano.1c10561
Z. Deng, L. Li, P. Tang, C. Jiao, Z.Z. Yu et al., Controllable surface-grafted mxene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16(10), 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
P. Tang, Z. Deng, Y. Zhang, L.X. Liu, Z. Wang et al., Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor. Adv. Funct. Mater. 32(28), 2112156 (2022). https://doi.org/10.1002/adfm.202112156
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2702–2712 (2015). https://doi.org/10.1039/c5cs00151j
J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir et al., Layered intercalation materials. Adv. Mater. 33(25), e2004557 (2021). https://doi.org/10.1002/adma.202004557
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
J. Shi, X. Wang, S. Zhang, L. Xiao, Y. Huan et al., Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 8(1), 958 (2017). https://doi.org/10.1038/s41467-017-01089-z
P. Prabhu, V. Jose, J.M. Lee, Design strategies for development of TMD-based heterostructures in electrochemical energy systems. Matter 2(3), 526–553 (2020). https://doi.org/10.1016/j.matt.2020.01.001
Y. Huan, J. Shi, X. Zou, Y. Gong, Z. Zhang et al., Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv. Mater. 30(15), e1705916 (2018). https://doi.org/10.1002/adma.201705916
Y. Feng, S. Gong, E. Du, K. Yu, J. Ren et al., TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 7(30), 9284–9292 (2019). https://doi.org/10.1039/c9tc02785h
M.H. Yu, X.L. Feng, Thin-film electrode-based supercapacitors. Joule 3(2), 338–360 (2019). https://doi.org/10.1016/j.joule.2018.12.012
J. Pan, C. Guo, C. Song, X. Lai, H. Li et al., Enhanced superconductivity in restacked TaS2 nanosheets. J. Am. Chem. Soc. 139(13), 4623–4626 (2017). https://doi.org/10.1021/jacs.7b00216
H. Yang, S.W. Kim, M. Chhowalla, Y.H. Lee, Structural and quantum-state phase transitions in van der waals layered materials. Nat. Phys. 13(10), 931–937 (2017). https://doi.org/10.1038/nphys4188
J. Bekaert, E. Khestanova, D.G. Hopkinson, J. Birkbeck, N. Clark et al., Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett. 20(5), 3808–3818 (2020). https://doi.org/10.1021/acs.nanolett.0c00871
J. Peng, Z. Yu, J. Wu, Y. Zhou, Y. Guo et al., Disorder enhanced superconductivity toward TaS2 monolayer. ACS Nano 12(9), 9461–9466 (2018). https://doi.org/10.1021/acsnano.8b04718
C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14(6), 622–627 (2015). https://doi.org/10.1038/nmat4251
S. Wang, X. Yang, L. Hou, X. Cui, X. Zheng et al., Organic covalent modification to improve thermoelectric properties of TaS2. Nat. Commun. 13(1), 4401 (2022). https://doi.org/10.1038/s41467-022-32058-w
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VBgroup laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2021). https://doi.org/10.1002/adfm.202108194
C. Hou, J. Cheng, H. Zhang, Z. Lu, X. Yang et al., Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 577, 151939 (2022). https://doi.org/10.1016/j.apsusc.2021.151939
D. Zhang, Y. Xiong, J. Cheng, H. Raza, C. Hou et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Appl. Surf. Sci. 548, 149158 (2021). https://doi.org/10.1016/j.apsusc.2021.149158
D. Zhang, T. Liu, M. Zhang, H. Zhang, X. Yang et al., Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 31(32), 325703 (2020). https://doi.org/10.1088/1361-6528/ab8b8d
L. Ries, E. Petit, T. Michel, C.C. Diogo, C. Gervais et al., Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18(10), 1112–1117 (2019). https://doi.org/10.1038/s41563-019-0464-7
L. Mei, Z. Cao, T. Ying, R. Yang, H. Peng et al., Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34(26), e2201416 (2022). https://doi.org/10.1002/adma.202201416
L. Li, X. Deng, Z. Wang, Y. Liu, M. Abeykoon et al., Superconducting order from disorder in 2H-TaSe2−xSx. npj Quantum Mater. 2(1), 11 (2017). https://doi.org/10.1038/s41535-017-0016-9
P.A. Zong, D. Yoo, P. Zhang, Y. Wang, Y. Huang et al., Flexible foil of hybrid TaS2/organic superlattice: Fabrication and electrical properties. Small 16(15), e1901901 (2020). https://doi.org/10.1002/smll.201901901
R. Yang, L. Mei, Q. Zhang, Y. Fan, H.S. Shin et al., High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17(2), 358–377 (2022). https://doi.org/10.1038/s41596-021-00643-w
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu et al., Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139(26), 9019–9025 (2017). https://doi.org/10.1021/jacs.7b04332
L.Z. Zhang, C. Chen, J.D. Zhou, G.L. Yang, J.M. Wang et al., Solid phase exfoliation for producing dispersible transition metal dichalcogenides nanosheets. Adv. Funct. Mater. 30(45), 2004139 (2020). https://doi.org/10.1002/adfm.202004139
T.P. Nguyen, S. Choi, J.M. Jeon, K.C. Kwon, H.W. Jang et al., Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. J. Phys. Chem. C 120(7), 3929–3935 (2016). https://doi.org/10.1021/acs.jpcc.5b12164
Z. Yan, D. Xu, Z. Lin, P. Wang, B. Cao et al., Highly stretchable van der waals thin films for adaptable and breathable electronic membranes. Science 375(6583), 852–859 (2022). https://doi.org/10.1126/science.abl8941
Y.Y. Liu, J.J. Wu, K.P. Hackenberg, J. Zhang, Y.M. Wang et al., Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2(9), 17127 (2017). https://doi.org/10.1038/nenergy.2017.127
J. Shen, J. Wu, M. Wang, P. Dong, J. Xu et al., Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12(20), 2741–2749 (2016). https://doi.org/10.1002/smll.201503834
B. Yang, L. Wang, M. Zhang, J. Luo, X. Ding, Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 13(7), 7886–7897 (2019). https://doi.org/10.1021/acsnano.9b02258
R.M. Simon, Emi shielding through conductive plastics. Polym-Plastics Technol. Engin. 17(1), 1–10 (1981). https://doi.org/10.1080/03602558108067695
N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti et al., Single-walled carbon nanotube/poly (methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49(8), 1627–1634 (2009). https://doi.org/10.1002/pen.21384
Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562(7726), 254–258 (2018). https://doi.org/10.1038/s41586-018-0574-4
Z. Bo, X.N. Cheng, H.C. Yang, X.Z. Guo, J.H. Yan et al., Ultrathick MoS2 films with exceptionally high volumetric capacitance. Adv. Energy Mater. 12(11), 2103394 (2022). https://doi.org/10.1002/aenm.202103394
W.B. Li, X.F. Qian, J. Li, Phase transitions in 2D materials. Nat. Rev. Mater. 6(9), 829–846 (2021). https://doi.org/10.1038/s41578-021-00304-0
Y. Yu, F. Yang, X.F. Lu, Y.J. Yan, Y.-H. Cho et al., Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10(3), 270–276 (2015). https://doi.org/10.1038/nnano.2014.323
Y. Wu, J. Wang, Y. Li, J. Zhou, B.Y. Wang et al., Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nat. Commun. 13(1), 3008 (2022). https://doi.org/10.1038/s41467-022-30516-z
C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu et al., Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135(13), 5144–5151 (2013). https://doi.org/10.1021/ja400041f
Y. Guo, Q. Chen, A. Nie, H. Yang, W. Wang et al., 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 14(2), 1635–1644 (2020). https://doi.org/10.1021/acsnano.9b06943
L. Najafi, S. Bellani, R. Oropesa-Nunez, B. Martin-Garcia, M. Prato et al., TaS2, TaSe2, and their heterogeneous films as catalysts for the hydrogen evolution reaction. ACS Catal. 10(5), 3313–3325 (2020). https://doi.org/10.1021/acscatal.9b03184
Z. Wang, Y.Y. Sun, I. Abdelwahab, L. Cao, W. Yu et al., Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano 12(12), 12619–12628 (2018). https://doi.org/10.1021/acsnano.8b07379
S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable MXene films through bridging-induced densification. Science 374(6563), 96–99 (2021). https://doi.org/10.1126/science.abg2026
L.X. Liu, W. Chen, H.B. Zhang, L. Ye, Z. Wang et al., Super tough and environmentally stable aramid. Nanofiber@Mxene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14(1), 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
J. Wang, X. Ma, J. Zhou, F. Du, C. Teng, Bioinspired, high-strength, and flexible Mxene /aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano 16(4), 6700–6711 (2022). https://doi.org/10.1021/acsnano.2c01323
M.C. Vu, P.J. Park, S.R. Bae, S.Y. Kim, Y.M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9(13), 8527–8540 (2021). https://doi.org/10.1039/d0ta12306d
Y. Wang, Z. Yu, A. Dufresne, Z. Ye, N. Lin et al., Quantitative analysis of compatibility and dispersibility in nanocellulose-reinforced composites: hansen solubility and Raman mapping. ACS Nano 15(12), 20148–20163 (2021). https://doi.org/10.1021/acsnano.1c08100
X. Qian, L. Chen, L. Yin, Z. Liu, S. Pe et al., CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 370(6516), 596–600 (2020). https://doi.org/10.1126/science.abb9704
X. Huang, J. Huang, G. Zhou, Y. Wei, P. Wu et al., Gelation-assisted assembly of large-area, highly aligned, and environmentally stable mxene films with an excellent trade-off between mechanical and electrical properties. Small 18(21), e2200829 (2022). https://doi.org/10.1002/smll.202200829
Q. Qian, H. Ren, J. Zhou, Z. Wan, J. Zhou et al., Chiral molecular intercalation superlattices. Nature 606(7916), 902–908 (2022). https://doi.org/10.1038/s41586-022-04846-3
P. Gao, Z. Chen, Y.X. Gong, R. Zhang, H. Liu et al., The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903780
Y. Liu, Z. Gao, Y. Tan, F. Chen, Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects. ACS Nano 12(10), 10529–10536 (2018). https://doi.org/10.1021/acsnano.8b06503
Y.R. Liu, Z.B. Gao, M. Chen, Y. Tan, F. Chen, Enhanced Raman scattering of CuPc films on imperfect WSe2 monolayer correlated to exciton and charge-transfer resonances. Adv. Funct. Mater. 28(52), 1805710 (2018). https://doi.org/10.1002/adfm.201805710
M. Ying, R. Zhao, X. Hu, Z. Zhang, W. Liu et al., Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 61(16), e202201323 (2022). https://doi.org/10.1002/anie.202201323
W.W. Zhao, H.T. Xu, J.D. Zhao, X.J. Zhu, Y.Y. Lu et al., Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding. Chem. Eng. J. 437, 135266 (2022). https://doi.org/10.1016/j.cej.2022.135266
B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng et al., Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and mxene layers. ACS Appl. Mater. Interfaces 12(4), 4895–4905 (2020). https://doi.org/10.1021/acsami.9b19768
L. Wei, J. Ma, L. Ma, C. Zhao, M. Xu et al., Computational optimizing the electromagnetic wave reflectivity of double-layered polymer nanocomposites. Small Methods 6(4), e2101510 (2022). https://doi.org/10.1002/smtd.202101510
C. Pavlou, M.G. Pastore Carbone, A.C. Manikas, G. Trakakis, C. Koral et al., Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 12(1), 4655 (2021). https://doi.org/10.1038/s41467-021-24970-4