A General Strategy for Ordered Carrier Transport of Quasi-2D and 3D Perovskite Films for Giant Self-Powered Photoresponse and Ultrahigh Stability
Corresponding Author: Ching‑Ping Wong
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 115
Abstract
Organic–inorganic hybrid perovskite materials have been focusing more attention in the field of self-powered photodetectors due to their superb photoelectric properties. However, a universal growth approach is required and challenging to realize vertically oriented growth and grain boundary fusion of 2D and 3D perovskite grains to promote ordered carrier transport, which determines superior photoresponse and high stability. Herein, a general thermal-pressed (TP) strategy is designed to solve the above issues, achieving uniaxial orientation and single-grain penetration along the film thickness direction. It constructs the efficient channel for ordered carrier transport between two electrodes. Combining of the improved crystal quality and lower trap-state density, the quasi-2D and 3D perovskite-based self-powered photodetector devices (with/without hole transport layer) all exhibit giant and stable photoresponse in a wide spectrum range and specific wavelength laser. For the MAPbI3-based self-powered photodetectors, the largest Rλ value is as high as 0.57 A W−1 at 760 nm, which is larger than most reported results. Meanwhile, under laser illumination (532 nm), the FPEA2MA4Pb5I16-based device exhibits a high responsivity (0.4 A W−1) value, which is one of the best results in 2DRP self-powered photodetectors. In addition, fast response, ultralow detection limit, and markedly improved humidity, optical and heat stabilities are clearly demonstrated for these TP-based devices.
Highlights:
1 Uniaxial orientation and single-grain penetration of quasi-2D and 3D perovskite films were achieved via a general thermal-pressed (TP) strategy.
2 The TP-perovskite-based self-powered photodetectors (SPPDs) exhibit one of the best results among the 3D and quasi-2D perovskite SPPDs, respectively.
3 These unpackaged TP-based devices exhibit ultrahigh humidity, optical and heat stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), 1803442 (2018). https://doi.org/10.1002/adma.201803422
- Z. Zhang, C. Xu, C. Zhu, X. Tong, C. Fu et al., Fabrication of MAPbI3 perovskite/Si heterojunction photodetector arrays for image sensing application. Sens. Actuat. A Phys. 332(2), 113176 (2021). https://doi.org/10.1016/j.sna.2021.113176
- Y. Ma, J. Wang, Y. Liu, S. Han, Y. Li et al., High performance self-powered photodetection with a low detection limit based on a two-dimensional organometallic perovskite ferroelectric. J. Mater. Chem. C 9(3), 881–887 (2021). https://doi.org/10.1039/d0tc04777e
- H. Tahara, T. Aharen, A. Wakamiya, Y. Kanemitsu, Photorefractive effect in organic–inorganic hybrid perovskites and its application to optical phase shifter. Adv. Opt. Mater. 6(11), 1701366 (2018). https://doi.org/10.1002/adom.201701366
- K. Liu, Y. Jiang, Y. Jiang, Y. Guo, Y. Liu et al., Chemical formation and multiple applications of organic–inorganic hybrid perovskite materials. J. Am. Chem. Soc. 141(4), 1406–1414 (2019). https://doi.org/10.1021/jacs.8b09532
- X. Huang, Q. Guo, S. Kang, T. Ouyang, Q. Chen et al., Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14(3), 3150–3158 (2020). https://doi.org/10.1021/acsnano.9b08314
- L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404 (2014). https://doi.org/10.1038/ncomms6404
- J. Wang, S. Xiao, W. Qian, K. Zhang, J. Yu et al., Self-driven perovskite narrowband photodetectors with tunable spectral responses. Adv. Mater. 33(3), 2005557 (2021). https://doi.org/10.1002/adma.202005557
- F. Cao, J.D. Chen, D.J. Yu, S. Wang, X.B. Xu et al., Bionic detectors based on low-bandgap inorganic perovskite for selective NIR-I photon detection and imaging. Adv. Mater. 32(6), 1905362 (2020). https://doi.org/10.1002/adma.201905362
- C. Bao, W. Zhu, J. Yang, F. Li, S. Gu et al., Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces 8(36), 23868–23875 (2016). https://doi.org/10.1021/acsami.6b08318
- T.M.H. Nguyen, S. Kim, C.W. Bark, Solution-processed and self-powered photodetector in vertical architecture using mixed-halide perovskite for highly sensitive UVC detection. J. Mater. Chem. A 9(2), 1269–1276 (2021). https://doi.org/10.1039/d0ta08738f
- S. Qiao, Y. Liu, J. Liu, G. Fu, S. Wang, High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region. ACS Appl. Mater. Interfaces 13(29), 34625–34636 (2021). https://doi.org/10.1021/acsami.1c09642
- H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng et al., Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv. Funct. Mater. 27(30), 1701804 (2017). https://doi.org/10.1002/adfm.201701804
- J. Zhang, L. Zhang, X. Li, X. Zhu, J. Yu et al., Binary solvent egineering for high-performance two-dimensional perovskite solar cells. ACS Sustain. Chem. Eng. 7(3), 3487–3495 (2019). https://doi.org/10.1021/acssuschemeng.8b05734
- L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong et al., Efficient energy funneling in quasi-2D perovskites: from light emission to lasing. Adv. Mater. 32(16), 1906571 (2020). https://doi.org/10.1002/adma.201906571
- X. Hong, T. Ishihara, A. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45(12), 6961 (1992). https://doi.org/10.1103/physrevb.45.6961
- L.F. Yan, J.J. Ma, P.W. Li, S.Q. Zang, L.Y. Han et al., Charge-carrier transport in quasi-2D ruddlesden-popper perovskite solar cells. Adv. Mater. 34(7), 2106822 (2022). https://doi.org/10.1002/adma.202106822
- Y. Wei, H. Chu, Y. Tian, B. Chen, K. Wu et al., Reverse-graded 2D Ruddlesden-Popper perovskites for efficient air-stable solar cells. Adv. Energy Mater. 9(21), 1900612 (2019). https://doi.org/10.1002/aenm.201900612
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- L. Chao, T. Niu, Y. Xia, X. Ran, Y. Chen et al., Efficient and stable low-dimensional Ruddlesden-Popper perovskite solar cells enabled by reducing tunnel barrier. Phys. Chem. Lett. 10(6), 1173–1179 (2019). https://doi.org/10.1021/acs.jpclett.9b00276
- Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Nano 14(4), 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
- L. Kuai, J. Li, Y. Li, Y. Wang, P. Li et al., Revealing crystallization dynamics and the compositional control mechanism of 2D perovskite film growth by in situ synchrotron-based gixrd. ACS Energy Lett. 5(1), 8–16 (2019). https://doi.org/10.1021/acsenergylett.9b02366
- S. Yuan, Z. Qiu, C. Gao, H. Zhang, Y. Jiang et al., High-quality perovskite films grown with a fast solvent-assisted molecule inserting strategy for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 8(34), 22238–32224 (2016). https://doi.org/10.1021/acsami.6b06847
- C. Di, K. Lu, L. Zhang, Y. Liu, Y. Guo et al., Solvent-assisted re-annealing of polymer films for solution-processable organic field-effect transistors. Adv. Energy Mater. 22(11), 1273–1277 (2010). https://doi.org/10.1002/adma.200902813
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- J. Li, X. Hua, F. Gao, X. Ren, C. Zhang et al., Green antisolvent additive engineering to improve the performance of perovskite solar cells. J. Energy Chem. 66, 1–8 (2020). https://doi.org/10.1016/j.jechem.2021.06.023
- Z. Li, X. Li, M. Wang, M. Cai, X. Shi et al., Enhanced photovoltaic performance via a bifunctional additive in tin-based perovskite solar cells. ACS Appl. Energy Mater. 5(1), 108 (2021). https://doi.org/10.1021/acsaem.1c02488
- J. Wang, G. Lian, Z. Xu, C. Fu, Z. Lin et al., Growth of large-size SnS thin crystals driven by oriented attachment and applications to gas sensors and photodetectors. ACS Appl. Mater. Interfaces 8(15), 9545–9551 (2016). https://doi.org/10.1021/acsami.6b01485
- D. Gangadharan, Y. Han, A. Dubey, X. Gao, B. Sun et al., Aromatic alkylammonium spacer cations for efficient two-dimensional perovskite solar cells with enhanced moisture and thermal stability. Solar RRL 2(4), 1700215 (2018). https://doi.org/10.1002/solr.201700215
- D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji, Y. Liu et al., Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2022). https://doi.org/10.1021/jacs.0c03363
- M.V. Kelso, N.K. Mahenderkar, Q. Chen, J.Z. Tubbesing, J.A. Switzer, Spin coating epitaxial films. Science 364(6436), 166–169 (2019). https://doi.org/10.1126/science.aaw6184
- X. Li, G. Wu, J. Zhou, J. Zhang, X. Zhang et al., Non-preheating processed quasi-2D perovskites for efficient and stable solar cells. Small 16(11), 1906997 (2022). https://doi.org/10.1002/smll.201906997
- W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3(9), 2086–2093 (2018). https://doi.org/10.1021/acsenergylett.8b01181
- F. Huang, P. Siffalovic, B. Li, S. Yang et al., Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chem. Eng. J. 394, 124959 (2020). https://doi.org/10.1016/j.cej.2020.124959
- C. Li, Y. Pan, J. Hu, S. Qiu, C. Zhang et al., Vertically aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5(5), 1386–1395 (2020). https://doi.org/10.1021/acsenergylett.0c00634
- L. Li, F. Zhang, S. Ye, X. Peng, Z. Sun et al., Self-powered photodetectors based on CsxDMA1-xPbI3 perovskite films with high detectivity and stability. Nano Energy 71, 104611 (2020). https://doi.org/10.1016/j.nanoen.2020.104611
- M. Li, H. Li, W. Li, B. Li, T. Lu et al., Oriented 2D perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 34(8), 2108020 (2020). https://doi.org/10.1002/adma.202108020
- T. Zhang, T. Nakajima, H. Cao, Q. Sun, H. Ban et al., Controlling quantum-well width distribution and crystal orientation in two-dimensional tin halide perovskites via-strong interlayer electrostatic interaction. ACS Appl. Mater. Interfaces 13(42), 49907–49915 (2021). https://doi.org/10.1021/acsami.1c14167
- F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson et al., Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141(14), 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
- R. Sun, T. Wang, Y. Wu, M. Zhang, Y. Ma et al., PEDOT: PSS-free polymer non-fullerene polymer solar cells with efficiency up to 18.60% employing a binary-solvent-chlorinated ITO anode. Adv. Funct. Mater. 31(51), 2106846 (2021). https://doi.org/10.1002/adfm.202106846
- H. Zhou, Z. Song, C.R. Grice, C. Chen, X. Yang et al., Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 9(16), 4714–4719 (2018). https://doi.org/10.1021/acs.jpclett.8b01960
- L. Min, W. Tian, F. Cao, J. Guo, L. Li, 2D Ruddlesden-Popper perovskite with ordered phase distribution for high-performance self-powered photodetectors. Adv. Funct. Mater. 33(35), 2101714 (2021). https://doi.org/10.1002/adma.202101714
- C. Xie, C.-K. Liu, H.-L. Loi, F. Yan, Perovskite-based phototransistors and hybrid photodetectors advanced functional materials. Adv. Funct. Mater. 30(20), 1903907 (2020). https://doi.org/10.1002/adfm.201903907
- C. Xie, P. You, Z. Liu, L. Li, F. Yan, Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci. Appl. 6(8), e17023–e17023 (2017). https://doi.org/10.1038/lsa.2017.23
- M. Tian, L. Xu, H. Dan, Y. Yang, Extended linear detection range of a Bi0.5Na0.5TiO3 thin film-based self-powered UV photodetector via current and voltage dual indicators. Nanoscale Horiz. 7, 1240–1249 (2022). https://doi.org/10.1039/d2nh00204c
- M. Sulaman, S.Y. Yang, A. Bukhtiar, P.Y. Tang, Z.H. Zhang et al., Hybrid bulk-heterojunction of collodial quantu dots and mixed-halide perovskite nanocrystals for high-performance self-powered broadband photodetectors. Adv. Funct. Mater. 32(28), 2201527 (2022). https://doi.org/10.1002/adfm.202201527
- E. Shirzadi, N. Tappy, F. Ansari, M.K. Nazeeruddin, A. Hagfeldt et al., Deconvolution of light-induced ion migration phenomena by statistical analysis of cathodoluminescence in lead halide-based perovskites. Adv. Sci. 9(13), 2103729 (2022). https://doi.org/10.1002/advs.202103729
References
C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), 1803442 (2018). https://doi.org/10.1002/adma.201803422
Z. Zhang, C. Xu, C. Zhu, X. Tong, C. Fu et al., Fabrication of MAPbI3 perovskite/Si heterojunction photodetector arrays for image sensing application. Sens. Actuat. A Phys. 332(2), 113176 (2021). https://doi.org/10.1016/j.sna.2021.113176
Y. Ma, J. Wang, Y. Liu, S. Han, Y. Li et al., High performance self-powered photodetection with a low detection limit based on a two-dimensional organometallic perovskite ferroelectric. J. Mater. Chem. C 9(3), 881–887 (2021). https://doi.org/10.1039/d0tc04777e
H. Tahara, T. Aharen, A. Wakamiya, Y. Kanemitsu, Photorefractive effect in organic–inorganic hybrid perovskites and its application to optical phase shifter. Adv. Opt. Mater. 6(11), 1701366 (2018). https://doi.org/10.1002/adom.201701366
K. Liu, Y. Jiang, Y. Jiang, Y. Guo, Y. Liu et al., Chemical formation and multiple applications of organic–inorganic hybrid perovskite materials. J. Am. Chem. Soc. 141(4), 1406–1414 (2019). https://doi.org/10.1021/jacs.8b09532
X. Huang, Q. Guo, S. Kang, T. Ouyang, Q. Chen et al., Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14(3), 3150–3158 (2020). https://doi.org/10.1021/acsnano.9b08314
L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang et al., Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5(1), 5404 (2014). https://doi.org/10.1038/ncomms6404
J. Wang, S. Xiao, W. Qian, K. Zhang, J. Yu et al., Self-driven perovskite narrowband photodetectors with tunable spectral responses. Adv. Mater. 33(3), 2005557 (2021). https://doi.org/10.1002/adma.202005557
F. Cao, J.D. Chen, D.J. Yu, S. Wang, X.B. Xu et al., Bionic detectors based on low-bandgap inorganic perovskite for selective NIR-I photon detection and imaging. Adv. Mater. 32(6), 1905362 (2020). https://doi.org/10.1002/adma.201905362
C. Bao, W. Zhu, J. Yang, F. Li, S. Gu et al., Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl. Mater. Interfaces 8(36), 23868–23875 (2016). https://doi.org/10.1021/acsami.6b08318
T.M.H. Nguyen, S. Kim, C.W. Bark, Solution-processed and self-powered photodetector in vertical architecture using mixed-halide perovskite for highly sensitive UVC detection. J. Mater. Chem. A 9(2), 1269–1276 (2021). https://doi.org/10.1039/d0ta08738f
S. Qiao, Y. Liu, J. Liu, G. Fu, S. Wang, High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region. ACS Appl. Mater. Interfaces 13(29), 34625–34636 (2021). https://doi.org/10.1021/acsami.1c09642
H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng et al., Deciphering the NH4PbI3 intermediate phase for simultaneous improvement on nucleation and crystal growth of perovskite. Adv. Funct. Mater. 27(30), 1701804 (2017). https://doi.org/10.1002/adfm.201701804
J. Zhang, L. Zhang, X. Li, X. Zhu, J. Yu et al., Binary solvent egineering for high-performance two-dimensional perovskite solar cells. ACS Sustain. Chem. Eng. 7(3), 3487–3495 (2019). https://doi.org/10.1021/acssuschemeng.8b05734
L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong et al., Efficient energy funneling in quasi-2D perovskites: from light emission to lasing. Adv. Mater. 32(16), 1906571 (2020). https://doi.org/10.1002/adma.201906571
X. Hong, T. Ishihara, A. Nurmikko, Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45(12), 6961 (1992). https://doi.org/10.1103/physrevb.45.6961
L.F. Yan, J.J. Ma, P.W. Li, S.Q. Zang, L.Y. Han et al., Charge-carrier transport in quasi-2D ruddlesden-popper perovskite solar cells. Adv. Mater. 34(7), 2106822 (2022). https://doi.org/10.1002/adma.202106822
Y. Wei, H. Chu, Y. Tian, B. Chen, K. Wu et al., Reverse-graded 2D Ruddlesden-Popper perovskites for efficient air-stable solar cells. Adv. Energy Mater. 9(21), 1900612 (2019). https://doi.org/10.1002/aenm.201900612
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53(42), 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
L. Chao, T. Niu, Y. Xia, X. Ran, Y. Chen et al., Efficient and stable low-dimensional Ruddlesden-Popper perovskite solar cells enabled by reducing tunnel barrier. Phys. Chem. Lett. 10(6), 1173–1179 (2019). https://doi.org/10.1021/acs.jpclett.9b00276
Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan et al., Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional Ruddlesden-Popper perovskite solar cells. ACS Nano 14(4), 4871–4881 (2020). https://doi.org/10.1021/acsnano.0c00875
L. Kuai, J. Li, Y. Li, Y. Wang, P. Li et al., Revealing crystallization dynamics and the compositional control mechanism of 2D perovskite film growth by in situ synchrotron-based gixrd. ACS Energy Lett. 5(1), 8–16 (2019). https://doi.org/10.1021/acsenergylett.9b02366
S. Yuan, Z. Qiu, C. Gao, H. Zhang, Y. Jiang et al., High-quality perovskite films grown with a fast solvent-assisted molecule inserting strategy for highly efficient and stable solar cells. ACS Appl. Mater. Interfaces 8(34), 22238–32224 (2016). https://doi.org/10.1021/acsami.6b06847
C. Di, K. Lu, L. Zhang, Y. Liu, Y. Guo et al., Solvent-assisted re-annealing of polymer films for solution-processable organic field-effect transistors. Adv. Energy Mater. 22(11), 1273–1277 (2010). https://doi.org/10.1002/adma.200902813
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10(13), 1902579 (2020). https://doi.org/10.1002/aenm.201902579
J. Li, X. Hua, F. Gao, X. Ren, C. Zhang et al., Green antisolvent additive engineering to improve the performance of perovskite solar cells. J. Energy Chem. 66, 1–8 (2020). https://doi.org/10.1016/j.jechem.2021.06.023
Z. Li, X. Li, M. Wang, M. Cai, X. Shi et al., Enhanced photovoltaic performance via a bifunctional additive in tin-based perovskite solar cells. ACS Appl. Energy Mater. 5(1), 108 (2021). https://doi.org/10.1021/acsaem.1c02488
J. Wang, G. Lian, Z. Xu, C. Fu, Z. Lin et al., Growth of large-size SnS thin crystals driven by oriented attachment and applications to gas sensors and photodetectors. ACS Appl. Mater. Interfaces 8(15), 9545–9551 (2016). https://doi.org/10.1021/acsami.6b01485
D. Gangadharan, Y. Han, A. Dubey, X. Gao, B. Sun et al., Aromatic alkylammonium spacer cations for efficient two-dimensional perovskite solar cells with enhanced moisture and thermal stability. Solar RRL 2(4), 1700215 (2018). https://doi.org/10.1002/solr.201700215
D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji, Y. Liu et al., Thiophene-based two-dimensional Dion-Jacobson perovskite solar cells with over 15% efficiency. J. Am. Chem. Soc. 142(25), 11114–11122 (2022). https://doi.org/10.1021/jacs.0c03363
M.V. Kelso, N.K. Mahenderkar, Q. Chen, J.Z. Tubbesing, J.A. Switzer, Spin coating epitaxial films. Science 364(6436), 166–169 (2019). https://doi.org/10.1126/science.aaw6184
X. Li, G. Wu, J. Zhou, J. Zhang, X. Zhang et al., Non-preheating processed quasi-2D perovskites for efficient and stable solar cells. Small 16(11), 1906997 (2022). https://doi.org/10.1002/smll.201906997
W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3(9), 2086–2093 (2018). https://doi.org/10.1021/acsenergylett.8b01181
F. Huang, P. Siffalovic, B. Li, S. Yang et al., Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chem. Eng. J. 394, 124959 (2020). https://doi.org/10.1016/j.cej.2020.124959
C. Li, Y. Pan, J. Hu, S. Qiu, C. Zhang et al., Vertically aligned 2D/3D Pb-Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable solar cells. ACS Energy Lett. 5(5), 1386–1395 (2020). https://doi.org/10.1021/acsenergylett.0c00634
L. Li, F. Zhang, S. Ye, X. Peng, Z. Sun et al., Self-powered photodetectors based on CsxDMA1-xPbI3 perovskite films with high detectivity and stability. Nano Energy 71, 104611 (2020). https://doi.org/10.1016/j.nanoen.2020.104611
M. Li, H. Li, W. Li, B. Li, T. Lu et al., Oriented 2D perovskite wafers for anisotropic X-ray detection through a fast tableting strategy. Adv. Mater. 34(8), 2108020 (2020). https://doi.org/10.1002/adma.202108020
T. Zhang, T. Nakajima, H. Cao, Q. Sun, H. Ban et al., Controlling quantum-well width distribution and crystal orientation in two-dimensional tin halide perovskites via-strong interlayer electrostatic interaction. ACS Appl. Mater. Interfaces 13(42), 49907–49915 (2021). https://doi.org/10.1021/acsami.1c14167
F. Zhang, D.H. Kim, H. Lu, J.-S. Park, B.W. Larson et al., Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141(14), 5972–5979 (2019). https://doi.org/10.1021/jacs.9b00972
R. Sun, T. Wang, Y. Wu, M. Zhang, Y. Ma et al., PEDOT: PSS-free polymer non-fullerene polymer solar cells with efficiency up to 18.60% employing a binary-solvent-chlorinated ITO anode. Adv. Funct. Mater. 31(51), 2106846 (2021). https://doi.org/10.1002/adfm.202106846
H. Zhou, Z. Song, C.R. Grice, C. Chen, X. Yang et al., Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 9(16), 4714–4719 (2018). https://doi.org/10.1021/acs.jpclett.8b01960
L. Min, W. Tian, F. Cao, J. Guo, L. Li, 2D Ruddlesden-Popper perovskite with ordered phase distribution for high-performance self-powered photodetectors. Adv. Funct. Mater. 33(35), 2101714 (2021). https://doi.org/10.1002/adma.202101714
C. Xie, C.-K. Liu, H.-L. Loi, F. Yan, Perovskite-based phototransistors and hybrid photodetectors advanced functional materials. Adv. Funct. Mater. 30(20), 1903907 (2020). https://doi.org/10.1002/adfm.201903907
C. Xie, P. You, Z. Liu, L. Li, F. Yan, Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci. Appl. 6(8), e17023–e17023 (2017). https://doi.org/10.1038/lsa.2017.23
M. Tian, L. Xu, H. Dan, Y. Yang, Extended linear detection range of a Bi0.5Na0.5TiO3 thin film-based self-powered UV photodetector via current and voltage dual indicators. Nanoscale Horiz. 7, 1240–1249 (2022). https://doi.org/10.1039/d2nh00204c
M. Sulaman, S.Y. Yang, A. Bukhtiar, P.Y. Tang, Z.H. Zhang et al., Hybrid bulk-heterojunction of collodial quantu dots and mixed-halide perovskite nanocrystals for high-performance self-powered broadband photodetectors. Adv. Funct. Mater. 32(28), 2201527 (2022). https://doi.org/10.1002/adfm.202201527
E. Shirzadi, N. Tappy, F. Ansari, M.K. Nazeeruddin, A. Hagfeldt et al., Deconvolution of light-induced ion migration phenomena by statistical analysis of cathodoluminescence in lead halide-based perovskites. Adv. Sci. 9(13), 2103729 (2022). https://doi.org/10.1002/advs.202103729