Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding
Corresponding Author: Rong Sun
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 29
Abstract
Liquid metal (LM) has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity. However, the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge, due to high surface tension and pump-out issues of LM. Here, a novel confined thermal expansion strategy based on expandable microsphere (EM) is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network. The EM/LM monolith (EM/LMm) presents outstanding performance of lightweight like metallic aerogel (0.104 g cm−1), high strength (3.43 MPa), super elasticity (90% strain), as well as excellent tailor ability and recyclability, rely on its unique gas-filled closed-cellular structure and refined LM network. Moreover, the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness (98.7 dB) over a broad frequency range of 8.2–40 GHz among reported LM-based composites at an ultra-low content of LM, and demonstrates excellent electromagnetic sealing capacity in practical electronics. The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites, and applicable in magnetic responsive actuator.
Highlights:
1 A confined thermal expansion strategy to fabricate liquid metal (LM)-based monoliths with continuous LM network at ultra-low content.
2 The results show a strong integration advantage of LM-based monoliths in density, mechanical strength, electromagnetic interference shielding effectiveness, and near field shielding effectiveness, as well as multi-functions such as magnetic actuation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1002/9783527829828
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), e1907499 (2020). https://doi.org/10.1002/adma.201907499
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), e1907411 (2020). https://doi.org/10.1002/adma.201907411
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), e1908496 (2020). https://doi.org/10.1002/adma.201908496
- S. Chen, H.Z. Wang, R.Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2(6), 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
- M. Zhang, S. Yao, W. Rao, J. Liu, Transformable soft liquid metal micro/nanomaterials. Mater. Sci. Eng. R Rep. 138, 1–35 (2019). https://doi.org/10.1016/j.mser.2019.03.001
- K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart et al., Emergence of liquid metals in nanotechnology. ACS Nano 13(7), 7388–7395 (2019). https://doi.org/10.1021/acsnano.9b04843
- C.J. Thrasher, Z.J. Farrell, N.J. Morris, C.L. Willey, C.E. Tabor, Mechanoresponsive polymerized liquid metal networks. Adv. Mater. 31(40), e1903864 (2019). https://doi.org/10.1002/adma.201903864
- X. Li, M. Li, Q. Shou, L. Zhou, A. Ge et al., Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites. Adv. Mater. 32(43), e2003553 (2020). https://doi.org/10.1002/adma.202003553
- X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 (2019). https://doi.org/10.1038/s41467-019-11466-5
- R. Zheng, Z. Peng, Y. Fu, Z. Deng, S. Liu et al., A novel conductive core-shell p based on liquid metal for fabricating real-time self-repairing flexible circuits. Adv. Funct. Mater. 30(15), 1910524 (2020). https://doi.org/10.1002/adfm.201910524
- J.N. Hohman, M. Kim, G.A. Wadsworth, H.R. Bednar, J. Jiang et al., Directing substrate morphology via self-assembly: ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett. 11(12), 5104–5110 (2011). https://doi.org/10.1021/nl202728j
- J. Yan, M.H. Malakooti, Z. Lu, Z. Wang, N. Kazem et al., Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14(7), 684–690 (2019). https://doi.org/10.1038/s41565-019-0454-6
- E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17(7), 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7
- L. Cao, D. Yu, Z. Xia, H. Wan, C. Liu et al., Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity. Adv. Mater. 32(17), e2000827 (2020). https://doi.org/10.1002/adma.202000827
- M.J. Ford, D.K. Patel, C. Pan, S. Bergbreiter, C. Majidi, Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv. Mater. 32(46), e2002929 (2020). https://doi.org/10.1002/adma.202002929
- B. Yuan, C. Zhao, X. Sun, J. Liu, Lightweight liquid metal entity. Adv. Funct. Mater. 30(14), 1910709 (2020). https://doi.org/10.1002/adfm.201910709
- G. Yun, S.Y. Tang, S. Sun, D. Yuan, Q. Zhao et al., Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 10, 1300 (2019). https://doi.org/10.1038/s41467-019-09325-4
- J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12(19), 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900412
- S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- J. Yang, X. Liao, G. Wang, J. Chen, F. Guo et al., Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 390, 124589 (2020). https://doi.org/10.1016/j.cej.2020.124589
- J. Yang, X. Liao, G. Wang, J. Chen, W. Tang et al., Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. J. Mater. Chem. C 8(1), 147–157 (2020). https://doi.org/10.1039/c9tc05152j
- Y. Peng, H. Liu, T. Li, J. Zhang, Hybrid metallic foam with superior elasticity, high electrical conductivity, and pressure sensitivity. ACS Appl. Mater. Interfaces 12(5), 6489–6495 (2020). https://doi.org/10.1021/acsami.9b20652
- M. Zhang, P. Zhang, C. Zhang, Y. Wang, H. Chang et al., Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 19, 100612 (2020). https://doi.org/10.1016/j.apmt.2020.100612
- K. Doudrick, S. Liu, E.M. Mutunga, K.L. Klein, V. Damle et al., Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30(23), 6867–6877 (2014). https://doi.org/10.1021/la5012023
- W. Kong, Z. Wang, M. Wang, K.C. Manning, A. Uppal et al., Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv. Mater. 31(44), 1904309 (2019). https://doi.org/10.1002/adma.201904309
- Y.H. Wu, Z.F. Deng, Z.F. Peng, R.M. Zheng, S.Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29(36), 1903820 (2019). https://doi.org/10.1002/adfm.201903840
- H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou et al., Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl. Mater. Interfaces 12(12), 14125–14135 (2020). https://doi.org/10.1021/acsami.9b20430
- J.E. Park, H.S. Kang, M. Koo, C. Park, Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 32(37), 2002178 (2020). https://doi.org/10.1002/adma.202002178
- L.Y. Zhou, J.Z. Fu, Q. Gao, P. Zhao, Y. He, All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks. Adv. Funct. Mater. 30(3), 1906683 (2019). https://doi.org/10.1002/adfm.201906683
- L. Tang, S. Cheng, L. Zhang, H. Mi, L. Mou et al., Printable metal-polymer conductors for highly stretchable bio-devices. iScience 4, 302–311 (2018). https://doi.org/10.1016/j.isci.2018.05.013
- Y. Xin, S. Zhang, Y. Lou, J. Xu, J. Zhang, Determinative energy dissipation in liquid metal polymer composites for advanced electronic applications. Adv. Mater. Technol. 5(5), 2000018 (2020). https://doi.org/10.1002/admt.202000018
- Y. Huang, B. Yu, L. Zhang, N. Ning, M. Tian, Highly stretchable conductor by self-assembling and mechanical sintering of a 2D liquid metal on a 3D polydopamine-modified polyurethane sponge. ACS Appl. Mater. Interfaces 11(51), 48321–48330 (2019). https://doi.org/10.1021/acsami.9b15776
- J. Wang, G. Cai, S. Li, D. Gao, J. Xiong et al., Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal ps. Adv. Mater. 30(16), 1706157 (2018). https://doi.org/10.1002/adma.201706157
- H. Wang, Y. Yao, Z. He, W. Rao, L. Hu et al., A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv. Mater. 31(23), e1901337 (2019). https://doi.org/10.1002/adma.201901337
- Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković et al., Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 8(35), 17969–17979 (2020). https://doi.org/10.1039/d0ta05961g
- Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 12(32), 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
- H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
- C. Wang, Y. Gong, B.V. Cunning, S. Lee, Q. Le et al., A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7(1), eabe3767 (2021). https://doi.org/10.1126/sciadv.abe3767
- W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32(12), 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
- L. An, B. Liang, Z. Guo, J. Wang, C. Li et al., Wearable aramid-ceramic aerogel composite for harsh environment. Adv. Eng. Mater. 23(3), 2001169 (2020). https://doi.org/10.1002/adem.202001169
- F. Peng, Y. Jiang, J. Feng, H. Cai, J. Feng et al., Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 ℃. Chem. Eng. J. 411, 128402 (2021). https://doi.org/10.1016/j.cej.2021.128402
- Y. Xu, Y. Li, W. Hua, A. Zhang, J. Bao, Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces 8(36), 24131–24142 (2016). https://doi.org/10.1021/acsami.6b08325
- C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
- J. Li, A. Wang, J. Qin, H. Zhang, Z. Ma et al., Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas. Compos. Part A Appl. Sci. Manuf. 140, 106144 (2021). https://doi.org/10.1016/j.compositesa.2020.106144
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
- P. Saini, M. Arora, Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polymers for Special Applications, Chapter 3, pp. 71–112 (2012). https://doi.org/10.5772/48779
References
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1002/9783527829828
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), e1907499 (2020). https://doi.org/10.1002/adma.201907499
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), e1907411 (2020). https://doi.org/10.1002/adma.201907411
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), e1908496 (2020). https://doi.org/10.1002/adma.201908496
S. Chen, H.Z. Wang, R.Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2(6), 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
M. Zhang, S. Yao, W. Rao, J. Liu, Transformable soft liquid metal micro/nanomaterials. Mater. Sci. Eng. R Rep. 138, 1–35 (2019). https://doi.org/10.1016/j.mser.2019.03.001
K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart et al., Emergence of liquid metals in nanotechnology. ACS Nano 13(7), 7388–7395 (2019). https://doi.org/10.1021/acsnano.9b04843
C.J. Thrasher, Z.J. Farrell, N.J. Morris, C.L. Willey, C.E. Tabor, Mechanoresponsive polymerized liquid metal networks. Adv. Mater. 31(40), e1903864 (2019). https://doi.org/10.1002/adma.201903864
X. Li, M. Li, Q. Shou, L. Zhou, A. Ge et al., Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites. Adv. Mater. 32(43), e2003553 (2020). https://doi.org/10.1002/adma.202003553
X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 (2019). https://doi.org/10.1038/s41467-019-11466-5
R. Zheng, Z. Peng, Y. Fu, Z. Deng, S. Liu et al., A novel conductive core-shell p based on liquid metal for fabricating real-time self-repairing flexible circuits. Adv. Funct. Mater. 30(15), 1910524 (2020). https://doi.org/10.1002/adfm.201910524
J.N. Hohman, M. Kim, G.A. Wadsworth, H.R. Bednar, J. Jiang et al., Directing substrate morphology via self-assembly: ligand-mediated scission of gallium-indium microspheres to the nanoscale. Nano Lett. 11(12), 5104–5110 (2011). https://doi.org/10.1021/nl202728j
J. Yan, M.H. Malakooti, Z. Lu, Z. Wang, N. Kazem et al., Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 14(7), 684–690 (2019). https://doi.org/10.1038/s41565-019-0454-6
E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17(7), 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7
L. Cao, D. Yu, Z. Xia, H. Wan, C. Liu et al., Ferromagnetic liquid metal putty-like material with transformed shape and reconfigurable polarity. Adv. Mater. 32(17), e2000827 (2020). https://doi.org/10.1002/adma.202000827
M.J. Ford, D.K. Patel, C. Pan, S. Bergbreiter, C. Majidi, Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv. Mater. 32(46), e2002929 (2020). https://doi.org/10.1002/adma.202002929
B. Yuan, C. Zhao, X. Sun, J. Liu, Lightweight liquid metal entity. Adv. Funct. Mater. 30(14), 1910709 (2020). https://doi.org/10.1002/adfm.201910709
G. Yun, S.Y. Tang, S. Sun, D. Yuan, Q. Zhao et al., Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 10, 1300 (2019). https://doi.org/10.1038/s41467-019-09325-4
J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12(19), 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900412
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
J. Yang, X. Liao, G. Wang, J. Chen, F. Guo et al., Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 390, 124589 (2020). https://doi.org/10.1016/j.cej.2020.124589
J. Yang, X. Liao, G. Wang, J. Chen, W. Tang et al., Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. J. Mater. Chem. C 8(1), 147–157 (2020). https://doi.org/10.1039/c9tc05152j
Y. Peng, H. Liu, T. Li, J. Zhang, Hybrid metallic foam with superior elasticity, high electrical conductivity, and pressure sensitivity. ACS Appl. Mater. Interfaces 12(5), 6489–6495 (2020). https://doi.org/10.1021/acsami.9b20652
M. Zhang, P. Zhang, C. Zhang, Y. Wang, H. Chang et al., Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 19, 100612 (2020). https://doi.org/10.1016/j.apmt.2020.100612
K. Doudrick, S. Liu, E.M. Mutunga, K.L. Klein, V. Damle et al., Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30(23), 6867–6877 (2014). https://doi.org/10.1021/la5012023
W. Kong, Z. Wang, M. Wang, K.C. Manning, A. Uppal et al., Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv. Mater. 31(44), 1904309 (2019). https://doi.org/10.1002/adma.201904309
Y.H. Wu, Z.F. Deng, Z.F. Peng, R.M. Zheng, S.Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29(36), 1903820 (2019). https://doi.org/10.1002/adfm.201903840
H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou et al., Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl. Mater. Interfaces 12(12), 14125–14135 (2020). https://doi.org/10.1021/acsami.9b20430
J.E. Park, H.S. Kang, M. Koo, C. Park, Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv. Mater. 32(37), 2002178 (2020). https://doi.org/10.1002/adma.202002178
L.Y. Zhou, J.Z. Fu, Q. Gao, P. Zhao, Y. He, All-printed flexible and stretchable electronics with pressing or freezing activatable liquid-metal-silicone inks. Adv. Funct. Mater. 30(3), 1906683 (2019). https://doi.org/10.1002/adfm.201906683
L. Tang, S. Cheng, L. Zhang, H. Mi, L. Mou et al., Printable metal-polymer conductors for highly stretchable bio-devices. iScience 4, 302–311 (2018). https://doi.org/10.1016/j.isci.2018.05.013
Y. Xin, S. Zhang, Y. Lou, J. Xu, J. Zhang, Determinative energy dissipation in liquid metal polymer composites for advanced electronic applications. Adv. Mater. Technol. 5(5), 2000018 (2020). https://doi.org/10.1002/admt.202000018
Y. Huang, B. Yu, L. Zhang, N. Ning, M. Tian, Highly stretchable conductor by self-assembling and mechanical sintering of a 2D liquid metal on a 3D polydopamine-modified polyurethane sponge. ACS Appl. Mater. Interfaces 11(51), 48321–48330 (2019). https://doi.org/10.1021/acsami.9b15776
J. Wang, G. Cai, S. Li, D. Gao, J. Xiong et al., Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal ps. Adv. Mater. 30(16), 1706157 (2018). https://doi.org/10.1002/adma.201706157
H. Wang, Y. Yao, Z. He, W. Rao, L. Hu et al., A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv. Mater. 31(23), e1901337 (2019). https://doi.org/10.1002/adma.201901337
Z. Zeng, C. Wang, T. Wu, D. Han, M. Luković et al., Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 8(35), 17969–17979 (2020). https://doi.org/10.1039/d0ta05961g
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu et al., An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 12(32), 36568–36577 (2020). https://doi.org/10.1021/acsami.0c10600
H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/d0ta01393e
C. Wang, Y. Gong, B.V. Cunning, S. Lee, Q. Le et al., A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7(1), eabe3767 (2021). https://doi.org/10.1126/sciadv.abe3767
W. Gan, C. Chen, M. Giroux, G. Zhong, M.M. Goyal et al., Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 32(12), 5280–5289 (2020). https://doi.org/10.1021/acs.chemmater.0c01507
L. An, B. Liang, Z. Guo, J. Wang, C. Li et al., Wearable aramid-ceramic aerogel composite for harsh environment. Adv. Eng. Mater. 23(3), 2001169 (2020). https://doi.org/10.1002/adem.202001169
F. Peng, Y. Jiang, J. Feng, H. Cai, J. Feng et al., Thermally insulating, fiber-reinforced alumina-silica aerogel composites with ultra-low shrinkage up to 1500 ℃. Chem. Eng. J. 411, 128402 (2021). https://doi.org/10.1016/j.cej.2021.128402
Y. Xu, Y. Li, W. Hua, A. Zhang, J. Bao, Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces 8(36), 24131–24142 (2016). https://doi.org/10.1021/acsami.6b08325
C. Liang, H. Qiu, P. Song, X. Shi, J. Kong et al., Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 65(8), 616–622 (2020). https://doi.org/10.1016/j.scib.2020.02.009
J. Li, A. Wang, J. Qin, H. Zhang, Z. Ma et al., Lightweight polymethacrylimide@copper/nickel composite foams for electromagnetic shielding and monopole antennas. Compos. Part A Appl. Sci. Manuf. 140, 106144 (2021). https://doi.org/10.1016/j.compositesa.2020.106144
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin et al., Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134–14145 (2020). https://doi.org/10.1021/acsnano.0c06971
P. Saini, M. Arora, Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polymers for Special Applications, Chapter 3, pp. 71–112 (2012). https://doi.org/10.5772/48779