Atomic Modulation of 3D Conductive Frameworks Boost Performance of MnO2 for Coaxial Fiber-Shaped Supercapacitors
Corresponding Author: Ching‑ping Wong
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 4
Abstract
Coaxial fiber-shaped supercapacitors are a promising class of energy storage devices requiring high performance for flexible and miniature electronic devices. Yet, they are still struggling from inferior energy density, which comes from the limited choices in materials and structure used. Here, Zn-doped CuO nanowires were designed as 3D framework for aligned distributing high mass loading of MnO2 nanosheets. Zn could be introduced into the CuO crystal lattice to tune the covalency character and thus improve charge transport. The Zn–CuO@MnO2 as positive electrode obtained superior performance without sacrificing its areal and gravimetric capacitances with the increasing of mass loading of MnO2 due to 3D Zn–CuO framework enabling efficient electron transport. A novel category of free-standing asymmetric coaxial fiber-shaped supercapacitor based on Zn0.11CuO@MnO2 core electrode possesses superior specific capacitance and enhanced cell potential window. This asymmetric coaxial structure provides superior performance including higher capacity and better stability under deformation because of sufficient contact between the electrodes and electrolyte. Based on these advantages, the as-prepared asymmetric coaxial fiber-shaped supercapacitor exhibits a high specific capacitance of 296.6 mF cm−2 and energy density of 133.47 μWh cm−2. In addition, its capacitance retention reaches 76.57% after bending 10,000 times, which demonstrates as-prepared device’s excellent flexibility and long-term cycling stability.
Highlights:
1 3D Zn-doped CuO framework was designed for aligned distributing high mass loading of MnO2 nanosheets.
2 Zn could be introduced into the CuO crystal lattice to tune the covalency character and thus improve charge transport.
3 A free-standing asymmetric coaxial fiber-shaped supercapacitor based on Zn–CuO@MnO2 core electrode possesses superior performance including higher capacity and better stability under deformation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3, e1602051 (2017). https://doi.org/10.1126/sciadv.1602051
- C. Choi, K.M. Kim, K.J. Kim, X. Lepró, G.M. Spinks, R.H. Baughman, S.J. Kim, Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 7, 13811 (2016). https://doi.org/10.1038/ncomms13811
- V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
- D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
- X. Wang, Q. Zhang, J. Sun, Z. Zhou, Q. Li et al., Facile synthesis of hierarchical porous manganese nickel cobalt sulfide nanotube arrays with enhanced electrochemical performance for ultrahigh energy density fiber-shaped asymmetric supercapacitors. J. Mater. Chem. A 6, 8030–8038 (2018). https://doi.org/10.1039/C8TA01440J
- G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54, 4651–4656 (2015). https://doi.org/10.1002/anie.201411533
- T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren et al., An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977–11980 (2012). https://doi.org/10.1002/anie.201207023
- J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011). https://doi.org/10.1002/anie.201006062
- X. Lu, Y. Bai, R. Wang, J. Sun, A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J. Mater. Chem. A 4, 18164–18173 (2016). https://doi.org/10.1039/C6TA08233E
- X. Dong, Z. Guo, Y. Song, M. Hou, J. Wang, Y. Wang, Y. Xia, Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 24, 3405–3412 (2014). https://doi.org/10.1002/adfm.201304001
- Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao et al., Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17, 2719–2726 (2017). https://doi.org/10.1021/acs.nanolett.7b00854
- Y. Zhang, B. Wang, F. Liu, J. Cheng, X.W. Zhang, L. Zhang, Full synergistic contribution of electrodeposited three-dimensional NiCO2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27, 627–637 (2016). https://doi.org/10.1016/j.nanoen.2016.08.013
- N. Liu, Y. Su, Z. Wang, Z. Wang, J. Xia et al., Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano 11, 7879–7888 (2017). https://doi.org/10.1021/acsnano.7b02344
- P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu et al., The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 8, 14559 (2017). https://doi.org/10.1038/ncomms14559
- J. Zhu, J. He, Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012). https://doi.org/10.1021/am3000165
- S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4, 3889–3896 (2010). https://doi.org/10.1021/nn100681d
- Z.H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
- L. Han, P. Tang, L. Zhang, Hierarchical Co3O4@ppy@MnO2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage. Nano Energy 7, 42–51 (2014). https://doi.org/10.1016/j.nanoen.2014.04.014
- X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan et al., WO3-x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24, 938–944 (2012). https://doi.org/10.1002/adma.201104113
- H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8, 1148–1158 (2015). https://doi.org/10.1007/s12274-014-0595-8
- L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu et al., Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017). https://doi.org/10.1039/C7EE01571B
- Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu et al., Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated mnox nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016). https://doi.org/10.1016/j.nanoen.2016.05.053
- D. Kong, C. Cheng, Y. Wang, J. Wong, Y. Yang, H. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015). https://doi.org/10.1039/c5ta03469h
- Z. Zhang, F. Xiao, S. Wang, Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 11215–11223 (2015). https://doi.org/10.1039/c5ta02331a
- X. Wang, J. Sun, J. Zhao, Z. Zhou, Q. Zhang, C.P. Wong, Y. Yao, All-solid-state fiber-shaped asymmetric supercapacitors with ultrahigh energy density based on porous vanadium nitride nanowires and ultrathin Ni(OH)2 nanosheet wrapped NiCo2O4 nanowires arrays electrode. J. Phys. Chem. C 123, 985–993 (2019). https://doi.org/10.1021/acs.jpcc.8b05862
- R.O. Yathisha, Y. Arthoba Nayaka, Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: Doping effect of Zn. J. Mater. Sci. 53, 678–691 (2018). https://doi.org/10.1007/s10853-017-1496-5
- Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016). https://doi.org/10.1016/j.nanoen.2015.12.030
- M. Huang, Y. Zhang, F. Li, Z.A. Wang et al., Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors. Sci. Rep. 4, 4518 (2014). https://doi.org/10.1038/srep04518
- T. Wen, X.L. Wu, S. Zhang, X. Wang, A.W. Xu, Core–shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries. Chem. Asian J. 10, 595–601 (2015). https://doi.org/10.1002/asia.201403295
- A.K. Jyoti, G.D. Srivastava, Varma, highly selective and efficient room temperature NO2 gas sensors based on Zn-doped CuO nanostructure-rGo hybrid. J. Mater. Sci. Mater. E 29, 10640 (2018). https://doi.org/10.1007/s10854-018-9128-7
- N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.Q. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016). https://doi.org/10.1002/aenm.201501458
- J. Yu, W. Lu, J.P. Smith, K.S. Booksh, L. Meng et al., A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 7, 1600976 (2017). https://doi.org/10.1002/aenm.201600976
- Z. Pan, J. Zhong, Q. Zhang, J. Yang, Y. Qiu et al., Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy density. Adv. Energy Mater. 8, 1702946 (2018). https://doi.org/10.1002/aenm.201702946
- L. Li, Z. Lou, D. Chen, W. Han, G. Shen, Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated photosensing system. Adv. Mater. Technol. 3, 1800115 (2018). https://doi.org/10.1002/admt.201800115
- B. Patil, S. Ahn, S. Yu, H. Song, Y. Jeong, J.H. Kim, H. Ahn, Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 134, 366–375 (2018). https://doi.org/10.1016/j.carbon.2018.03.080
- Z. Yu, J. Moore, J. Calderon, L. Zhai, J. Thomas, Coil-type asymmetric supercapacitor electrical cables. Small 11, 5289–5295 (2015). https://doi.org/10.1002/smll.201501802
- Z. Yu, J. Thomas, Energy storing electrical cables: Integrating energy storage and electrical conduction. Adv. Mater. 26, 4279–4285 (2014). https://doi.org/10.1002/adma.201400440
- H. Yuan, G. Wang, Y. Zhao, Y. Liu, Y. Wu, Y. Zhang, A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 13, 1686–1692 (2020). https://doi.org/10.1007/s12274-020-2793-x
- T.S. Le, T.K. Truong, V.N. Huynh, J. Bae, D. Suh, Synergetic design of enlarged surface area and pseudo-capacitance for fiber-shaped supercapacitor yarn. Nano Energy 67, 104198 (2020). https://doi.org/10.1016/j.nanoen.2019.104198
- A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni et al., Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped Supercapacitors. ACS Appl. Mater. Interfaces 9, 28386 (2017). https://doi.org/10.1021/acsami.7b06311
- P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31, 1806005 (2019). https://doi.org/10.1002/adma.201806005
- J. Guoa, Q. Zhang, J. Sun, C. Li, J. Zhao et al., Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. J. Power Sources 382, 122–127 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.034
- Q. Zhang, J. Sun, Z. Pan, J. Zhang, J. Zhao et al., Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39, 219–228 (2017). https://doi.org/10.1016/j.nanoen.2017.06.052
- Z. Wang, J. Cheng, J. Zhou, J. Zhang, H. Huang et al., All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 50, 106–117 (2018). https://doi.org/10.1016/j.nanoen.2018.05.029
- W. Teng, Q. Zhou, X. Wang, H. Che, P. Hu, H. Li, J. Wang, Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor. Chem. Eng. J. 390, 124569 (2020). https://doi.org/10.1016/j.cej.2020.124569
- J. Zhao, L. Li, Y. Zhang, C. Li, Q. Zhang et al., Novel coaxial fiber-shaped sensing system integrated with an asymmetric supercapacitor and a humidity sensor. Energy Storage Mater. 15, 315–323 (2018). https://doi.org/10.1016/j.ensm.2018.06.007
References
A.M. Zamarayeva, A.E. Ostfeld, M. Wang, J.K. Duey, I. Deckman et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3, e1602051 (2017). https://doi.org/10.1126/sciadv.1602051
C. Choi, K.M. Kim, K.J. Kim, X. Lepró, G.M. Spinks, R.H. Baughman, S.J. Kim, Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 7, 13811 (2016). https://doi.org/10.1038/ncomms13811
V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018). https://doi.org/10.1002/adma.201704449
D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
X. Wang, Q. Zhang, J. Sun, Z. Zhou, Q. Li et al., Facile synthesis of hierarchical porous manganese nickel cobalt sulfide nanotube arrays with enhanced electrochemical performance for ultrahigh energy density fiber-shaped asymmetric supercapacitors. J. Mater. Chem. A 6, 8030–8038 (2018). https://doi.org/10.1039/C8TA01440J
G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54, 4651–4656 (2015). https://doi.org/10.1002/anie.201411533
T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren et al., An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977–11980 (2012). https://doi.org/10.1002/anie.201207023
J. Bae, M.K. Song, Y.J. Park, J.M. Kim, M. Liu, Z.L. Wang, Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 50, 1683–1687 (2011). https://doi.org/10.1002/anie.201006062
X. Lu, Y. Bai, R. Wang, J. Sun, A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J. Mater. Chem. A 4, 18164–18173 (2016). https://doi.org/10.1039/C6TA08233E
X. Dong, Z. Guo, Y. Song, M. Hou, J. Wang, Y. Wang, Y. Xia, Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 24, 3405–3412 (2014). https://doi.org/10.1002/adfm.201304001
Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao et al., Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17, 2719–2726 (2017). https://doi.org/10.1021/acs.nanolett.7b00854
Y. Zhang, B. Wang, F. Liu, J. Cheng, X.W. Zhang, L. Zhang, Full synergistic contribution of electrodeposited three-dimensional NiCO2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27, 627–637 (2016). https://doi.org/10.1016/j.nanoen.2016.08.013
N. Liu, Y. Su, Z. Wang, Z. Wang, J. Xia et al., Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano 11, 7879–7888 (2017). https://doi.org/10.1021/acsnano.7b02344
P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu et al., The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 8, 14559 (2017). https://doi.org/10.1038/ncomms14559
J. Zhu, J. He, Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012). https://doi.org/10.1021/am3000165
S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4, 3889–3896 (2010). https://doi.org/10.1021/nn100681d
Z.H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12, 3557–3567 (2018). https://doi.org/10.1021/acsnano.8b00621
L. Han, P. Tang, L. Zhang, Hierarchical Co3O4@ppy@MnO2 core–shell–shell nanowire arrays for enhanced electrochemical energy storage. Nano Energy 7, 42–51 (2014). https://doi.org/10.1016/j.nanoen.2014.04.014
X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan et al., WO3-x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24, 938–944 (2012). https://doi.org/10.1002/adma.201104113
H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu, Y. Huang, Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8, 1148–1158 (2015). https://doi.org/10.1007/s12274-014-0595-8
L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu et al., Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017). https://doi.org/10.1039/C7EE01571B
Z. Pan, Y. Qiu, J. Yang, F. Ye, Y. Xu et al., Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated mnox nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016). https://doi.org/10.1016/j.nanoen.2016.05.053
D. Kong, C. Cheng, Y. Wang, J. Wong, Y. Yang, H. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015). https://doi.org/10.1039/c5ta03469h
Z. Zhang, F. Xiao, S. Wang, Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 11215–11223 (2015). https://doi.org/10.1039/c5ta02331a
X. Wang, J. Sun, J. Zhao, Z. Zhou, Q. Zhang, C.P. Wong, Y. Yao, All-solid-state fiber-shaped asymmetric supercapacitors with ultrahigh energy density based on porous vanadium nitride nanowires and ultrathin Ni(OH)2 nanosheet wrapped NiCo2O4 nanowires arrays electrode. J. Phys. Chem. C 123, 985–993 (2019). https://doi.org/10.1021/acs.jpcc.8b05862
R.O. Yathisha, Y. Arthoba Nayaka, Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: Doping effect of Zn. J. Mater. Sci. 53, 678–691 (2018). https://doi.org/10.1007/s10853-017-1496-5
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016). https://doi.org/10.1016/j.nanoen.2015.12.030
M. Huang, Y. Zhang, F. Li, Z.A. Wang et al., Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core-shell architectures for asymmetric supercapacitors. Sci. Rep. 4, 4518 (2014). https://doi.org/10.1038/srep04518
T. Wen, X.L. Wu, S. Zhang, X. Wang, A.W. Xu, Core–shell carbon-coated CuO nanocomposites: a highly stable electrode material for supercapacitors and lithium-ion batteries. Chem. Asian J. 10, 595–601 (2015). https://doi.org/10.1002/asia.201403295
A.K. Jyoti, G.D. Srivastava, Varma, highly selective and efficient room temperature NO2 gas sensors based on Zn-doped CuO nanostructure-rGo hybrid. J. Mater. Sci. Mater. E 29, 10640 (2018). https://doi.org/10.1007/s10854-018-9128-7
N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.Q. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1501458 (2016). https://doi.org/10.1002/aenm.201501458
J. Yu, W. Lu, J.P. Smith, K.S. Booksh, L. Meng et al., A high performance stretchable asymmetric fiber-shaped supercapacitor with a core-sheath helical structure. Adv. Energy Mater. 7, 1600976 (2017). https://doi.org/10.1002/aenm.201600976
Z. Pan, J. Zhong, Q. Zhang, J. Yang, Y. Qiu et al., Ultrafast all-solid-state coaxial asymmetric fiber supercapacitors with a high volumetric energy density. Adv. Energy Mater. 8, 1702946 (2018). https://doi.org/10.1002/aenm.201702946
L. Li, Z. Lou, D. Chen, W. Han, G. Shen, Hollow polypyrrole sleeve based coaxial fiber supercapacitors for wearable integrated photosensing system. Adv. Mater. Technol. 3, 1800115 (2018). https://doi.org/10.1002/admt.201800115
B. Patil, S. Ahn, S. Yu, H. Song, Y. Jeong, J.H. Kim, H. Ahn, Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 134, 366–375 (2018). https://doi.org/10.1016/j.carbon.2018.03.080
Z. Yu, J. Moore, J. Calderon, L. Zhai, J. Thomas, Coil-type asymmetric supercapacitor electrical cables. Small 11, 5289–5295 (2015). https://doi.org/10.1002/smll.201501802
Z. Yu, J. Thomas, Energy storing electrical cables: Integrating energy storage and electrical conduction. Adv. Mater. 26, 4279–4285 (2014). https://doi.org/10.1002/adma.201400440
H. Yuan, G. Wang, Y. Zhao, Y. Liu, Y. Wu, Y. Zhang, A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 13, 1686–1692 (2020). https://doi.org/10.1007/s12274-020-2793-x
T.S. Le, T.K. Truong, V.N. Huynh, J. Bae, D. Suh, Synergetic design of enlarged surface area and pseudo-capacitance for fiber-shaped supercapacitor yarn. Nano Energy 67, 104198 (2020). https://doi.org/10.1016/j.nanoen.2019.104198
A. Rafique, A. Massa, M. Fontana, S. Bianco, A. Chiodoni et al., Highly uniform anodically deposited film of MnO2 nanoflakes on carbon fibers for flexible and wearable fiber-shaped Supercapacitors. ACS Appl. Mater. Interfaces 9, 28386 (2017). https://doi.org/10.1021/acsami.7b06311
P. Zhang, Y. Li, G. Wang, F. Wang, S. Yang et al., Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv. Mater. 31, 1806005 (2019). https://doi.org/10.1002/adma.201806005
J. Guoa, Q. Zhang, J. Sun, C. Li, J. Zhao et al., Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. J. Power Sources 382, 122–127 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.034
Q. Zhang, J. Sun, Z. Pan, J. Zhang, J. Zhao et al., Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39, 219–228 (2017). https://doi.org/10.1016/j.nanoen.2017.06.052
Z. Wang, J. Cheng, J. Zhou, J. Zhang, H. Huang et al., All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety. Nano Energy 50, 106–117 (2018). https://doi.org/10.1016/j.nanoen.2018.05.029
W. Teng, Q. Zhou, X. Wang, H. Che, P. Hu, H. Li, J. Wang, Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor. Chem. Eng. J. 390, 124569 (2020). https://doi.org/10.1016/j.cej.2020.124569
J. Zhao, L. Li, Y. Zhang, C. Li, Q. Zhang et al., Novel coaxial fiber-shaped sensing system integrated with an asymmetric supercapacitor and a humidity sensor. Energy Storage Mater. 15, 315–323 (2018). https://doi.org/10.1016/j.ensm.2018.06.007