All Binder-Free Electrodes for High-Performance Wearable Aqueous Rechargeable Sodium-Ion Batteries
Corresponding Author: Yagang Yao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 101
Abstract
Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries (ARSIBs) for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes. However, it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials. In this work, nanocube-like KNiFe(CN)6 (KNHCF) and rugby ball-like NaTi2(PO4)3 (NTP) are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode (KNHCF@CNTF) and anode (NTP@CNTF), respectively. Taking advantage of their high conductivity, fast charge transport paths, and large accessible surface area, the as-fabricated binder-free electrodes display admirable electrochemical performance. Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF, a high-performance quasi-solid-state fiber-shaped ARSIB (FARSIB) is successfully assembled for the first time. Significantly, the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm−3 and impressive energy density of 39.32 mWh cm−3. More encouragingly, our FARSIB delivers superior mechanical flexibility with only 5.7% of initial capacity loss after bending at 90° for over 3000 cycles. Thus, this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.
Highlights:
1 Nanocube-like KNiFe(CN)6 and rugby ball-like NaTi2(PO4)3 are grown on carbon nanotube fibers via simple and mild methods.
2 A quasi-solid-state fiber-shaped aqueous rechargeable sodium-ion battery based on all binder-free electrodes is successfully assembled for the first time, delivering a high volumetric capacity of 34.21 mAh cm−3 and impressive volumetric energy density of 39.32 mWh cm−3.
3 The device delivers superior mechanical flexibility with only 5.7% of initial capacity loss after bending at 90° for over 3000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20°C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/C8EE02892C
- H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
- Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei et al., Recent progress on flexible and wearable supercapacitors. Small 13(45), 1701827 (2017). https://doi.org/10.1002/smll.201701827
- C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017). https://doi.org/10.1002/adma.201701972
- Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
- Y. Zhang, Y. Jiao, L. Lu, L. Wang, T. Chen, H. Peng, An ultraflexible silicon–oxygen battery fiber with high energy density. Angew. Chem. Int. Ed. 56(44), 13741–13746 (2017). https://doi.org/10.1002/anie.201707840
- Q. Zhang, W. Xu, J. Sun, Z. Pan, J. Zhao et al., Constructing ultrahigh-capacity zinc–nickel–cobalt oxide@Ni(OH)2 core–shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett. 17(12), 7552–7560 (2017). https://doi.org/10.1021/acs.nanolett.7b03507
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao et al., Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17(4), 2719–2726 (2017). https://doi.org/10.1021/acs.nanolett.7b00854
- Q. Zhang, L. Li, H. Li, L. Tang, B. He et al., Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 60, 267–274 (2019). https://doi.org/10.1016/j.nanoen.2019.03.049
- Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29(44), 1702698 (2017). https://doi.org/10.1002/adma.201702698
- M. Yao, R. Wang, Z. Zhao, Y. Liu, Z. Niu, J. Chen, A flexible all-in-one lithium-sulfur battery. ACS Nano 12(12), 12503–12511 (2018). https://doi.org/10.1021/acsnano.8b06936
- M. Li, J. Meng, Q. Li, M. Huang, X. Liu, K.A. Owusu, Z. Liu, L. Mai, Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn–Co batteries. Adv. Funct. Mater. 28(32), 1802016 (2018). https://doi.org/10.1002/adfm.201802016
- Y.-H. Zhu, X. Yang, D. Bao, X.-F. Bie, T. Sun et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4), 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010
- Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
- J. Xu, J. Chen, S. Zhou, C. Han, M. Xu, N. Zhao, C.-P. Wong, Sequentially-processed Na3V2(PO4)3 for cathode material of aprotic sodium ion battery. Nano Energy 50, 323–330 (2018). https://doi.org/10.1016/j.nanoen.2018.05.015
- X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
- M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29(48), 1700622 (2017). https://doi.org/10.1002/adma.201700622
- H. Xia, X. Zhu, J. Liu, Q. Liu, S. Lan et al., A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 9(1), 5100 (2018). https://doi.org/10.1038/s41467-018-07595-y
- H.-G. Wang, W. Li, D.-P. Liu, X.-L. Feng, J. Wang et al., Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv. Mater. 29(45), 1703012 (2017). https://doi.org/10.1002/adma.201703012
- J.-Y. Hwang, H.-L. Du, B.-N. Yun, M.-G. Jeong, J.-S. Kim, H. Kim, H.-G. Jung, Y.-K. Sun, Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 4(2), 494–501 (2019). https://doi.org/10.1021/acsenergylett.8b02510
- H. Long, W. Zeng, H. Wang, M. Qian, Y. Liang, Z. Wang, Self-assembled biomolecular 1d nanostructures for aqueous sodium-ion battery. Adv. Sci. 5(3), 1700634 (2018). https://doi.org/10.1002/advs.201700634
- Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li et al., High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014). https://doi.org/10.1016/j.nanoen.2014.02.010
- H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
- L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
- M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon et al., Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today (2019). https://doi.org/10.1016/j.mattod.2019.02.004
- X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang, Y. Xia, Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2(1), 1501038 (2016). https://doi.org/10.1126/sciadv.1501038
- T. Jin, Q. Han, L. Jiao, Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201806304
- L. Xue, Q. Zhang, X. Zhu, L. Gu, J. Yue et al., 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy 56, 463–472 (2019). https://doi.org/10.1016/j.nanoen.2018.11.085
- C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7(12), 1602391 (2017). https://doi.org/10.1002/aenm.201602391
- L. Xue, S.V. Savilov, V.V. Lunin, H. Xia, Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv. Funct. Mater. 28(7), 1705836 (2018). https://doi.org/10.1002/adfm.201705836
- Q. Zhang, Z. Zhou, Z. Pan, J. Sun, B. He et al., All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy-storage device. Adv. Sci. 5(12), 1801462 (2018). https://doi.org/10.1002/advs.201801462
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Methods 3(4), 1800220 (2019). https://doi.org/10.1002/smtd.201800220
- Z. Li, D. Young, K. Xiang, W.C. Carter, Y.-M. Chiang, Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013). https://doi.org/10.1002/aenm.201200598
- W. Ren, M. Qin, Z. Zhu, M. Yan, Q. Li, L. Zhang, D. Liu, L. Mai, Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett. 17(8), 4713–4718 (2017). https://doi.org/10.1021/acs.nanolett.7b01366
- P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian, L. Yang, G. Zou, H. Hou, X. Ji, Ultrafast sodium full batteries derived from xFe (x = Co, Ni, Mn) Prussian blue analogs. Adv. Mater. 31(3), 1806092 (2019). https://doi.org/10.1002/adma.201806092
- J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, H. Yang, Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8(17), 1702619 (2018). https://doi.org/10.1002/aenm.201702619
- M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell, R.A. Huggins, M.F. Toney, Y. Cui, Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014). https://doi.org/10.1038/ncomms4007
- P. Wei, Y. Liu, Z. Wang, Y. Huang, Y. Jin et al., Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl. Mater. Interfaces 10(32), 27039–27046 (2018). https://doi.org/10.1021/acsami.8b08415
- L. Wang, Z. Huang, B. Wang, G. Liu, M. Cheng et al., Purifying the phase of NaTi2(PO4)3 for enhanced Na+ storage properties. ACS Appl. Mater. Interfaces 11(11), 10663–10671 (2019). https://doi.org/10.1021/acsami.9b00116
- Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
- C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier, Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9(6), 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787
- Q. Hu, J.-Y. Liao, C.-T. Li, X.-D. He, X. Ding, C.-H. Chen, Synthesis of porous carbon-coated NaTi2(PO4)3 nanocubes with a high-yield and superior rate properties. J. Mater. Chem. A 6(47), 24503–24508 (2018). https://doi.org/10.1039/C8TA10182E
- B. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3–C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015). https://doi.org/10.1039/C5NR06505D
- F.-C. Zhou, Y.-H. Sun, J.-Q. Li, J.-M. Nan, K1−xMn1+x/2[Fe(CN)6]·yH2O Prussian blue analogues as an anode material for lithium-ion batteries. Appl. Surf. Sci. 444, 650–660 (2018). https://doi.org/10.1016/j.apsusc.2018.03.102
- Y. Zhang, Y. Wang, L. Wang, C.-M. Lo, Y. Zhao, Y. Jiao, G. Zheng, H. Peng, A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 4(23), 9002–9008 (2016). https://doi.org/10.1039/C6TA03477B
- Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2(8), 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
- C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
- B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
- Y. Li, Z. Huang, P.K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, Y. Huang, V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60, 752–759 (2019). https://doi.org/10.1016/j.nanoen.2019.04.009
- M.S. Chae, J.W. Heo, H.H. Kwak, H. Lee, S.-T. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.083
- G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, J. Zhu, B. Ding, Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014). https://doi.org/10.1002/ente.201402045
- G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54(15), 4651–4656 (2015). https://doi.org/10.1002/anie.201411533
- Y. Huang, W.S. Ip, Y.Y. Lau, J. Sun, J. Zeng et al., Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 11(9), 8953–8961 (2017). https://doi.org/10.1021/acsnano.7b03322
- X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014). https://doi.org/10.1002/anie.201307581
References
F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20°C. Energy Environ. Sci. 12(2), 706–715 (2019). https://doi.org/10.1039/C8EE02892C
H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/C7EE03232C
Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei et al., Recent progress on flexible and wearable supercapacitors. Small 13(45), 1701827 (2017). https://doi.org/10.1002/smll.201701827
C. Yang, X. Ji, X. Fan, T. Gao, L. Suo et al., Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29(44), 1701972 (2017). https://doi.org/10.1002/adma.201701972
Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
Y. Zhang, Y. Jiao, L. Lu, L. Wang, T. Chen, H. Peng, An ultraflexible silicon–oxygen battery fiber with high energy density. Angew. Chem. Int. Ed. 56(44), 13741–13746 (2017). https://doi.org/10.1002/anie.201707840
Q. Zhang, W. Xu, J. Sun, Z. Pan, J. Zhao et al., Constructing ultrahigh-capacity zinc–nickel–cobalt oxide@Ni(OH)2 core–shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett. 17(12), 7552–7560 (2017). https://doi.org/10.1021/acs.nanolett.7b03507
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao et al., Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17(4), 2719–2726 (2017). https://doi.org/10.1021/acs.nanolett.7b00854
Q. Zhang, L. Li, H. Li, L. Tang, B. He et al., Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy 60, 267–274 (2019). https://doi.org/10.1016/j.nanoen.2019.03.049
Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29(44), 1702698 (2017). https://doi.org/10.1002/adma.201702698
M. Yao, R. Wang, Z. Zhao, Y. Liu, Z. Niu, J. Chen, A flexible all-in-one lithium-sulfur battery. ACS Nano 12(12), 12503–12511 (2018). https://doi.org/10.1021/acsnano.8b06936
M. Li, J. Meng, Q. Li, M. Huang, X. Liu, K.A. Owusu, Z. Liu, L. Mai, Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn–Co batteries. Adv. Funct. Mater. 28(32), 1802016 (2018). https://doi.org/10.1002/adfm.201802016
Y.-H. Zhu, X. Yang, D. Bao, X.-F. Bie, T. Sun et al., High-energy-density flexible potassium-ion battery based on patterned electrodes. Joule 2(4), 736–746 (2018). https://doi.org/10.1016/j.joule.2018.01.010
Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
J. Xu, J. Chen, S. Zhou, C. Han, M. Xu, N. Zhao, C.-P. Wong, Sequentially-processed Na3V2(PO4)3 for cathode material of aprotic sodium ion battery. Nano Energy 50, 323–330 (2018). https://doi.org/10.1016/j.nanoen.2018.05.015
X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015). https://doi.org/10.1002/adma.201501527
M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29(48), 1700622 (2017). https://doi.org/10.1002/adma.201700622
H. Xia, X. Zhu, J. Liu, Q. Liu, S. Lan et al., A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 9(1), 5100 (2018). https://doi.org/10.1038/s41467-018-07595-y
H.-G. Wang, W. Li, D.-P. Liu, X.-L. Feng, J. Wang et al., Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv. Mater. 29(45), 1703012 (2017). https://doi.org/10.1002/adma.201703012
J.-Y. Hwang, H.-L. Du, B.-N. Yun, M.-G. Jeong, J.-S. Kim, H. Kim, H.-G. Jung, Y.-K. Sun, Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 4(2), 494–501 (2019). https://doi.org/10.1021/acsenergylett.8b02510
H. Long, W. Zeng, H. Wang, M. Qian, Y. Liang, Z. Wang, Self-assembled biomolecular 1d nanostructures for aqueous sodium-ion battery. Adv. Sci. 5(3), 1700634 (2018). https://doi.org/10.1002/advs.201700634
Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li et al., High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014). https://doi.org/10.1016/j.nanoen.2014.02.010
H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
M.H. Lee, S.J. Kim, D. Chang, J. Kim, S. Moon et al., Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today (2019). https://doi.org/10.1016/j.mattod.2019.02.004
X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang, Y. Xia, Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2(1), 1501038 (2016). https://doi.org/10.1126/sciadv.1501038
T. Jin, Q. Han, L. Jiao, Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201806304
L. Xue, Q. Zhang, X. Zhu, L. Gu, J. Yue et al., 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy 56, 463–472 (2019). https://doi.org/10.1016/j.nanoen.2018.11.085
C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 7(12), 1602391 (2017). https://doi.org/10.1002/aenm.201602391
L. Xue, S.V. Savilov, V.V. Lunin, H. Xia, Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv. Funct. Mater. 28(7), 1705836 (2018). https://doi.org/10.1002/adfm.201705836
Q. Zhang, Z. Zhou, Z. Pan, J. Sun, B. He et al., All-metal-organic framework-derived battery materials on carbon nanotube fibers for wearable energy-storage device. Adv. Sci. 5(12), 1801462 (2018). https://doi.org/10.1002/advs.201801462
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
K. Nakamoto, R. Sakamoto, Y. Sawada, M. Ito, S. Okada, Over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Methods 3(4), 1800220 (2019). https://doi.org/10.1002/smtd.201800220
Z. Li, D. Young, K. Xiang, W.C. Carter, Y.-M. Chiang, Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013). https://doi.org/10.1002/aenm.201200598
W. Ren, M. Qin, Z. Zhu, M. Yan, Q. Li, L. Zhang, D. Liu, L. Mai, Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett. 17(8), 4713–4718 (2017). https://doi.org/10.1021/acs.nanolett.7b01366
P. Ge, S. Li, H. Shuai, W. Xu, Y. Tian, L. Yang, G. Zou, H. Hou, X. Ji, Ultrafast sodium full batteries derived from xFe (x = Co, Ni, Mn) Prussian blue analogs. Adv. Mater. 31(3), 1806092 (2019). https://doi.org/10.1002/adma.201806092
J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, H. Yang, Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8(17), 1702619 (2018). https://doi.org/10.1002/aenm.201702619
M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell, R.A. Huggins, M.F. Toney, Y. Cui, Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014). https://doi.org/10.1038/ncomms4007
P. Wei, Y. Liu, Z. Wang, Y. Huang, Y. Jin et al., Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl. Mater. Interfaces 10(32), 27039–27046 (2018). https://doi.org/10.1021/acsami.8b08415
L. Wang, Z. Huang, B. Wang, G. Liu, M. Cheng et al., Purifying the phase of NaTi2(PO4)3 for enhanced Na+ storage properties. ACS Appl. Mater. Interfaces 11(11), 10663–10671 (2019). https://doi.org/10.1021/acsami.9b00116
Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier, Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9(6), 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787
Q. Hu, J.-Y. Liao, C.-T. Li, X.-D. He, X. Ding, C.-H. Chen, Synthesis of porous carbon-coated NaTi2(PO4)3 nanocubes with a high-yield and superior rate properties. J. Mater. Chem. A 6(47), 24503–24508 (2018). https://doi.org/10.1039/C8TA10182E
B. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3–C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015). https://doi.org/10.1039/C5NR06505D
F.-C. Zhou, Y.-H. Sun, J.-Q. Li, J.-M. Nan, K1−xMn1+x/2[Fe(CN)6]·yH2O Prussian blue analogues as an anode material for lithium-ion batteries. Appl. Surf. Sci. 444, 650–660 (2018). https://doi.org/10.1016/j.apsusc.2018.03.102
Y. Zhang, Y. Wang, L. Wang, C.-M. Lo, Y. Zhao, Y. Jiao, G. Zheng, H. Peng, A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 4(23), 9002–9008 (2016). https://doi.org/10.1039/C6TA03477B
Y. Song, T. Liu, B. Yao, M. Li, T. Kou et al., Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2(8), 1752–1759 (2017). https://doi.org/10.1021/acsenergylett.7b00405
C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
Y. Li, Z. Huang, P.K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, Y. Huang, V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60, 752–759 (2019). https://doi.org/10.1016/j.nanoen.2019.04.009
M.S. Chae, J.W. Heo, H.H. Kwak, H. Lee, S.-T. Hong, Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J. Power Sources 337, 204–211 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.083
G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, J. Zhu, B. Ding, Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014). https://doi.org/10.1002/ente.201402045
G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54(15), 4651–4656 (2015). https://doi.org/10.1002/anie.201411533
Y. Huang, W.S. Ip, Y.Y. Lau, J. Sun, J. Zeng et al., Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 11(9), 8953–8961 (2017). https://doi.org/10.1021/acsnano.7b03322
X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014). https://doi.org/10.1002/anie.201307581