Monolayer MoS2 Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries
Corresponding Author: Tianshou Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 80
Abstract
High theoretical capacity and unique layered structures make MoS2 a promising lithium-ion battery anode material. However, the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS2 lead to unacceptable ion transport capability. Here, we propose in-situ construction of interlayer electrostatic repulsion caused by Co2+ substituting Mo4+ between MoS2 layers, which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS2, thus establishing isotropic ion transport paths. Simultaneously, the doped Co atoms change the electronic structure of monolayer MoS2, thus improving its intrinsic conductivity. Importantly, the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport. Hence, the Co-doped monolayer MoS2 shows ultrafast lithium ion transport capability in half/full cells. This work presents a novel route for the preparation of monolayer MoS2 and demonstrates its potential for application in fast-charging lithium-ion batteries.
Highlights:
1 In-situ construction of electrostatic repulsion between MoS2 interlayers is first proposed to successfully prepare Co-doped monolayer MoS2 under high vapor pressure.
2 The doped Co atoms radically decrease bandgap and lithium ion diffusion energy barrier of monolayer MoS2 and can be transformed into ultrasmall Co nanoparticles (~2 nm) to induce strong surface-capacitance effect during conversion reaction.
3 The Co doped monolayer MoS2 shows ultrafast ion transport capability along with ultrahigh capacity and outstanding cycling stability as lithium-ion-battery anodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
- G. Li, Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Adv. Energy Mater. 11, 2002891 (2021). https://doi.org/10.1002/aenm.202002891
- Y. Mu, M. Han, J. Li, J. Liang, J. Yu, Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon 173, 477–484 (2021). https://doi.org/10.1016/j.carbon.2020.11.027
- J. Li, Z. Li, M. Han, Ge Nanocrystals tightly and uniformly distributed in carbon matrix through nitrogen and oxygen bridging bonds for fast-charging high-energy-density lithium-ion batteries. Mater. Adv. 2, 2068–2074 (2021). https://doi.org/10.1039/D1MA00021G
- J. Ru, T. He, B. Chen, Y. Feng, L. Zu et al., Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew. Chem. Int. Ed. 59, 14729–14735 (2020). https://doi.org/10.1002/anie.202005840
- C. Wu, J.Z. Ou, F. He, J. Ding, W. Luo et al., Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 65, 104061 (2019). https://doi.org/10.1016/j.nanoen.2019.104061
- Z. Li, F. Yuan, M. Han, J. Yu, Atomic-scale laminated structure of O-doped WS2 and carbon layers with highly enhanced ion transfer for fast-charging lithium-ion batteries. Small 18, 2202495 (2022). https://doi.org/10.1002/smll.202202495
- Y. Liu, X. He, D. Hanlon, A. Harvey, U. Khan et al., Electrical, mechanical, and capacity percolation leads to high-performance MoS2/nanotube composite lithium ion battery electrodes. ACS Nano 10, 5980–5990 (2016). https://doi.org/10.1021/acsnano.6b01505
- M. Han, Z. Lin, J, Yu, Ultrathin MoS2 nanosheets homogenously embedded in a N, O-codoped carbon matrix for high-performance lithium and sodium storage. J. Mater. Chem. A 7, 4804–4812 (2019). https://doi.org/10.1039/C8TA10880C
- M. Han, J. Li, J. Yu, Microspheres integrating Ti2O3 nanocrystals, carbon matrix, and vertical graphene enable fast ion transport for fast-charging lithium-ion batteries. J. Energy Stor. 43, 103179 (2021). https://doi.org/10.1016/j.est.2021.103179
- G. Zhang, X. Li, D. Wei, H. Yu, J. Ye et al., Synergistic engineering of structural and electronic regulation of In2Se3 for ultrastable Li-ion battery. Chem. Eng. J. 453, 139841 (2023). https://doi.org/10.1016/j.cej.2022.139841
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- M. Han, Y. Mu, F. Yuan, J. Liang, T. Jiang et al., Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J. Mater. Chem. A 8, 3822–3833 (2020). https://doi.org/10.1039/C9TA12554J
- C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25, 4932–4937 (2013). https://doi.org/10.1002/adma.201301870
- Y. Jiao, A. Mukhopadhyay, Y. Ma, L. Yang, A.M. Hafez et al., Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater. 8, 1702779 (2018). https://doi.org/10.1002/aenm.201702779
- J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt et al., Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1501937 (2016). https://doi.org/10.1002/aenm.201501937
- H. Liu, D. Su, R. Zhou, B. Sun, G. Wang et al., Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2, 970–975 (2012). https://doi.org/10.1002/aenm.201200087
- M. Han, J. Chen, Y. Cai, L. Wei, T. Zhao, Magnetic-atom strategy enables unilamellar MoS2-C interoverlapped superstructure with ultrahigh capacity and ultrafast ion transfer capability in Li/Na/K-ion batteries. Chem. Eng. J. 454, 140137 (2023). https://doi.org/10.1016/j.cej.2022.140137
- B. Zhao, Z. Wang, Y. Gao, L. Chen, M. Lu et al., Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl. Surf. Sci. 390, 209–215 (2016). https://doi.org/10.1016/j.apsusc.2016.08.078
- S.H. Yu, M.J. Zachman, K. Kang, H. Gao, X. Huang et al., Atomic-scale visualization of electrochemical lithiation processes in monolayer MoS2 by cryogenic electron microscopy. Adv. Energy Mater. 9, 1902773 (2019). https://doi.org/10.1002/aenm.201902773
- A. Aljarb, J. Fu, C. Hsu, C. Chuu, Y. Wan et al., Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020). https://doi.org/10.1038/s41563-020-0795-4
- J. Tao, J. Chai, X. Lu, L.M. Wong, T.I. Wong et al., Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497–2503 (2015). https://doi.org/10.1039/C4NR06411A
- Y. Wang, S. Gali, A. Slassi, D. Beljonne, P. Samorì, Collective dipole-dominated doping of monolayer MoS2: orientation and magnitude control via the supramolecular approach. Adv. Funct. Mater. 30, 2002846 (2020). https://doi.org/10.1002/adfm.202002846
- J. Coleman, M. Lotya, A. O’Neill, S. Bergin, P. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). https://doi.org/10.1126/science.1194975
- G. Liu, A.W. Robertson, M.J. Li, W.C. Kuo, M.T. Darby et al., MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017). https://doi.org/10.1038/nchem.2740
- Z.T. Shi, W. Kang, J. Xu, Y.W. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
- L. Wang, H. Zhang, Y. Wang, C. Qian, Q. Dong et al., Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks. J. Mater. Chem. A 8, 15002 (2020). https://doi.org/10.1039/D0TA04916F
- Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma et al., CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 1, 2202 (2013). https://doi.org/10.1039/C2TA00598K
- C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 126, 2184 (2014). https://doi.org/10.1002/ange.201308354
- X. Zhang, W. Weng, H. Gu, Z. Hong, W. Xiao et al., Versatile preparation of mesoporous single-layered transition-metal sulfide/carbon composites for enhanced sodium storage. Adv. Mater. 34, 2104427 (2022). https://doi.org/10.1002/adma.202104427
- B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu et al., Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 6, 11147 (2018). https://doi.org/10.1039/C8TA03166E
- M. Han, J. Yu, Pressure-induced vapor synthesis, formation mechanism, and thermal stability of well-dispersed boron nitride spheres. Diam. Relat. Mater. 87, 10–17 (2018). https://doi.org/10.1016/j.diamond.2018.04.029
- J. Sun, Z. Cheng, Q. Huang, H. He, J.S. Francisco et al., Universal principle for large-scale production of a high-quality two-dimensional monolayer via positive charge-driven exfoliation. J. Phys. Chem. Lett. 13, 6597 (2022). https://doi.org/10.1021/acs.jpclett.2c01403
- B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi et al., Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage. Adv. Energy Mater. 8, 1702909 (2018). https://doi.org/10.1002/aenm.201702909
- Y. Yu, S. Huang, Y. Li, S.N. Steinmann, W. Yang et al., Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014). https://doi.org/10.1021/nl403620g
- Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang et al., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013). https://doi.org/10.1038/srep01866
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone et al., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010). https://doi.org/10.1021/nn1003937
- M. Han, Y. Mu, Y. Cai, L. Wei, L. Zeng et al., Atomic-interface strategy and N, O Co-doping enable WS2 electrodes with ultrafast ion transport rate in sodium-ion batteries. J. Mater. Chem. A 10(38), 20283–20293 (2022). https://doi.org/10.1039/D2TA04984H
- H. Luo, M. Chen, J. Cao, M. Zhang, S. Tan et al., Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 12, 113 (2020). https://doi.org/10.1007/s40820-020-00454-w
- S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen et al., Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed. 60, 20286–20293 (2021). https://doi.org/10.1002/ange.202108317
- Z. Hui, Y. Dong, P. Jiang, H. Miao, J. Zhang, In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheet for enhanced photocatalytic H2 production from water. J. Mater. Chem. A 3, 7375–7381 (2015). https://doi.org/10.1039/C5TA00402K
- X. Dai, K. Du, Z. Li, M. Liu, Y. Ma et al., Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 7, 27242–27253 (2015). https://doi.org/10.1021/acsami.5b08420
- C. Dong, L. Guo, H. Li, B. Zhang, X. Gao et al., Rational fabrication of CoS2/Co4S3@ N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Stor. Mater. 25, 679–686 (2020). https://doi.org/10.1016/j.ensm.2019.09.019
- K. Lv, W. Suo, M. Shao, Y. Zhu, X. Wang et al., Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high faradaic efficiency. Nano Energy 63, 103834 (2019). https://doi.org/10.1016/j.nanoen.2019.06.030
- T. He, J. Feng, J. Ru, Y. Feng, R.J. Yang et al., Constructing heterointerface of metal atomic layer and amorphous anode material for high-capacity and fast lithium storage. ACS Nano 13, 830–838 (2019). https://doi.org/10.1021/acsnano.8b08344
- J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma et al., Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13, 6136–6143 (2013). https://doi.org/10.1021/nl403461n
- M. Han, Y. Mu, F. Yuan, X. Bai, J. Yu, Vapor pressure-assisted synthesis of chemically bonded TiO2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. J. Power Sources 465, 228206 (2020). https://doi.org/10.1016/j.jpowsour.2020.228206
- Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu et al., Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83 (2021). https://doi.org/10.1038/s41563-020-0756-y
- A. Santoni, F. Rondino, C. Malerba, M. Valentini, A. Mittiga, Electronic structure of Ar+ ion-sputtered thin-film MoS2: A XPS and IPES study. Appl. Surf. Sci. 392, 795–800 (2017). https://doi.org/10.1016/j.apsusc.2016.09.007
- B. Hou, Y. Wang, J. Guo, Y. Zhang, Q. Ning et al., A scalable strategy to develop advanced anode for sodium-ion batteries: Commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance. ACS Appl. Mater. Interfaces 10, 3581–3589 (2018). https://doi.org/10.1021/acsami.7b16580
- H. Nguyen, R.J. Clement, Rechargeable batteries from the perspective of the electron spin. ACS Energy Lett. 5, 3848–3859 (2020). https://doi.org/10.1021/acsenergylett.0c02074
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
- J. Paier, C. Penschke, J. Sauer, Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 113, 3949 (2013). https://doi.org/10.1021/cr3004949
References
H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6
G. Li, Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Adv. Energy Mater. 11, 2002891 (2021). https://doi.org/10.1002/aenm.202002891
Y. Mu, M. Han, J. Li, J. Liang, J. Yu, Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon 173, 477–484 (2021). https://doi.org/10.1016/j.carbon.2020.11.027
J. Li, Z. Li, M. Han, Ge Nanocrystals tightly and uniformly distributed in carbon matrix through nitrogen and oxygen bridging bonds for fast-charging high-energy-density lithium-ion batteries. Mater. Adv. 2, 2068–2074 (2021). https://doi.org/10.1039/D1MA00021G
J. Ru, T. He, B. Chen, Y. Feng, L. Zu et al., Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew. Chem. Int. Ed. 59, 14729–14735 (2020). https://doi.org/10.1002/anie.202005840
C. Wu, J.Z. Ou, F. He, J. Ding, W. Luo et al., Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 65, 104061 (2019). https://doi.org/10.1016/j.nanoen.2019.104061
Z. Li, F. Yuan, M. Han, J. Yu, Atomic-scale laminated structure of O-doped WS2 and carbon layers with highly enhanced ion transfer for fast-charging lithium-ion batteries. Small 18, 2202495 (2022). https://doi.org/10.1002/smll.202202495
Y. Liu, X. He, D. Hanlon, A. Harvey, U. Khan et al., Electrical, mechanical, and capacity percolation leads to high-performance MoS2/nanotube composite lithium ion battery electrodes. ACS Nano 10, 5980–5990 (2016). https://doi.org/10.1021/acsnano.6b01505
M. Han, Z. Lin, J, Yu, Ultrathin MoS2 nanosheets homogenously embedded in a N, O-codoped carbon matrix for high-performance lithium and sodium storage. J. Mater. Chem. A 7, 4804–4812 (2019). https://doi.org/10.1039/C8TA10880C
M. Han, J. Li, J. Yu, Microspheres integrating Ti2O3 nanocrystals, carbon matrix, and vertical graphene enable fast ion transport for fast-charging lithium-ion batteries. J. Energy Stor. 43, 103179 (2021). https://doi.org/10.1016/j.est.2021.103179
G. Zhang, X. Li, D. Wei, H. Yu, J. Ye et al., Synergistic engineering of structural and electronic regulation of In2Se3 for ultrastable Li-ion battery. Chem. Eng. J. 453, 139841 (2023). https://doi.org/10.1016/j.cej.2022.139841
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
M. Han, Y. Mu, F. Yuan, J. Liang, T. Jiang et al., Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J. Mater. Chem. A 8, 3822–3833 (2020). https://doi.org/10.1039/C9TA12554J
C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 25, 4932–4937 (2013). https://doi.org/10.1002/adma.201301870
Y. Jiao, A. Mukhopadhyay, Y. Ma, L. Yang, A.M. Hafez et al., Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater. 8, 1702779 (2018). https://doi.org/10.1002/aenm.201702779
J.B. Cook, H.S. Kim, Y. Yan, J.S. Ko, S. Robbennolt et al., Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv. Energy Mater. 6, 1501937 (2016). https://doi.org/10.1002/aenm.201501937
H. Liu, D. Su, R. Zhou, B. Sun, G. Wang et al., Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2, 970–975 (2012). https://doi.org/10.1002/aenm.201200087
M. Han, J. Chen, Y. Cai, L. Wei, T. Zhao, Magnetic-atom strategy enables unilamellar MoS2-C interoverlapped superstructure with ultrahigh capacity and ultrafast ion transfer capability in Li/Na/K-ion batteries. Chem. Eng. J. 454, 140137 (2023). https://doi.org/10.1016/j.cej.2022.140137
B. Zhao, Z. Wang, Y. Gao, L. Chen, M. Lu et al., Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials. Appl. Surf. Sci. 390, 209–215 (2016). https://doi.org/10.1016/j.apsusc.2016.08.078
S.H. Yu, M.J. Zachman, K. Kang, H. Gao, X. Huang et al., Atomic-scale visualization of electrochemical lithiation processes in monolayer MoS2 by cryogenic electron microscopy. Adv. Energy Mater. 9, 1902773 (2019). https://doi.org/10.1002/aenm.201902773
A. Aljarb, J. Fu, C. Hsu, C. Chuu, Y. Wan et al., Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020). https://doi.org/10.1038/s41563-020-0795-4
J. Tao, J. Chai, X. Lu, L.M. Wong, T.I. Wong et al., Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497–2503 (2015). https://doi.org/10.1039/C4NR06411A
Y. Wang, S. Gali, A. Slassi, D. Beljonne, P. Samorì, Collective dipole-dominated doping of monolayer MoS2: orientation and magnitude control via the supramolecular approach. Adv. Funct. Mater. 30, 2002846 (2020). https://doi.org/10.1002/adfm.202002846
J. Coleman, M. Lotya, A. O’Neill, S. Bergin, P. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011). https://doi.org/10.1126/science.1194975
G. Liu, A.W. Robertson, M.J. Li, W.C. Kuo, M.T. Darby et al., MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017). https://doi.org/10.1038/nchem.2740
Z.T. Shi, W. Kang, J. Xu, Y.W. Sun, M. Jiang et al., Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22, 27 (2016). https://doi.org/10.1016/j.nanoen.2016.02.009
L. Wang, H. Zhang, Y. Wang, C. Qian, Q. Dong et al., Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks. J. Mater. Chem. A 8, 15002 (2020). https://doi.org/10.1039/D0TA04916F
Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma et al., CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 1, 2202 (2013). https://doi.org/10.1039/C2TA00598K
C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 126, 2184 (2014). https://doi.org/10.1002/ange.201308354
X. Zhang, W. Weng, H. Gu, Z. Hong, W. Xiao et al., Versatile preparation of mesoporous single-layered transition-metal sulfide/carbon composites for enhanced sodium storage. Adv. Mater. 34, 2104427 (2022). https://doi.org/10.1002/adma.202104427
B. Jia, Y. Zhao, M. Qin, W. Wang, Z. Liu et al., Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 6, 11147 (2018). https://doi.org/10.1039/C8TA03166E
M. Han, J. Yu, Pressure-induced vapor synthesis, formation mechanism, and thermal stability of well-dispersed boron nitride spheres. Diam. Relat. Mater. 87, 10–17 (2018). https://doi.org/10.1016/j.diamond.2018.04.029
J. Sun, Z. Cheng, Q. Huang, H. He, J.S. Francisco et al., Universal principle for large-scale production of a high-quality two-dimensional monolayer via positive charge-driven exfoliation. J. Phys. Chem. Lett. 13, 6597 (2022). https://doi.org/10.1021/acs.jpclett.2c01403
B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi et al., Porous MoS2/carbon spheres anchored on 3D interconnected multiwall carbon nanotube networks for ultrafast Na storage. Adv. Energy Mater. 8, 1702909 (2018). https://doi.org/10.1002/aenm.201702909
Y. Yu, S. Huang, Y. Li, S.N. Steinmann, W. Yang et al., Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014). https://doi.org/10.1021/nl403620g
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang et al., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013). https://doi.org/10.1038/srep01866
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone et al., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010). https://doi.org/10.1021/nn1003937
M. Han, Y. Mu, Y. Cai, L. Wei, L. Zeng et al., Atomic-interface strategy and N, O Co-doping enable WS2 electrodes with ultrafast ion transport rate in sodium-ion batteries. J. Mater. Chem. A 10(38), 20283–20293 (2022). https://doi.org/10.1039/D2TA04984H
H. Luo, M. Chen, J. Cao, M. Zhang, S. Tan et al., Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 12, 113 (2020). https://doi.org/10.1007/s40820-020-00454-w
S. Li, Y. Liu, X. Zhao, K. Cui, Q. Shen et al., Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage. Angew. Chem. Int. Ed. 60, 20286–20293 (2021). https://doi.org/10.1002/ange.202108317
Z. Hui, Y. Dong, P. Jiang, H. Miao, J. Zhang, In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheet for enhanced photocatalytic H2 production from water. J. Mater. Chem. A 3, 7375–7381 (2015). https://doi.org/10.1039/C5TA00402K
X. Dai, K. Du, Z. Li, M. Liu, Y. Ma et al., Co-doped MoS2 nanosheets with the dominant CoMoS phase coated on carbon as an excellent electrocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 7, 27242–27253 (2015). https://doi.org/10.1021/acsami.5b08420
C. Dong, L. Guo, H. Li, B. Zhang, X. Gao et al., Rational fabrication of CoS2/Co4S3@ N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Stor. Mater. 25, 679–686 (2020). https://doi.org/10.1016/j.ensm.2019.09.019
K. Lv, W. Suo, M. Shao, Y. Zhu, X. Wang et al., Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high faradaic efficiency. Nano Energy 63, 103834 (2019). https://doi.org/10.1016/j.nanoen.2019.06.030
T. He, J. Feng, J. Ru, Y. Feng, R.J. Yang et al., Constructing heterointerface of metal atomic layer and amorphous anode material for high-capacity and fast lithium storage. ACS Nano 13, 830–838 (2019). https://doi.org/10.1021/acsnano.8b08344
J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma et al., Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13, 6136–6143 (2013). https://doi.org/10.1021/nl403461n
M. Han, Y. Mu, F. Yuan, X. Bai, J. Yu, Vapor pressure-assisted synthesis of chemically bonded TiO2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. J. Power Sources 465, 228206 (2020). https://doi.org/10.1016/j.jpowsour.2020.228206
Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu et al., Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83 (2021). https://doi.org/10.1038/s41563-020-0756-y
A. Santoni, F. Rondino, C. Malerba, M. Valentini, A. Mittiga, Electronic structure of Ar+ ion-sputtered thin-film MoS2: A XPS and IPES study. Appl. Surf. Sci. 392, 795–800 (2017). https://doi.org/10.1016/j.apsusc.2016.09.007
B. Hou, Y. Wang, J. Guo, Y. Zhang, Q. Ning et al., A scalable strategy to develop advanced anode for sodium-ion batteries: Commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance. ACS Appl. Mater. Interfaces 10, 3581–3589 (2018). https://doi.org/10.1021/acsami.7b16580
H. Nguyen, R.J. Clement, Rechargeable batteries from the perspective of the electron spin. ACS Energy Lett. 5, 3848–3859 (2020). https://doi.org/10.1021/acsenergylett.0c02074
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
J. Paier, C. Penschke, J. Sauer, Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 113, 3949 (2013). https://doi.org/10.1021/cr3004949