Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low-Strain and Fast-Charging Anode for Lithium-Ion Batteries
Corresponding Author: Jie Yu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 98
Abstract
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries. Herein, we report a unique silicon-carbon composite fabricated by uniformly dispersing amorphous Si nanodots (SiNDs) in carbon nanospheres (SiNDs/C) that are welded on the wall of the macroporous carbon framework (MPCF) by vertical graphene (VG), labeled as MPCF@VG@SiNDs/C. The high dispersity and amorphous features of ultrasmall SiNDs (~ 0.7 nm), the flexible and directed electron/Li+ transport channels of VG, and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites, rapid Li+ transport path, and unique low-strain property during Li+ storage. Consequently, the MPCF@VG@SiNDs/C exhibits high cycle stability (1301.4 mAh g−1 at 1 A g−1 after 1000 cycles without apparent decay) and high rate capacity (910.3 mAh g−1, 20 A g−1) in half cells based on industrial electrode standards. The assembled pouch full cell delivers a high energy density (1694.0 Wh L−1; 602.8 Wh kg−1) and an excellent fast-charging capability (498.5 Wh kg−1, charging for 16.8 min at 3 C). This study opens new possibilities for preparing advanced silicon-carbon composite anodes for practical applications.
Highlights:
1 MPCF@VG@SiNDs/C, constructed by uniformly dispersing amorphous Si nanodots in carbon nanospheres that are welded on the wall of the macroporous carbon frameworks by vertical graphene, is synthesized and has achieved a few kilogram production per batch.
2 Finite element imitation reveals that amorphous Si nanodots with high dispersity in carbon nanosphere can achieve ultra-low stress and strain values during lithiation.
3 Unique low-strain property and fast-charging capability are achieved under industrial electrode conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- M.P. Fan, Y.C. Chen, Y.M. Chen, Z.X. Huang, W.L. Wu et al., NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries. Rare Met. 41, 1294–1303 (2022). https://doi.org/10.1007/s12598-021-01890-2
- M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
- J. Wang, W. Huang, Y.S. Kim, Y.K. Jeong, S.C. Kim et al., Scalable synthesis of nanoporous silicon microps for highly cyclable lithium-ion batteries. Nano Res. 13, 1558–1563 (2020). https://doi.org/10.1007/s12274-020-2770-4
- J. Wang, L. Liao, H.R. Lee, F. Shi, W. Huang et al., Surface-engineered mesoporous silicon microps as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61, 404–410 (2019). https://doi.org/10.1016/j.nanoen.2019.04.070
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526
- J. Wang, L. Liao, Y. Li, J. Zhao, F. Shi et al., Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 18, 7060–7065 (2018). https://doi.org/10.1021/acs.nanolett.8b03065
- H. Wu, G. Zheng, N. Liu, T.J. Carney, Y. Yang et al., Engineering empty space between Si nanops for lithium-ion battery anodes. Nano Lett. 12, 904–909 (2012). https://doi.org/10.1021/nl203967r
- R. Zhu, Z. Wang, X. Hu, X. Liu, H. Wang, Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 31, 2101487 (2021). https://doi.org/10.1002/adfm.202101487
- G. Huang, J. Han, Z. Lu, D. Wei, H. Kashani et al., Ultrastable silicon anode by three-dimensional nanoarchitecture design. ACS Nano 14, 4374–4382 (2020). https://doi.org/10.1021/acsnano.9b09928
- L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao et al., Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29, 1602914 (2017). https://doi.org/10.1002/adma.201602914
- W. An, P. He, Z. Che, C. Xiao, E. Guo et al., Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 14, 10308–10318 (2022). https://doi.org/10.1021/acsami.1c22656
- N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
- X. Gao, W. Lu, J. Xu, Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 (2021). https://doi.org/10.1016/j.nanoen.2020.105591
- Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011). https://doi.org/10.1021/nl201470j
- B. Chen, L. Chen, L. Zu, Y. Feng, Q. Su et al., Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries. Adv. Mater. 34, e2200894 (2022). https://doi.org/10.1002/adma.202200894
- C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang et al., Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett. 19, 5124–5132 (2019). https://doi.org/10.1021/acs.nanolett.9b01492
- X. Han, Z. Zhang, H. Chen, Q. Zhang, S. Chen et al., On the interface design of Si and multilayer graphene for a high-performance Li-ion battery anode. ACS Appl. Mater. Interfaces 12, 44840–44849 (2020). https://doi.org/10.1021/acsami.0c13821
- Z. Liu, P. Guo, B. Liu, W. Xie, D. Liu et al., Carbon-coated Si nanops/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl. Surf. Sci. 396, 41–47 (2017). https://doi.org/10.1016/j.apsusc.2016.11.045
- Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan et al., Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 (2017). https://doi.org/10.1002/aenm.201601481
- J. Wang, X. Wang, B. Liu, H. Lu, G. Chu et al., Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 78, 105101 (2020). https://doi.org/10.1016/j.nanoen.2020.105101
- X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6, 1522–1531 (2012). https://doi.org/10.1021/nn204476h
- J. Ryu, T. Bok, S.H. Joo, S. Yoo, G. Song et al., Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. Energy Storage Mater. 36, 139–146 (2021). https://doi.org/10.1016/j.ensm.2020.12.023
- Q. Xiao, M. Gu, H. Yang, B. Li, C. Zhang et al., Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 6, 8844 (2015). https://doi.org/10.1038/ncomms9844
- J. Shin, E. Cho, Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries. Chem. Mater. 30, 3233–3243 (2018). https://doi.org/10.1021/acs.chemmater.8b00145
- X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011). https://doi.org/10.1021/nl201684d
- M. Han, J. Yu, Pressure-induced vapor synthesis of carbon-encapsulated SiOx/C composite spheres with optimized composition for long-life, high-rate, and high-areal-capacity lithium-ion battery anodes. Energy Technol. 7, 1900084 (2019). https://doi.org/10.1002/ente.201900084
- J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30, e1705380 (2018). https://doi.org/10.1002/adma.201705380
- M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao et al., A mechanism for carbon nanosheet formation. Carbon 45, 2229–2234 (2007). https://doi.org/10.1016/j.carbon.2007.06.017
- M. Han, Z. Lin, X. Ji, Y. Mu, J. Li et al., Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes. Mater. Today Energy 17, 100445 (2020). https://doi.org/10.1016/j.mtener.2020.100445
- M. Zhao, J. Zhang, X. Zhang, K. Duan, H. Dong et al., Application of high-strength, high-density, isotropic Si/C composites in commercial lithium-ion batteries. Energy Storage Mater. 61, 102857 (2023). https://doi.org/10.1016/j.ensm.2023.102857
- Z. Wang, Q. Yao, C. Neumann, F. Börrnert, J. Renner et al., Identification of semiconductive patches in thermally processed monolayer oxo-functionalized graphene. Angew. Chem. Int. Ed. 59, 13657–13662 (2020). https://doi.org/10.1002/anie.202004005
- Z. Li, M. Han, P. Yu, Q. Wu, Y. Zhang et al., Si-C nanocomposites supported on vertical graphene sheets grown on graphite for fast-charging lithium ion batteries. J. Energy Storage 67, 107582 (2023). https://doi.org/10.1016/j.est.2023.107582
- J. Liu, J. Jiang, Q. Zhou, Z. Chen, R. Zhang et al., Manipulation of π-aromatic conjugation in two-dimensional Sn-organic materials for efficient lithium storage. eScience 3, 100094 (2023). https://doi.org/10.1016/j.esci.2023.100094
- S. Chae, S. Park, K. Ahn, G. Nam, T. Lee et al., Gas phase synthesis of amorphous silicon nitride nanops for high-energy LIBs. Energy Environ. Sci. 13, 1212–1221 (2020). https://doi.org/10.1039/C9EE03857D
- L. Yu, J. Li, G. Wang, B. Peng, R. Liu et al., Rational design of unique MoSe2-carbon nanobowl ps endows superior alkali metal-ion storage beyond lithium. ACS Appl. Mater. Interfaces 13, 61116–61128 (2021). https://doi.org/10.1021/acsami.1c18234
- Z. Li, F. Yuan, M. Han, J. Yu, Atomic-scale laminated structure of O-doped WS2 and carbon layers with highly enhanced ion transfer for fast-charging lithium-ion batteries. Small 18, e2202495 (2022). https://doi.org/10.1002/smll.202202495
- K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
- J. Li, L. Yu, Y. Li, G. Wang, L. Zhao et al., Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale 13, 692–699 (2021). https://doi.org/10.1039/d0nr06888h
- W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15, 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
- M. Han, Y. Mu, F. Yuan, X. Bai, J. Yu, Vapor pressure-assisted synthesis of chemically bonded TiO2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. J. Power. Sources 465, 228206 (2020). https://doi.org/10.1016/j.jpowsour.2020.228206
- J. Lin, Y. Zhou, J. Wen, W. Si, H. Gao et al., Pyrrole derivatives as interlayer modifier of Li-S batteries: modulation of electrochemical performance by molecular perturbation. J. Energy Chem. 75, 164–172 (2022). https://doi.org/10.1016/j.jechem.2022.08.014
- Y. Zhou, Y. Yang, G. Hou, D. Yi, B. Zhou et al., Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy 70, 104568 (2020). https://doi.org/10.1016/j.nanoen.2020.104568
- K. Zou, Z. Song, X. Gao, H. Liu, Z. Luo et al., Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew. Chem. Int. Ed. 60, 17070–17079 (2021). https://doi.org/10.1002/anie.202103569
- L.-L. Lu, Z.-X. Zhu, T. Ma, T. Tian, H.-X. Ju et al., Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu6 Sn5 network. Adv. Mater. 34, e2202688 (2022). https://doi.org/10.1002/adma.202202688
- S. Zhao, R. Qiu, J. Su, F. Li, Y. Liu et al., Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on sodiophilic zinc-metal-decorated hard carbons. J. Power. Sources 544, 231862 (2022). https://doi.org/10.1016/j.jpowsour.2022.231862
References
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
M.P. Fan, Y.C. Chen, Y.M. Chen, Z.X. Huang, W.L. Wu et al., NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries. Rare Met. 41, 1294–1303 (2022). https://doi.org/10.1007/s12598-021-01890-2
M. Han, Y. Mu, J. Guo, L. Wei, L. Zeng et al., Monolayer MoS2 fabricated by in situ construction of interlayer electrostatic repulsion enables ultrafast ion transport in lithium-ion batteries. Nano-Micro Lett. 15, 80 (2023). https://doi.org/10.1007/s40820-023-01042-4
J. Wang, W. Huang, Y.S. Kim, Y.K. Jeong, S.C. Kim et al., Scalable synthesis of nanoporous silicon microps for highly cyclable lithium-ion batteries. Nano Res. 13, 1558–1563 (2020). https://doi.org/10.1007/s12274-020-2770-4
J. Wang, L. Liao, H.R. Lee, F. Shi, W. Huang et al., Surface-engineered mesoporous silicon microps as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 61, 404–410 (2019). https://doi.org/10.1016/j.nanoen.2019.04.070
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
T. Mu, Y. Zhao, C. Zhao, N.G. Holmes, S. Lou et al., Stable silicon anodes by molecular layer deposited artificial zincone coatings. Adv. Funct. Mater. 31, 2010526 (2021). https://doi.org/10.1002/adfm.202010526
J. Wang, L. Liao, Y. Li, J. Zhao, F. Shi et al., Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 18, 7060–7065 (2018). https://doi.org/10.1021/acs.nanolett.8b03065
H. Wu, G. Zheng, N. Liu, T.J. Carney, Y. Yang et al., Engineering empty space between Si nanops for lithium-ion battery anodes. Nano Lett. 12, 904–909 (2012). https://doi.org/10.1021/nl203967r
R. Zhu, Z. Wang, X. Hu, X. Liu, H. Wang, Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 31, 2101487 (2021). https://doi.org/10.1002/adfm.202101487
G. Huang, J. Han, Z. Lu, D. Wei, H. Kashani et al., Ultrastable silicon anode by three-dimensional nanoarchitecture design. ACS Nano 14, 4374–4382 (2020). https://doi.org/10.1021/acsnano.9b09928
L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao et al., Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29, 1602914 (2017). https://doi.org/10.1002/adma.201602914
W. An, P. He, Z. Che, C. Xiao, E. Guo et al., Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 14, 10308–10318 (2022). https://doi.org/10.1021/acsami.1c22656
N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.-W. Lee et al., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). https://doi.org/10.1038/nnano.2014.6
X. Gao, W. Lu, J. Xu, Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode. Nano Energy 81, 105591 (2021). https://doi.org/10.1016/j.nanoen.2020.105591
Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011). https://doi.org/10.1021/nl201470j
B. Chen, L. Chen, L. Zu, Y. Feng, Q. Su et al., Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries. Adv. Mater. 34, e2200894 (2022). https://doi.org/10.1002/adma.202200894
C. Yu, X. Chen, Z. Xiao, C. Lei, C. Zhang et al., Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett. 19, 5124–5132 (2019). https://doi.org/10.1021/acs.nanolett.9b01492
X. Han, Z. Zhang, H. Chen, Q. Zhang, S. Chen et al., On the interface design of Si and multilayer graphene for a high-performance Li-ion battery anode. ACS Appl. Mater. Interfaces 12, 44840–44849 (2020). https://doi.org/10.1021/acsami.0c13821
Z. Liu, P. Guo, B. Liu, W. Xie, D. Liu et al., Carbon-coated Si nanops/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl. Surf. Sci. 396, 41–47 (2017). https://doi.org/10.1016/j.apsusc.2016.11.045
Q. Xu, J.-Y. Li, J.-K. Sun, Y.-X. Yin, L.-J. Wan et al., Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7, 1601481 (2017). https://doi.org/10.1002/aenm.201601481
J. Wang, X. Wang, B. Liu, H. Lu, G. Chu et al., Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 78, 105101 (2020). https://doi.org/10.1016/j.nanoen.2020.105101
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6, 1522–1531 (2012). https://doi.org/10.1021/nn204476h
J. Ryu, T. Bok, S.H. Joo, S. Yoo, G. Song et al., Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. Energy Storage Mater. 36, 139–146 (2021). https://doi.org/10.1016/j.ensm.2020.12.023
Q. Xiao, M. Gu, H. Yang, B. Li, C. Zhang et al., Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 6, 8844 (2015). https://doi.org/10.1038/ncomms9844
J. Shin, E. Cho, Agglomeration mechanism and a protective role of Al2O3 for prolonged cycle life of Si anode in lithium-ion batteries. Chem. Mater. 30, 3233–3243 (2018). https://doi.org/10.1021/acs.chemmater.8b00145
X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011). https://doi.org/10.1021/nl201684d
M. Han, J. Yu, Pressure-induced vapor synthesis of carbon-encapsulated SiOx/C composite spheres with optimized composition for long-life, high-rate, and high-areal-capacity lithium-ion battery anodes. Energy Technol. 7, 1900084 (2019). https://doi.org/10.1002/ente.201900084
J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang et al., 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 30, e1705380 (2018). https://doi.org/10.1002/adma.201705380
M. Zhu, J. Wang, B.C. Holloway, R.A. Outlaw, X. Zhao et al., A mechanism for carbon nanosheet formation. Carbon 45, 2229–2234 (2007). https://doi.org/10.1016/j.carbon.2007.06.017
M. Han, Z. Lin, X. Ji, Y. Mu, J. Li et al., Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes. Mater. Today Energy 17, 100445 (2020). https://doi.org/10.1016/j.mtener.2020.100445
M. Zhao, J. Zhang, X. Zhang, K. Duan, H. Dong et al., Application of high-strength, high-density, isotropic Si/C composites in commercial lithium-ion batteries. Energy Storage Mater. 61, 102857 (2023). https://doi.org/10.1016/j.ensm.2023.102857
Z. Wang, Q. Yao, C. Neumann, F. Börrnert, J. Renner et al., Identification of semiconductive patches in thermally processed monolayer oxo-functionalized graphene. Angew. Chem. Int. Ed. 59, 13657–13662 (2020). https://doi.org/10.1002/anie.202004005
Z. Li, M. Han, P. Yu, Q. Wu, Y. Zhang et al., Si-C nanocomposites supported on vertical graphene sheets grown on graphite for fast-charging lithium ion batteries. J. Energy Storage 67, 107582 (2023). https://doi.org/10.1016/j.est.2023.107582
J. Liu, J. Jiang, Q. Zhou, Z. Chen, R. Zhang et al., Manipulation of π-aromatic conjugation in two-dimensional Sn-organic materials for efficient lithium storage. eScience 3, 100094 (2023). https://doi.org/10.1016/j.esci.2023.100094
S. Chae, S. Park, K. Ahn, G. Nam, T. Lee et al., Gas phase synthesis of amorphous silicon nitride nanops for high-energy LIBs. Energy Environ. Sci. 13, 1212–1221 (2020). https://doi.org/10.1039/C9EE03857D
L. Yu, J. Li, G. Wang, B. Peng, R. Liu et al., Rational design of unique MoSe2-carbon nanobowl ps endows superior alkali metal-ion storage beyond lithium. ACS Appl. Mater. Interfaces 13, 61116–61128 (2021). https://doi.org/10.1021/acsami.1c18234
Z. Li, F. Yuan, M. Han, J. Yu, Atomic-scale laminated structure of O-doped WS2 and carbon layers with highly enhanced ion transfer for fast-charging lithium-ion batteries. Small 18, e2202495 (2022). https://doi.org/10.1002/smll.202202495
K. Zou, P. Cai, B. Wang, C. Liu, J. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
J. Li, L. Yu, Y. Li, G. Wang, L. Zhao et al., Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale 13, 692–699 (2021). https://doi.org/10.1039/d0nr06888h
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15, 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
M. Han, Y. Mu, F. Yuan, X. Bai, J. Yu, Vapor pressure-assisted synthesis of chemically bonded TiO2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. J. Power. Sources 465, 228206 (2020). https://doi.org/10.1016/j.jpowsour.2020.228206
J. Lin, Y. Zhou, J. Wen, W. Si, H. Gao et al., Pyrrole derivatives as interlayer modifier of Li-S batteries: modulation of electrochemical performance by molecular perturbation. J. Energy Chem. 75, 164–172 (2022). https://doi.org/10.1016/j.jechem.2022.08.014
Y. Zhou, Y. Yang, G. Hou, D. Yi, B. Zhou et al., Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy 70, 104568 (2020). https://doi.org/10.1016/j.nanoen.2020.104568
K. Zou, Z. Song, X. Gao, H. Liu, Z. Luo et al., Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew. Chem. Int. Ed. 60, 17070–17079 (2021). https://doi.org/10.1002/anie.202103569
L.-L. Lu, Z.-X. Zhu, T. Ma, T. Tian, H.-X. Ju et al., Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu6 Sn5 network. Adv. Mater. 34, e2202688 (2022). https://doi.org/10.1002/adma.202202688
S. Zhao, R. Qiu, J. Su, F. Li, Y. Liu et al., Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposition on sodiophilic zinc-metal-decorated hard carbons. J. Power. Sources 544, 231862 (2022). https://doi.org/10.1016/j.jpowsour.2022.231862