Electron Acceptor-Driven Solid Electrolyte Interphases with Elevated LiF Content for 4.7 V Lithium Metal Batteries
Corresponding Author: Lin Zeng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 163
Abstract
High-voltage lithium (Li) metal batteries (LMBs) face substantial challenges, including Li dendrite growth and instability in high-voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), which impede their practical applications and long-term stability. To address these challenges, tris(pentafluorophenyl)borane additive as an electron acceptor is introduced into an ethyl methyl carbonate/fluoroethylene carbonate-based electrolyte. This approach effectively engineers robust dual interfaces on the Li metal anode and the NCM811 cathode, thereby mitigating dendritic growth of Li and enhancing the stability of the cathode. This additive-driven strategy enables LMBs to operate at ultra-high voltages up to 4.7 V. Consequently, Li||Cu cells achieve a coulombic efficiency of 98.96%, and Li||Li symmetric cells extend their cycle life to an impressive 4000 h. Li||NCM811 full cells maintain a high capacity retention of 87.8% after 100 cycles at 4.7 V. Additionally, Li||LNMO full cells exhibit exceptional rate capability, delivering 132.2 mAh g−1 at 10 C and retaining 95.0% capacity after 250 cycles at 1 C and 5 V. As a result, NCM811||graphite pouch cells maintain a 93.4% capacity retention after 1100 cycles at 1 C. These findings underscore the efficacy of additive engineering in addressing Li dendrite formation and instability of cathode under high voltage, thereby paving the road for durable, high-performance LMBs.
Highlights:
1 A tris(pentafluorophenyl)borane additive as an electron acceptor is incorporated into an ethyl methyl carbonate/fluoroethylene carbonate/lithium nitrate electrolyte.
2 This approach effectively engineers durable dual interfaces on both lithium metal anode and LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode, which mitigates dendritic growth and enhances cathode stability.
3 The additive-driven strategy enables lithium metal batteries to operate at ultra-high voltage up to 4.7 V and high mass loading of 14.0 mg cm−2 for NCM811 cathode, thus resulting in exceptional cycling performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020). https://doi.org/10.1039/c9cs00636b
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- S. Kim, G. Park, S.J. Lee, S. Seo, K. Ryu et al., Lithium-metal batteries: from fundamental research to industrialization. Adv. Mater. 35, e2206625 (2023). https://doi.org/10.1002/adma.202206625
- Y. Chen, Q. He, Y. Mo, W. Zhou, Y. Zhao et al., Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60 °C. Adv. Energy Mater. 12, 2201631 (2022). https://doi.org/10.1002/aenm.202201631
- Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao et al., Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 8, 1023–1033 (2023). https://doi.org/10.1038/s41560-023-01339-z
- Q.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song et al., Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023). https://doi.org/10.1038/s41560-023-01275-y
- X. Zhu, T.U. Schülli, X. Yang, T. Lin, Y. Hu et al., Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 13, 1565 (2022). https://doi.org/10.1038/s41467-022-28963-9
- L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang et al., Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. U.S.A. 115, 1156–1161 (2018). https://doi.org/10.1073/pnas.1712895115
- J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng et al., Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 34, 2200912 (2022). https://doi.org/10.1002/adma.202200912
- J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
- S. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang et al., Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022). https://doi.org/10.1038/s41560-022-01020-x
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- Z. Zhu, X. Li, X. Qi, J. Ji, Y. Ji et al., Demystifying the salt-induced Li loss: a universal procedure for the electrolyte design of lithium-metal batteries. Nano-Micro Lett. 15, 234 (2023). https://doi.org/10.1007/s40820-023-01205-3
- Y. Wang, C. Zheng, W. Xie, X. Liu, Y. Lu et al., Ether-modified nonflammable phosphate enabling anion-rich electrolyte for high-voltage lithium metal batteries. Adv. Mater. 36, e2312302 (2024). https://doi.org/10.1002/adma.202312302
- Z. Xu, J. Yang, H. Li, Y. Nuli, J. Wang, Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 7, 9432–9446 (2019). https://doi.org/10.1039/c9ta01876j
- C. Zu, H. Yu, H. Li, Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. InfoMat 3, 648–661 (2021). https://doi.org/10.1002/inf2.12190
- T.J. Lee, J.B. Lee, T. Yoon, D. Kim, O.B. Chae et al., Tris(pentafluorophenyl)silane as an electrolyte additive for 5 V LiNi0.5Mn1.5O4 positive electrode. J. Electrochem. Soc. 163, A898–A903 (2016). https://doi.org/10.1149/2.0501606jes
- R. Wang, X. Li, Z. Wang, H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017). https://doi.org/10.1016/j.nanoen.2017.02.037
- Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
- S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen et al., A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022). https://doi.org/10.1038/s41565-022-01107-2
- Y. Mu, Y. Chu, Y. Shi, C. Huang, L. Yang et al., Constructing robust LiF-enriched interfaces in high-voltage solid-state lithium batteries utilizing tailored oriented ceramic fiber electrolytes. Adv. Energy Mater. 14, 2400725 (2024). https://doi.org/10.1002/aenm.202400725
- Z. Dai, Z. Li, R. Chen, F. Wu, L. Li, Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries. Nat. Commun. 14, 8087 (2023). https://doi.org/10.1038/s41467-023-43792-0
- H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023). https://doi.org/10.1038/s41560-023-01231-w
- J. Sun, D. Xin Cao, D. Huijun Yang, P. Ping He, M.A. Dato et al., The origin of high-voltage stability in single-crystal layered Ni-rich cathode materials. Angew. Chem. Int. Ed. 61, e202207225 (2022). https://doi.org/10.1002/anie.202207225
- J. Xu, Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- H. Zhang, R. Li, L. Chen, Y. Fan, H. Zhang et al., Simultaneous stabilization of lithium anode and cathode using hyperconjugative electrolytes for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 62, e202218970 (2023). https://doi.org/10.1002/anie.202218970
- Y. Zhang, F. Li, Y. Cao, M. Yang, X. Han et al., Tuning the FEC-related electrolyte solvation structures in ether solvents enables high-performance lithium metal anode. Adv. Funct. Mater. 34, 2315527 (2024). https://doi.org/10.1002/adfm.202315527
- Y. Zhu, V. Pande, L. Li, B. Wen, M.S. Pan et al., Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl. Acad. Sci. U.S.A. 117, 27195–27203 (2020). https://doi.org/10.1073/pnas.2001923117
- Z. Peng, X. Cao, P. Gao, H. Jia, X. Ren et al., High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020). https://doi.org/10.1002/adfm.202001285
- M. Kubot, L. Balke, J. Scholz, S. Wiemers-Meyer, U. Karst et al., High-voltage instability of vinylene carbonate (VC): impact of formed poly-VC on interphases and toxicity. Adv. Sci. 11, e2305282 (2024). https://doi.org/10.1002/advs.202305282
- L. Yu, S. Chen, H. Lee, L. Zhang, M.H. Engelhard et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
- M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023). https://doi.org/10.1038/s41467-023-36853-x
- S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
- A. Dutta, K. Matsushita, Y. Kubo, Impact of glyme ether chain length on the interphasial stability of lithium-electrode in high-capacity lithium-metal battery. Adv. Sci. 11, e2404245 (2024). https://doi.org/10.1002/advs.202404245
- L.-P. Hou, N. Yao, J. Xie, P. Shi, S.-Y. Sun et al., Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 61, e202201406 (2022). https://doi.org/10.1002/anie.202201406
- X. Zhang, Y. Wang, Z. Ouyang, S. Wang, X. Zhao et al., Dual-functional lithium nitrate mediator eliminating water hazard for practical lithium metal batteries. Adv. Energy Mater. 14, 2303048 (2024). https://doi.org/10.1002/aenm.202303048
- W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
- L. Qiao, U. Oteo, M. Martinez-Ibañez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21, 455–462 (2022). https://doi.org/10.1038/s41563-021-01190-1
- Y. Zhao, T. Zhou, M. Mensi, J.W. Choi, A. Coskun, Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023). https://doi.org/10.1038/s41467-023-35934-1
- M.A. Baird, J. Song, R. Tao, Y. Ko, B.A. Helms, Locally superconcentrated electrolytes for ultra-fast-charging lithium metal batteries with high-voltage cathodes. ACS Energy Lett. 7, 3826–3834 (2022). https://doi.org/10.1021/acsenergylett.2c02111
- O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007
- J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
- N. von Aspern, P.G.-V. Röschenthaler, P.M. Winter, D.I. Cekic-Laskovic, Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58, 15978–16000 (2019). https://doi.org/10.1002/anie.201901381
- D. Zhu, J. Xu, K. Ding, Q. Xu, P. Shi et al., Boron-doped electrolytes as interfacial modifiers for high-rate stable lithium metal batteries. Adv. Funct. Mater. 33, 2213822 (2023). https://doi.org/10.1002/adfm.202213822
- G. Chen, L. Qiao, G. Xu, L. Li, J. Li et al., A highly-fluorinated lithium borate main salt empowering stable lithium metal batteries. Angew. Chem. Int. Ed. 63, e202400797 (2024). https://doi.org/10.1002/anie.202400797
- N.R. Park, M. Zhang, B. Han, W. Li, K. Qian et al., Understanding boron chemistry as the surface modification and electrolyte additive for Co-free lithium-rich layered oxide. Adv. Energy Mater. 14, 2401968 (2024). https://doi.org/10.1002/aenm.202401968
- D. Zhang, J. Ma, C. Zhang, M. Liu, K. Yang et al., A novel cathode interphase formation methodology by preferential adsorption of a borate-based electrolyte additive. Natl. Sci. Rev. 11, nwae219 (2024). https://doi.org/10.1093/nsr/nwae219
- X.-B. Cheng, S.-J. Yang, Z. Liu, J.-X. Guo, F.-N. Jiang et al., Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries. Adv. Mater. 36, e2307370 (2024). https://doi.org/10.1002/adma.202307370
- F. Cheng, X. Zhang, P. Wei, S. Sun, Y. Xu et al., Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Sci. Bull. 67, 2225–2234 (2022). https://doi.org/10.1016/j.scib.2022.10.007
- W. Yang, Z. Zhang, X. Sun, Y. Liu, C. Sheng et al., Tailoring the electrode-electrolyte interface for reliable operation of all-climate 4.8 V Li||NCM811 batteries. Angew. Chem. Int. Ed. 63, e202410893 (2014). https://doi.org/10.1002/anie.202410893
- I.E. Castelli, M. Zorko, T.M. Østergaard, P.F.B.D. Martins, P.P. Lopes et al., The role of an interface in stabilizing reaction intermediates for hydrogen evolution in aprotic electrolytes. Chem. Sci. 11, 3914–3922 (2020). https://doi.org/10.1039/c9sc05768d
- T.M. Østergaard, L. Giordano, I.E. Castelli, F. Maglia, B.K. Antonopoulos et al., Oxidation of ethylene carbonate on Li metal oxide surfaces. J. Phys. Chem. C 122, 10442–10449 (2018). https://doi.org/10.1021/acs.jpcc.8b01713
- S. Xu, G. Luo, R. Jacobs, S. Fang, M.K. Mahanthappa et al., Ab initio modeling of electrolyte molecule ethylene carbonate decomposition reaction on Li(Ni, Mn, Co)O2 cathode surface. ACS Appl. Mater. Interfaces 9, 20545–20553 (2017). https://doi.org/10.1021/acsami.7b03435
- J. Zheng, J. Xiao, M. Gu, P. Zuo, C. Wang et al., Interface modifications by anion receptors for high energy lithium ion batteries. J. Power Sources 250, 313–318 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.071
- S.-H. Wu, A. Huang, Effects of tris(pentafluorophenyl) borane (TPFPB) as an electrolyte additive on the cycling performance of LiFePO4 batteries. J. Electrochem. Soc. 160, A684–A689 (2013). https://doi.org/10.1149/2.074304jes
- S. Zhang, Y. Li, L.J. Bannenberg, M. Liu, S. Ganapathy et al., The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024). https://doi.org/10.1126/sciadv.adj8889
- G.M. Hobold, A. Khurram, B.M. Gallant, operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020). https://doi.org/10.1021/acs.chemmater.9b04550
- X. Tan, Z. Chen, T. Liu, Y. Zhang, M. Zhang et al., Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes. Adv. Mater. 35, e2301096 (2023). https://doi.org/10.1002/adma.202301096
- Y. Chu, Y. Mu, H. Gu, Y. Hu, X. Wei et al., Invoking interfacial engineering boosts structural stability empowering exceptional cyclability of Ni-rich cathode. Adv. Mater. 36, e2405628 (2024). https://doi.org/10.1002/adma.202405628
- W. Zou, J. Zhang, M. Liu, J. Li, Z. Ren et al., Anion-reinforced solvating ionic liquid electrolytes enabling stable high-nickel cathode in lithium-metal batteries. Adv. Mater. 36, e2400537 (2024). https://doi.org/10.1002/adma.202400537
References
D.-H. Liu, Z. Bai, M. Li, A. Yu, D. Luo et al., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020). https://doi.org/10.1039/c9cs00636b
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
S. Kim, G. Park, S.J. Lee, S. Seo, K. Ryu et al., Lithium-metal batteries: from fundamental research to industrialization. Adv. Mater. 35, e2206625 (2023). https://doi.org/10.1002/adma.202206625
Y. Chen, Q. He, Y. Mo, W. Zhou, Y. Zhao et al., Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60 °C. Adv. Energy Mater. 12, 2201631 (2022). https://doi.org/10.1002/aenm.202201631
Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao et al., Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 8, 1023–1033 (2023). https://doi.org/10.1038/s41560-023-01339-z
Q.-K. Zhang, X.-Q. Zhang, J. Wan, N. Yao, T.-L. Song et al., Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023). https://doi.org/10.1038/s41560-023-01275-y
X. Zhu, T.U. Schülli, X. Yang, T. Lin, Y. Hu et al., Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat. Commun. 13, 1565 (2022). https://doi.org/10.1038/s41467-022-28963-9
L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang et al., Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. U.S.A. 115, 1156–1161 (2018). https://doi.org/10.1073/pnas.1712895115
J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng et al., Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 34, 2200912 (2022). https://doi.org/10.1002/adma.202200912
J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
S. Tan, Z. Shadike, J. Li, X. Wang, Y. Yang et al., Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 7, 484–494 (2022). https://doi.org/10.1038/s41560-022-01020-x
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
Z. Zhu, X. Li, X. Qi, J. Ji, Y. Ji et al., Demystifying the salt-induced Li loss: a universal procedure for the electrolyte design of lithium-metal batteries. Nano-Micro Lett. 15, 234 (2023). https://doi.org/10.1007/s40820-023-01205-3
Y. Wang, C. Zheng, W. Xie, X. Liu, Y. Lu et al., Ether-modified nonflammable phosphate enabling anion-rich electrolyte for high-voltage lithium metal batteries. Adv. Mater. 36, e2312302 (2024). https://doi.org/10.1002/adma.202312302
Z. Xu, J. Yang, H. Li, Y. Nuli, J. Wang, Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 7, 9432–9446 (2019). https://doi.org/10.1039/c9ta01876j
C. Zu, H. Yu, H. Li, Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. InfoMat 3, 648–661 (2021). https://doi.org/10.1002/inf2.12190
T.J. Lee, J.B. Lee, T. Yoon, D. Kim, O.B. Chae et al., Tris(pentafluorophenyl)silane as an electrolyte additive for 5 V LiNi0.5Mn1.5O4 positive electrode. J. Electrochem. Soc. 163, A898–A903 (2016). https://doi.org/10.1149/2.0501606jes
R. Wang, X. Li, Z. Wang, H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017). https://doi.org/10.1016/j.nanoen.2017.02.037
Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
S. Li, J. Huang, Y. Cui, S. Liu, Z. Chen et al., A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17, 613–621 (2022). https://doi.org/10.1038/s41565-022-01107-2
Y. Mu, Y. Chu, Y. Shi, C. Huang, L. Yang et al., Constructing robust LiF-enriched interfaces in high-voltage solid-state lithium batteries utilizing tailored oriented ceramic fiber electrolytes. Adv. Energy Mater. 14, 2400725 (2024). https://doi.org/10.1002/aenm.202400725
Z. Dai, Z. Li, R. Chen, F. Wu, L. Li, Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries. Nat. Commun. 14, 8087 (2023). https://doi.org/10.1038/s41467-023-43792-0
H. Wan, Z. Wang, S. Liu, B. Zhang, X. He et al., Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023). https://doi.org/10.1038/s41560-023-01231-w
J. Sun, D. Xin Cao, D. Huijun Yang, P. Ping He, M.A. Dato et al., The origin of high-voltage stability in single-crystal layered Ni-rich cathode materials. Angew. Chem. Int. Ed. 61, e202207225 (2022). https://doi.org/10.1002/anie.202207225
J. Xu, Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro Lett. 14, 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
H. Zhang, R. Li, L. Chen, Y. Fan, H. Zhang et al., Simultaneous stabilization of lithium anode and cathode using hyperconjugative electrolytes for high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 62, e202218970 (2023). https://doi.org/10.1002/anie.202218970
Y. Zhang, F. Li, Y. Cao, M. Yang, X. Han et al., Tuning the FEC-related electrolyte solvation structures in ether solvents enables high-performance lithium metal anode. Adv. Funct. Mater. 34, 2315527 (2024). https://doi.org/10.1002/adfm.202315527
Y. Zhu, V. Pande, L. Li, B. Wen, M.S. Pan et al., Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl. Acad. Sci. U.S.A. 117, 27195–27203 (2020). https://doi.org/10.1073/pnas.2001923117
Z. Peng, X. Cao, P. Gao, H. Jia, X. Ren et al., High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020). https://doi.org/10.1002/adfm.202001285
M. Kubot, L. Balke, J. Scholz, S. Wiemers-Meyer, U. Karst et al., High-voltage instability of vinylene carbonate (VC): impact of formed poly-VC on interphases and toxicity. Adv. Sci. 11, e2305282 (2024). https://doi.org/10.1002/advs.202305282
L. Yu, S. Chen, H. Lee, L. Zhang, M.H. Engelhard et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li et al., Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023). https://doi.org/10.1038/s41467-023-36853-x
S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8
A. Dutta, K. Matsushita, Y. Kubo, Impact of glyme ether chain length on the interphasial stability of lithium-electrode in high-capacity lithium-metal battery. Adv. Sci. 11, e2404245 (2024). https://doi.org/10.1002/advs.202404245
L.-P. Hou, N. Yao, J. Xie, P. Shi, S.-Y. Sun et al., Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 61, e202201406 (2022). https://doi.org/10.1002/anie.202201406
X. Zhang, Y. Wang, Z. Ouyang, S. Wang, X. Zhao et al., Dual-functional lithium nitrate mediator eliminating water hazard for practical lithium metal batteries. Adv. Energy Mater. 14, 2303048 (2024). https://doi.org/10.1002/aenm.202303048
W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
L. Qiao, U. Oteo, M. Martinez-Ibañez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21, 455–462 (2022). https://doi.org/10.1038/s41563-021-01190-1
Y. Zhao, T. Zhou, M. Mensi, J.W. Choi, A. Coskun, Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023). https://doi.org/10.1038/s41467-023-35934-1
M.A. Baird, J. Song, R. Tao, Y. Ko, B.A. Helms, Locally superconcentrated electrolytes for ultra-fast-charging lithium metal batteries with high-voltage cathodes. ACS Energy Lett. 7, 3826–3834 (2022). https://doi.org/10.1021/acsenergylett.2c02111
O. Borodin, J. Self, K.A. Persson, C. Wang, K. Xu, Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007
J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016). https://doi.org/10.1038/ncomms12032
N. von Aspern, P.G.-V. Röschenthaler, P.M. Winter, D.I. Cekic-Laskovic, Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 58, 15978–16000 (2019). https://doi.org/10.1002/anie.201901381
D. Zhu, J. Xu, K. Ding, Q. Xu, P. Shi et al., Boron-doped electrolytes as interfacial modifiers for high-rate stable lithium metal batteries. Adv. Funct. Mater. 33, 2213822 (2023). https://doi.org/10.1002/adfm.202213822
G. Chen, L. Qiao, G. Xu, L. Li, J. Li et al., A highly-fluorinated lithium borate main salt empowering stable lithium metal batteries. Angew. Chem. Int. Ed. 63, e202400797 (2024). https://doi.org/10.1002/anie.202400797
N.R. Park, M. Zhang, B. Han, W. Li, K. Qian et al., Understanding boron chemistry as the surface modification and electrolyte additive for Co-free lithium-rich layered oxide. Adv. Energy Mater. 14, 2401968 (2024). https://doi.org/10.1002/aenm.202401968
D. Zhang, J. Ma, C. Zhang, M. Liu, K. Yang et al., A novel cathode interphase formation methodology by preferential adsorption of a borate-based electrolyte additive. Natl. Sci. Rev. 11, nwae219 (2024). https://doi.org/10.1093/nsr/nwae219
X.-B. Cheng, S.-J. Yang, Z. Liu, J.-X. Guo, F.-N. Jiang et al., Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries. Adv. Mater. 36, e2307370 (2024). https://doi.org/10.1002/adma.202307370
F. Cheng, X. Zhang, P. Wei, S. Sun, Y. Xu et al., Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Sci. Bull. 67, 2225–2234 (2022). https://doi.org/10.1016/j.scib.2022.10.007
W. Yang, Z. Zhang, X. Sun, Y. Liu, C. Sheng et al., Tailoring the electrode-electrolyte interface for reliable operation of all-climate 4.8 V Li||NCM811 batteries. Angew. Chem. Int. Ed. 63, e202410893 (2014). https://doi.org/10.1002/anie.202410893
I.E. Castelli, M. Zorko, T.M. Østergaard, P.F.B.D. Martins, P.P. Lopes et al., The role of an interface in stabilizing reaction intermediates for hydrogen evolution in aprotic electrolytes. Chem. Sci. 11, 3914–3922 (2020). https://doi.org/10.1039/c9sc05768d
T.M. Østergaard, L. Giordano, I.E. Castelli, F. Maglia, B.K. Antonopoulos et al., Oxidation of ethylene carbonate on Li metal oxide surfaces. J. Phys. Chem. C 122, 10442–10449 (2018). https://doi.org/10.1021/acs.jpcc.8b01713
S. Xu, G. Luo, R. Jacobs, S. Fang, M.K. Mahanthappa et al., Ab initio modeling of electrolyte molecule ethylene carbonate decomposition reaction on Li(Ni, Mn, Co)O2 cathode surface. ACS Appl. Mater. Interfaces 9, 20545–20553 (2017). https://doi.org/10.1021/acsami.7b03435
J. Zheng, J. Xiao, M. Gu, P. Zuo, C. Wang et al., Interface modifications by anion receptors for high energy lithium ion batteries. J. Power Sources 250, 313–318 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.071
S.-H. Wu, A. Huang, Effects of tris(pentafluorophenyl) borane (TPFPB) as an electrolyte additive on the cycling performance of LiFePO4 batteries. J. Electrochem. Soc. 160, A684–A689 (2013). https://doi.org/10.1149/2.074304jes
S. Zhang, Y. Li, L.J. Bannenberg, M. Liu, S. Ganapathy et al., The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024). https://doi.org/10.1126/sciadv.adj8889
G.M. Hobold, A. Khurram, B.M. Gallant, operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020). https://doi.org/10.1021/acs.chemmater.9b04550
X. Tan, Z. Chen, T. Liu, Y. Zhang, M. Zhang et al., Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes. Adv. Mater. 35, e2301096 (2023). https://doi.org/10.1002/adma.202301096
Y. Chu, Y. Mu, H. Gu, Y. Hu, X. Wei et al., Invoking interfacial engineering boosts structural stability empowering exceptional cyclability of Ni-rich cathode. Adv. Mater. 36, e2405628 (2024). https://doi.org/10.1002/adma.202405628
W. Zou, J. Zhang, M. Liu, J. Li, Z. Ren et al., Anion-reinforced solvating ionic liquid electrolytes enabling stable high-nickel cathode in lithium-metal batteries. Adv. Mater. 36, e2400537 (2024). https://doi.org/10.1002/adma.202400537