Highly Thermoconductive, Strong Graphene-Based Composite Films by Eliminating Nanosheets Wrinkles
Corresponding Author: Yagang Yao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 17
Abstract
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices. However, when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites, capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying, which greatly reduces the thermal conductivity of the composites. Herein, graphene nanosheets/aramid nanofiber (GNS/ANF) composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds and π–π interactions. The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets, thereby creating a fast in-plane heat transfer channel. The composite films (GNS/ANF-60 wt%) with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity (146 W m−1 K−1) and tensile strength (207 MPa). The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones, showing promising applications in the thermal management of high-power electronic devices.
Highlights:
1 Highly thermally conductive composite films with elimination of graphene nanosheet wrinkles prepared by a constrained drying strategy of in-plane stretching.
2 Reveals the mechanism of graphene nanosheet wrinkle elimination to improve the thermal conductivity of composite films and demonstrates its use as a heat sink film for cooling flexible LED chips and smartphones.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- From chip to the cooling system, A. Habibi Khalaj, S.K. Halgamuge, A review on efficient thermal management of air- and liquid-cooled data centers. Appl. Energy 205, 1165–1188 (2017). https://doi.org/10.1016/j.apenergy.2017.08.037
- N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
- C. Woodcock, C. Ng’oma, M. Sweet, Y. Wang, Y. Peles et al., Ultra-high heat flux dissipation with piranha pin fins. Int. J. Heat Mass Transfer 128, 504–515 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.030
- M. Manno, B. Yang, S. Khanna, P. McCluskey, A. Bar-Cohen, Microcontact-enhanced thermoelectric cooling of ultrahigh heat flux hotspots. IEEE Trans. Compon. Packag. Manuf. Technol. 5(12), 1775–1783 (2015). https://doi.org/10.1109/tcpmt.2015.2495350
- H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
- N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan et al., Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013). https://doi.org/10.1038/ncomms2448
- S.E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh et al., Extremely anisotropic van der waals thermal conductors. Nature 597(7878), 660–665 (2021). https://doi.org/10.1038/s41586-021-03867-8
- Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62(5), e202216093 (2023). https://doi.org/10.1002/anie.202216093
- H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
- X. Xu, J. Chen, J. Zhou, B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30(17), 1705544 (2018). https://doi.org/10.1002/adma.201705544
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- S. Yu, X. Shen, J.K. Kim, Beyond homogeneous dispersion: oriented conductive fillers for high kappa nanocomposites. Mater. Horiz. 8(11), 3009–3042 (2021). https://doi.org/10.1039/d1mh00907a
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng., R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed ti3c2tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- B. Sun, X. Huang, Seeking advanced thermal management for stretchable electronics. npj Flexible Electron. 5(1), 12 (2021). https://doi.org/10.1038/s41528-021-00109-9
- H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29(37), 1902575 (2019). https://doi.org/10.1002/adfm.201902575
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13(1), 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5g base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured mxene@silver fillers. Nano Res. 16(5), 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
- E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37(12), 1273–1281 (2012). https://doi.org/10.1557/mrs.2012.203
- K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2019). https://doi.org/10.1088/2053-1583/ab48d9
- K. Ruan, J. Gu, Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55(10), 4134–4145 (2022). https://doi.org/10.1021/acs.macromol.2c00491
- H. Fang, S.-L. Bai, C.P. Wong, Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A Appl. Sci. Manuf. 112, 216–238 (2018). https://doi.org/10.1016/j.compositesa.2018.06.010
- X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng., R 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
- J. Yang, X. Shen, W. Yang, J.K. Kim, Templating strategies for 3d-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/pdms composites with outstanding emi shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13(1), 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11(24), 21946–21954 (2019). https://doi.org/10.1021/acsami.9b07377
- M.C. Vu, D. Mani, T.-H. Jeong, J.-B. Kim, C.-S. Lim et al., Nacre-inspired nanocomposite papers of graphene fluoride integrated 3d aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 429, 132182 (2022). https://doi.org/10.1016/j.cej.2021.132182
- Y. Liu, M. Lu, Z. Hu, L. Liang, J. Shi et al., Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy. Chem. Eng. J. 382, 122733 (2020). https://doi.org/10.1016/j.cej.2019.122733
- M.C. Vu, P.J. Park, S.-R. Bae, S.Y. Kim, Y.-M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9(13), 8527–8540 (2021). https://doi.org/10.1039/d0ta12306d
- B.S. Lee, Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2d graphene. J. Phys.: Condens. Matter 30(29), 295302 (2018). https://doi.org/10.1088/1361-648X/aacabe
- C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014). https://doi.org/10.1039/c3cs60303b
- C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
- Q. Chen, Z. Ma, M. Wang, Z. Wang, J. Feng et al., Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16(1), 1362–1386 (2022). https://doi.org/10.1007/s12274-022-4824-2
- K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62(38), e202309010 (2023). https://doi.org/10.1002/anie.202309010
- G. Li, X. Tian, X. Xu, C. Zhou, J. Wu et al., Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers. Compos. Sci. Technol. 138, 179–185 (2017). https://doi.org/10.1016/j.compscitech.2016.12.001
- K. Xie, Y. Liu, Y. Tian, X. Wu, L. Wu et al., Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework. Compos. Part A Appl. Sci. Manuf. 142, 106265 (2021). https://doi.org/10.1016/j.compositesa.2020.106265
- F. Wang, L.T. Drzal, Y. Qin, Z. Huang, Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Compos. B Eng. 79, 521–529 (2015). https://doi.org/10.1016/j.compositesb.2015.04.031
- Q. Chen, Z. Ma, Z. Wang, L. Liu, M. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32(8), 2110782 (2022). https://doi.org/10.1002/adfm.202110782
- Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3d nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
- G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 189, 108021 (2020). https://doi.org/10.1016/j.compscitech.2020.108021
- X. Zhao, W. Li, Y. Wang, H. Li, J. Wang, Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon 181, 40–47 (2021). https://doi.org/10.1016/j.carbon.2021.05.019
- J. Zhong, W. Sun, Q. Wei, X. Qian, H.M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
- P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
- K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen et al., Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5(8), 6601–6609 (2011). https://doi.org/10.1021/nn202040c
- H. Li, J. Zhao, L. Huang, P. Xia, Y. Zhou et al., A constrained assembly strategy for high-strength natural nanoclay film. ACS Nano 16(4), 6224–6232 (2022). https://doi.org/10.1021/acsnano.2c00023
- S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
- Y. Zhang, S. Wang, P. Tang, Z. Zhao, Z. Xu et al., Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 16(6), 8869–8880 (2022). https://doi.org/10.1021/acsnano.1c10561
- J. Lin, P. Li, Y. Liu, Z. Wang, Y. Wang et al., The origin of the sheet size predicament in graphene macroscopic papers. ACS Nano 15(3), 4824–4832 (2021). https://doi.org/10.1021/acsnano.0c09503
- K. Kim, Z. Lee, B.D. Malone, K.T. Chan, B. Alemán et al., Multiply folded graphene. Phys. Rev. B 83(24), 245433 (2011). https://doi.org/10.1103/PhysRevB.83.245433
- N. Yang, X. Ni, J.-W. Jiang, B. Li, How does folding modulate thermal conductivity of graphene? Appl. Phys. Lett. 100(9), 093107 (2012). https://doi.org/10.1063/1.3690871
- K. Chu, W.S. Li, F.L. Tang, Flatness-dependent thermal conductivity of graphene-based composites. Phys. Lett. A 377(12), 910–914 (2013). https://doi.org/10.1016/j.physleta.2013.02.009
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14(1), 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
- Y. Zhuang, K. Zheng, X. Cao, Q. Fan, G. Ye et al., Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano 14(9), 11733–11742 (2020). https://doi.org/10.1021/acsnano.0c04456
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14(1), 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
- X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3d graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33(18), 2213274 (2023). https://doi.org/10.1002/adfm.202213274
- N. Song, D. Jiao, P. Ding, S. Cui, S. Tang et al., Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J. Mater. Chem. C 4(2), 305–314 (2016). https://doi.org/10.1039/c5tc02194d
- E. Jiao, K. Wu, Y. Liu, M. Lu, H. Zhang et al., Robust bioinspired mxene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A Appl. Sci. Manuf. 143, 106290 (2021). https://doi.org/10.1016/j.compositesa.2021.106290
- E. Jiao, K. Wu, Y. Liu, M. Lu, Z. Hu et al., Ultrarobust mxene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos. Part A Appl. Sci. Manuf. 146, 106417 (2021). https://doi.org/10.1016/j.compositesa.2021.106417
- M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011). https://doi.org/10.1021/nn2014003
- Q. Su, S. Pang, V. Alijani, C. Li, X. Feng et al., Composites of graphene with large aromatic molecules. Adv. Mater. 21(31), 3191–3195 (2009). https://doi.org/10.1002/adma.200803808
- Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 15(5), 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
- C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
- A.C. Kipper, L. Barros da Silva, Non equilibrium molecular dynamics simulation study of thermal conductivity in doped graphene nanoribbons. Phys. B 556, 1–5 (2019). https://doi.org/10.1016/j.physb.2018.12.026
- J. Zhu, W. Cao, M. Yue, Y. Hou, J. Han et al., Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 9(3), 2489–2501 (2015). https://doi.org/10.1021/nn504927e
- J. Zhou, S. Wang, J. Zhang, Y. Wang, H. Deng et al., Enhancing bioinspired aramid nanofiber networks by interfacial hydrogen bonds for multiprotection under an extreme environment. ACS Nano 17(4), 3620–3631 (2023). https://doi.org/10.1021/acsnano.2c10460
References
From chip to the cooling system, A. Habibi Khalaj, S.K. Halgamuge, A review on efficient thermal management of air- and liquid-cooled data centers. Appl. Energy 205, 1165–1188 (2017). https://doi.org/10.1016/j.apenergy.2017.08.037
N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
C. Woodcock, C. Ng’oma, M. Sweet, Y. Wang, Y. Peles et al., Ultra-high heat flux dissipation with piranha pin fins. Int. J. Heat Mass Transfer 128, 504–515 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.030
M. Manno, B. Yang, S. Khanna, P. McCluskey, A. Bar-Cohen, Microcontact-enhanced thermoelectric cooling of ultrahigh heat flux hotspots. IEEE Trans. Compon. Packag. Manuf. Technol. 5(12), 1775–1783 (2015). https://doi.org/10.1109/tcpmt.2015.2495350
H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng et al., Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006
N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan et al., Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013). https://doi.org/10.1038/ncomms2448
S.E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh et al., Extremely anisotropic van der waals thermal conductors. Nature 597(7878), 660–665 (2021). https://doi.org/10.1038/s41586-021-03867-8
Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62(5), e202216093 (2023). https://doi.org/10.1002/anie.202216093
H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
X. Xu, J. Chen, J. Zhou, B. Li, Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30(17), 1705544 (2018). https://doi.org/10.1002/adma.201705544
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
S. Yu, X. Shen, J.K. Kim, Beyond homogeneous dispersion: oriented conductive fillers for high kappa nanocomposites. Mater. Horiz. 8(11), 3009–3042 (2021). https://doi.org/10.1039/d1mh00907a
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng., R 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed ti3c2tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
B. Sun, X. Huang, Seeking advanced thermal management for stretchable electronics. npj Flexible Electron. 5(1), 12 (2021). https://doi.org/10.1038/s41528-021-00109-9
H. Hong, Y.H. Jung, J.S. Lee, C. Jeong, J.U. Kim et al., Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 29(37), 1902575 (2019). https://doi.org/10.1002/adfm.201902575
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13(1), 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
Y. Lin, Q. Kang, Y. Liu, Y. Zhu, P. Jiang et al., Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5g base stations and thermoelectric generators. Nano-Micro Lett. 15(1), 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured mxene@silver fillers. Nano Res. 16(5), 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37(12), 1273–1281 (2012). https://doi.org/10.1557/mrs.2012.203
K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2019). https://doi.org/10.1088/2053-1583/ab48d9
K. Ruan, J. Gu, Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films. Macromolecules 55(10), 4134–4145 (2022). https://doi.org/10.1021/acs.macromol.2c00491
H. Fang, S.-L. Bai, C.P. Wong, Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A Appl. Sci. Manuf. 112, 216–238 (2018). https://doi.org/10.1016/j.compositesa.2018.06.010
X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng., R 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
J. Yang, X. Shen, W. Yang, J.K. Kim, Templating strategies for 3d-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/pdms composites with outstanding emi shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13(1), 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
X. Wang, P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 11(24), 21946–21954 (2019). https://doi.org/10.1021/acsami.9b07377
M.C. Vu, D. Mani, T.-H. Jeong, J.-B. Kim, C.-S. Lim et al., Nacre-inspired nanocomposite papers of graphene fluoride integrated 3d aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 429, 132182 (2022). https://doi.org/10.1016/j.cej.2021.132182
Y. Liu, M. Lu, Z. Hu, L. Liang, J. Shi et al., Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy. Chem. Eng. J. 382, 122733 (2020). https://doi.org/10.1016/j.cej.2019.122733
M.C. Vu, P.J. Park, S.-R. Bae, S.Y. Kim, Y.-M. Kang et al., Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 9(13), 8527–8540 (2021). https://doi.org/10.1039/d0ta12306d
B.S. Lee, Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2d graphene. J. Phys.: Condens. Matter 30(29), 295302 (2018). https://doi.org/10.1088/1361-648X/aacabe
C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43(1), 291–312 (2014). https://doi.org/10.1039/c3cs60303b
C.P. Feng, F. Wei, K.Y. Sun, Y. Wang, H.B. Lan et al., Emerging flexible thermally conductive films: mechanism, fabrication, application. Nano-Micro Lett. 14(1), 127 (2022). https://doi.org/10.1007/s40820-022-00868-8
Q. Chen, Z. Ma, M. Wang, Z. Wang, J. Feng et al., Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16(1), 1362–1386 (2022). https://doi.org/10.1007/s12274-022-4824-2
K. Ruan, X. Shi, Y. Zhang, Y. Guo, X. Zhong et al., Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem. Int. Ed. 62(38), e202309010 (2023). https://doi.org/10.1002/anie.202309010
G. Li, X. Tian, X. Xu, C. Zhou, J. Wu et al., Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers. Compos. Sci. Technol. 138, 179–185 (2017). https://doi.org/10.1016/j.compscitech.2016.12.001
K. Xie, Y. Liu, Y. Tian, X. Wu, L. Wu et al., Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework. Compos. Part A Appl. Sci. Manuf. 142, 106265 (2021). https://doi.org/10.1016/j.compositesa.2020.106265
F. Wang, L.T. Drzal, Y. Qin, Z. Huang, Multifunctional graphene nanoplatelets/cellulose nanocrystals composite paper. Compos. B Eng. 79, 521–529 (2015). https://doi.org/10.1016/j.compositesb.2015.04.031
Q. Chen, Z. Ma, Z. Wang, L. Liu, M. Zhu et al., Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 32(8), 2110782 (2022). https://doi.org/10.1002/adfm.202110782
Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3d nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
G. Xiao, J. Di, H. Li, J. Wang, Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 189, 108021 (2020). https://doi.org/10.1016/j.compscitech.2020.108021
X. Zhao, W. Li, Y. Wang, H. Li, J. Wang, Bioinspired modified graphite film with superb mechanical and thermoconductive properties. Carbon 181, 40–47 (2021). https://doi.org/10.1016/j.carbon.2021.05.019
J. Zhong, W. Sun, Q. Wei, X. Qian, H.M. Cheng et al., Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 9(1), 3484 (2018). https://doi.org/10.1038/s41467-018-05723-2
P. Li, M. Yang, Y. Liu, H. Qin, J. Liu et al., Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 11(1), 2645 (2020). https://doi.org/10.1038/s41467-020-16494-0
K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen et al., Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5(8), 6601–6609 (2011). https://doi.org/10.1021/nn202040c
H. Li, J. Zhao, L. Huang, P. Xia, Y. Zhou et al., A constrained assembly strategy for high-strength natural nanoclay film. ACS Nano 16(4), 6224–6232 (2022). https://doi.org/10.1021/acsnano.2c00023
S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
Y. Zhang, S. Wang, P. Tang, Z. Zhao, Z. Xu et al., Realizing spontaneously regular stacking of pristine graphene oxide by a chemical-structure-engineering strategy for mechanically strong macroscopic films. ACS Nano 16(6), 8869–8880 (2022). https://doi.org/10.1021/acsnano.1c10561
J. Lin, P. Li, Y. Liu, Z. Wang, Y. Wang et al., The origin of the sheet size predicament in graphene macroscopic papers. ACS Nano 15(3), 4824–4832 (2021). https://doi.org/10.1021/acsnano.0c09503
K. Kim, Z. Lee, B.D. Malone, K.T. Chan, B. Alemán et al., Multiply folded graphene. Phys. Rev. B 83(24), 245433 (2011). https://doi.org/10.1103/PhysRevB.83.245433
N. Yang, X. Ni, J.-W. Jiang, B. Li, How does folding modulate thermal conductivity of graphene? Appl. Phys. Lett. 100(9), 093107 (2012). https://doi.org/10.1063/1.3690871
K. Chu, W.S. Li, F.L. Tang, Flatness-dependent thermal conductivity of graphene-based composites. Phys. Lett. A 377(12), 910–914 (2013). https://doi.org/10.1016/j.physleta.2013.02.009
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14(1), 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
Y. Zhuang, K. Zheng, X. Cao, Q. Fan, G. Ye et al., Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano 14(9), 11733–11742 (2020). https://doi.org/10.1021/acsnano.0c04456
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
L. Huang, G. Xiao, Y. Wang, H. Li, Y. Zhou et al., Self-exfoliation of flake graphite for bioinspired compositing with aramid nanofiber toward integration of mechanical and thermoconductive properties. Nano-Micro Lett. 14(1), 168 (2022). https://doi.org/10.1007/s40820-022-00919-0
X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3d graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33(18), 2213274 (2023). https://doi.org/10.1002/adfm.202213274
N. Song, D. Jiao, P. Ding, S. Cui, S. Tang et al., Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J. Mater. Chem. C 4(2), 305–314 (2016). https://doi.org/10.1039/c5tc02194d
E. Jiao, K. Wu, Y. Liu, M. Lu, H. Zhang et al., Robust bioinspired mxene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A Appl. Sci. Manuf. 143, 106290 (2021). https://doi.org/10.1016/j.compositesa.2021.106290
E. Jiao, K. Wu, Y. Liu, M. Lu, Z. Hu et al., Ultrarobust mxene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos. Part A Appl. Sci. Manuf. 146, 106417 (2021). https://doi.org/10.1016/j.compositesa.2021.106417
M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011). https://doi.org/10.1021/nn2014003
Q. Su, S. Pang, V. Alijani, C. Li, X. Feng et al., Composites of graphene with large aromatic molecules. Adv. Mater. 21(31), 3191–3195 (2009). https://doi.org/10.1002/adma.200803808
Y. Han, K. Ruan, J. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 15(5), 4747–4755 (2022). https://doi.org/10.1007/s12274-022-4159-z
C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
A.C. Kipper, L. Barros da Silva, Non equilibrium molecular dynamics simulation study of thermal conductivity in doped graphene nanoribbons. Phys. B 556, 1–5 (2019). https://doi.org/10.1016/j.physb.2018.12.026
J. Zhu, W. Cao, M. Yue, Y. Hou, J. Han et al., Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 9(3), 2489–2501 (2015). https://doi.org/10.1021/nn504927e
J. Zhou, S. Wang, J. Zhang, Y. Wang, H. Deng et al., Enhancing bioinspired aramid nanofiber networks by interfacial hydrogen bonds for multiprotection under an extreme environment. ACS Nano 17(4), 3620–3631 (2023). https://doi.org/10.1021/acsnano.2c10460