Mitigating Lattice Distortion of High-Voltage LiCoO2 via Core-Shell Structure Induced by Cationic Heterogeneous Co-Doping for Lithium-Ion Batteries
Corresponding Author: Haitao Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 48
Abstract
Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes. However, the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti4+ will be concentrated on grain boundaries, which hinders the grain growth. In order to synthesize large single-crystal layered oxide cathodes, considering the different diffusivities of different dopant ions, we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO2 (CS-LCO). In the current work, the high-diffusivity Al3+/Mg2+ ions occupy the core of single-crystal grain while the low diffusivity Ti4+ ions enrich the shell layer. The Ti4+-enriched shell layer (~ 12 nm) with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes. In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion. Under a high upper cut-off voltage of 4.6 V, the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g−1 with a good retention of ~ 89% after 300 cycles, and reaches a high specific capacity of 163.8 mAh g−1 at 5C. The proposed strategy can be extended to other pairs of low- (Zr4+, Ta5+, and W6+, etc.) and high-diffusivity cations (Zn2+, Ni2+, and Fe3+, etc.) for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.
Highlights:
1 A simple two-step multi-element co-doping strategy is proposed to fabricate core-shell structured LiCoO2 based on the different diffusivities of dopant ions.
2 The high diffusivity Al3+/Mg2+ ions occupy the core of single-crystal grain while the low diffusivity Ti4+ ions enrich the shell layer.
3 In-situ XRD demonstrates the mitigated structural distortion under a high cut-off voltage of 4.6 V, resulting in a significantly improved cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11(1), 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
- J. Xu, Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-Ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
- Y. Liu, T. Zeng, G. Li, T. Wan, M. Li et al., The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Stor. Mater. 52, 534–546 (2022). https://doi.org/10.1016/j.ensm.2022.08.026
- H. Zhu, Y. Tang, K.M. Wiaderek, O.J. Borkiewicz, Y. Ren et al., Spontaneous strain buffer enables superior cycling stability in single-crystal nickel-rich NCM cathode. Nano Lett. 21(23), 9997–10005 (2021). https://doi.org/10.1021/acs.nanolett.1c03613
- Z. Zhong, L. Chen, S. Huang, W. Shang, L. Kong et al., Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries. J. Mater. Sci. 55(7), 2913–2922 (2020). https://doi.org/10.1007/s10853-019-04133-z
- Z. Chen, J.R. Dahn, Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 49(7), 1079–1090 (2004). https://doi.org/10.1016/j.electacta.2003.10.019
- G.G. Amatucci, J.M. Tarascon, L.C. Klein, CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143(3), 1114–1123 (1996). https://doi.org/10.1149/1.1836594
- Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11(2), 2000982 (2021). https://doi.org/10.1002/aenm.202000982
- D. Takamatsu, Y. Koyama, Y. Orikasa, S. Mori, T. Nakatsutsumi et al., First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection x-ray absorption spectroscopy. Angew. Chem. Int. Ed. 51(46), 11597–11601 (2012). https://doi.org/10.1002/anie.201203910
- G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83(1), 167–173 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
- Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen et al., Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3(11), 936–943 (2018). https://doi.org/10.1038/s41560-018-0180-6
- W. Kong, J. Zhang, D. Wong, W. Yang, J. Yang et al., Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew. Chem. Int. Ed. 133(52), 27308–27318 (2021). https://doi.org/10.1002/anie.202112508
- J. Ahn, J. Kang, M.K. Cho, H. Park, W. Ko et al., Selective anionic redox and suppressed structural disordering enabling high-energy and long-life Li-rich layered-oxide cathode. Adv. Energy Mater. 11(47), 2102311 (2021). https://doi.org/10.1002/aenm.202102311
- M. Wang, X. Feng, H. Xiang, Y. Feng, C. Qin et al., A novel protective strategy on high-voltage LiCoO2 cathode for fast charging applications: Li1.6Mg1.6Sn2.8O8 double layer structure via SnO2 surface modification. Small Methods 3(11), 1900355 (2019). https://doi.org/10.1002/smtd.201900355
- Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu et al., Mg-pillared LiCoO2: towards stable cycling at 4.6 V. Angew. Chem. Int. Ed. 60(9), 4682–4688 (2021). https://doi.org/10.1002/anie.202014226
- A. Liu, J. Li, R. Shunmugasundaram, J.R. Dahn, Synthesis of Mg and Mn doped LiCoO2 and effects on high voltage cycling. J. Electrochem. Soc. 164(7), A1655–A1664 (2017). https://doi.org/10.1149/2.1381707jes
- L. Wang, J. Ma, C. Wang, X. Yu, R. Liu et al., A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 6(12), 1900355 (2019). https://doi.org/10.1002/advs.201900355
- J.N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4(7), 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
- Y. Hong, X. Huang, C. Wei, J. Wang, J. Zhang et al., Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6(10), 2759–2769 (2020). https://doi.org/10.1016/j.chempr.2020.07.017
- M. Hirooka, T. Sekiya, Y. Omomo, M. Yamada, H. Katayama et al., Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition. J. Power. Sources 463, 228127 (2020). https://doi.org/10.1016/j.jpowsour.2020.228127
- H. Ronduda, M. Zybert, A. Szczęsna, T. Trzeciak, A. Ostrowski et al., Addition of yttrium oxide as an effective way to enhance the cycling stability of LiCoO2 cathode material for Li-ion batteries. Solid State Ionics 355, 115426 (2020). https://doi.org/10.1016/j.ssi.2020.115426
- J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng et al., Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 34(52), 2200912 (2022). https://doi.org/10.1002/adma.202200912
- J. Langdon, A. Manthiram, A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Stor. Mater. 37, 143–160 (2021). https://doi.org/10.1016/j.ensm.2021.02.003
- C. Yang, X. Liao, X. Zhou, C. Sun, R. Qu et al., Phosphate-rich interface for a highly stable and safe 4.6 V LiCoO2 cathode. Adv. Mater. 35(14), 2210966 (2023). https://doi.org/10.1002/adma.202210966
- S. Kim, S. Choi, K. Lee, G.J. Yang, S.S. Lee et al., Self-assembly of core–shell structures driven by low doping limit of Ti in LiCoO2: first-principles thermodynamic and experimental investigation. Phys. Chem. Chem. Phys. 19(5), 4104–4113 (2017). https://doi.org/10.1039/C6CP08114B
- S. Song, Y. Li, K. Yang, Z. Chen, J. Liu et al., Interplay between multiple doping elements in high-voltage LiCoO2. J. Mater. Chem. A 9(9), 5702–5710 (2021). https://doi.org/10.1039/D0TA09931G
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards et al., Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/1.4812323
- G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- M. Cai, Y. Dong, M. Xie, W. Dong, C. Dong et al., Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat. Energy 8(2), 159–168 (2023). https://doi.org/10.1038/s41560-022-01179-3
- C.-W. Wang, Y. Zhou, J.-H. You, J.-D. Chen, Z. Zhang et al., High-voltage LiCoO2 material encapsulated in a Li4Ti5O12 ultrathin layer by high-speed solid-phase coating process. ACS Appl. Energy Mater. 3(3), 2593–2603 (2020). https://doi.org/10.1021/acsaem.9b02291
- Y. Wang, Q. Zhang, Z.C. Xue, L. Yang, J. Wang et al., An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 10(28), 2001413 (2020). https://doi.org/10.1002/aenm.202001413
- Z. Li, A. Li, H. Zhang, F. Ning, W. Li et al., Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating. Energy Stor. Mater. 29, 71–77 (2020). https://doi.org/10.1016/j.ensm.2020.03.031
- J.H. Shim, J.M. Han, J.H. Lee, S. Lee, Mixed electronic and ionic conductor-coated cathode material for high-voltage lithium ion battery. ACS Appl. Mater. Interfaces 8(19), 12205–12210 (2016). https://doi.org/10.1021/acsami.6b03113
- Z. Zhu, H. Wang, Y. Li, R. Gao, X. Xiao et al., A surface Se-substituted LiCo[O2−δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv. Mater. 32(50), 2005182 (2020). https://doi.org/10.1002/adma.202005182
- J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical surface passivation of LiCoO2 ps at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9(1), 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
- Z. Feng, R. Rajagopalan, D. Sun, Y. Tang, H. Wang, In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 382, 122959 (2020). https://doi.org/10.1016/j.cej.2019.122959
- X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao et al., Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 12(23), 2200197 (2022). https://doi.org/10.1002/aenm.202200197
- W. Zheng, Q. Liu, Z. Wang, Z. Wu, S. Gu et al., Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Stor. Mater. 28, 300–306 (2020). https://doi.org/10.1016/j.ensm.2020.03.016
- Y. Lai, H. Xie, P. Li, B. Li, A. Zhao et al., Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv. Mater. 34(47), 2206039 (2022). https://doi.org/10.1002/adma.202206039
- H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
- Q. Ding, W. Zheng, A. Zhao, Y. Zhao, K. Chen et al., W-doping induced efficient tunnel-to-layered structure transformation of Na0.44Mn1-xWxO2: phase evolution, sodium-storage properties, and moisture stability. Adv. Energy Mater. 13(21), 2203802 (2023). https://doi.org/10.1002/aenm.202203802
- H.-G. Jung, J. Hassoun, J.-B. Park, Y.-K. Sun, B. Scrosati, An improved high-performance lithium–air battery. Nat. Chem. 4(7), 579–585 (2012). https://doi.org/10.1038/nchem.1376
- F. Li, K. Fan, Y. Tian, P. Hou, H. Zhang et al., General flux-free synthesis of single crystal Ni-rich layered cathodes by employing a Li-containing spinel transition phase for lithium-ion batteries. J. Mater. Chem. A 10(31), 16420–16429 (2022). https://doi.org/10.1039/D2TA02865D
- Y.C. Lu, A.N. Mansour, N. Yabuuchi, Y. Shao-Horn, Probing the origin of enhanced stability of “AlPO4” nanop coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies. Chem. Mater. 21(19), 4408–4424 (2009). https://doi.org/10.1021/cm900862v
- Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu et al., Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370(6522), 1313–1317 (2020). https://doi.org/10.1126/science.abc3167
- L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47(17), 6505–6602 (2018). https://doi.org/10.1039/C8CS00322J
References
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo et al., Nanogenerator-based self-charging energy storage devices. Nano-Micro Lett. 11(1), 19 (2019). https://doi.org/10.1007/s40820-019-0251-7
J. Xu, Critical review on cathode–electrolyte interphase toward high-voltage cathodes for Li-Ion batteries. Nano-Micro Lett. 14(1), 166 (2022). https://doi.org/10.1007/s40820-022-00917-2
Y. Liu, T. Zeng, G. Li, T. Wan, M. Li et al., The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Stor. Mater. 52, 534–546 (2022). https://doi.org/10.1016/j.ensm.2022.08.026
H. Zhu, Y. Tang, K.M. Wiaderek, O.J. Borkiewicz, Y. Ren et al., Spontaneous strain buffer enables superior cycling stability in single-crystal nickel-rich NCM cathode. Nano Lett. 21(23), 9997–10005 (2021). https://doi.org/10.1021/acs.nanolett.1c03613
Z. Zhong, L. Chen, S. Huang, W. Shang, L. Kong et al., Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries. J. Mater. Sci. 55(7), 2913–2922 (2020). https://doi.org/10.1007/s10853-019-04133-z
Z. Chen, J.R. Dahn, Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 49(7), 1079–1090 (2004). https://doi.org/10.1016/j.electacta.2003.10.019
G.G. Amatucci, J.M. Tarascon, L.C. Klein, CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143(3), 1114–1123 (1996). https://doi.org/10.1149/1.1836594
Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11(2), 2000982 (2021). https://doi.org/10.1002/aenm.202000982
D. Takamatsu, Y. Koyama, Y. Orikasa, S. Mori, T. Nakatsutsumi et al., First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection x-ray absorption spectroscopy. Angew. Chem. Int. Ed. 51(46), 11597–11601 (2012). https://doi.org/10.1002/anie.201203910
G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 83(1), 167–173 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
Q. Liu, X. Su, D. Lei, Y. Qin, J. Wen et al., Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3(11), 936–943 (2018). https://doi.org/10.1038/s41560-018-0180-6
W. Kong, J. Zhang, D. Wong, W. Yang, J. Yang et al., Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew. Chem. Int. Ed. 133(52), 27308–27318 (2021). https://doi.org/10.1002/anie.202112508
J. Ahn, J. Kang, M.K. Cho, H. Park, W. Ko et al., Selective anionic redox and suppressed structural disordering enabling high-energy and long-life Li-rich layered-oxide cathode. Adv. Energy Mater. 11(47), 2102311 (2021). https://doi.org/10.1002/aenm.202102311
M. Wang, X. Feng, H. Xiang, Y. Feng, C. Qin et al., A novel protective strategy on high-voltage LiCoO2 cathode for fast charging applications: Li1.6Mg1.6Sn2.8O8 double layer structure via SnO2 surface modification. Small Methods 3(11), 1900355 (2019). https://doi.org/10.1002/smtd.201900355
Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu et al., Mg-pillared LiCoO2: towards stable cycling at 4.6 V. Angew. Chem. Int. Ed. 60(9), 4682–4688 (2021). https://doi.org/10.1002/anie.202014226
A. Liu, J. Li, R. Shunmugasundaram, J.R. Dahn, Synthesis of Mg and Mn doped LiCoO2 and effects on high voltage cycling. J. Electrochem. Soc. 164(7), A1655–A1664 (2017). https://doi.org/10.1149/2.1381707jes
L. Wang, J. Ma, C. Wang, X. Yu, R. Liu et al., A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 6(12), 1900355 (2019). https://doi.org/10.1002/advs.201900355
J.N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4(7), 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
Y. Hong, X. Huang, C. Wei, J. Wang, J. Zhang et al., Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6(10), 2759–2769 (2020). https://doi.org/10.1016/j.chempr.2020.07.017
M. Hirooka, T. Sekiya, Y. Omomo, M. Yamada, H. Katayama et al., Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition. J. Power. Sources 463, 228127 (2020). https://doi.org/10.1016/j.jpowsour.2020.228127
H. Ronduda, M. Zybert, A. Szczęsna, T. Trzeciak, A. Ostrowski et al., Addition of yttrium oxide as an effective way to enhance the cycling stability of LiCoO2 cathode material for Li-ion batteries. Solid State Ionics 355, 115426 (2020). https://doi.org/10.1016/j.ssi.2020.115426
J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng et al., Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 34(52), 2200912 (2022). https://doi.org/10.1002/adma.202200912
J. Langdon, A. Manthiram, A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Stor. Mater. 37, 143–160 (2021). https://doi.org/10.1016/j.ensm.2021.02.003
C. Yang, X. Liao, X. Zhou, C. Sun, R. Qu et al., Phosphate-rich interface for a highly stable and safe 4.6 V LiCoO2 cathode. Adv. Mater. 35(14), 2210966 (2023). https://doi.org/10.1002/adma.202210966
S. Kim, S. Choi, K. Lee, G.J. Yang, S.S. Lee et al., Self-assembly of core–shell structures driven by low doping limit of Ti in LiCoO2: first-principles thermodynamic and experimental investigation. Phys. Chem. Chem. Phys. 19(5), 4104–4113 (2017). https://doi.org/10.1039/C6CP08114B
S. Song, Y. Li, K. Yang, Z. Chen, J. Liu et al., Interplay between multiple doping elements in high-voltage LiCoO2. J. Mater. Chem. A 9(9), 5702–5710 (2021). https://doi.org/10.1039/D0TA09931G
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 1505–1509 (1998). https://doi.org/10.1103/PhysRevB.57.1505
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards et al., Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 011002 (2013). https://doi.org/10.1063/1.4812323
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
M. Cai, Y. Dong, M. Xie, W. Dong, C. Dong et al., Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat. Energy 8(2), 159–168 (2023). https://doi.org/10.1038/s41560-022-01179-3
C.-W. Wang, Y. Zhou, J.-H. You, J.-D. Chen, Z. Zhang et al., High-voltage LiCoO2 material encapsulated in a Li4Ti5O12 ultrathin layer by high-speed solid-phase coating process. ACS Appl. Energy Mater. 3(3), 2593–2603 (2020). https://doi.org/10.1021/acsaem.9b02291
Y. Wang, Q. Zhang, Z.C. Xue, L. Yang, J. Wang et al., An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 10(28), 2001413 (2020). https://doi.org/10.1002/aenm.202001413
Z. Li, A. Li, H. Zhang, F. Ning, W. Li et al., Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating. Energy Stor. Mater. 29, 71–77 (2020). https://doi.org/10.1016/j.ensm.2020.03.031
J.H. Shim, J.M. Han, J.H. Lee, S. Lee, Mixed electronic and ionic conductor-coated cathode material for high-voltage lithium ion battery. ACS Appl. Mater. Interfaces 8(19), 12205–12210 (2016). https://doi.org/10.1021/acsami.6b03113
Z. Zhu, H. Wang, Y. Li, R. Gao, X. Xiao et al., A surface Se-substituted LiCo[O2−δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv. Mater. 32(50), 2005182 (2020). https://doi.org/10.1002/adma.202005182
J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical surface passivation of LiCoO2 ps at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9(1), 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
Z. Feng, R. Rajagopalan, D. Sun, Y. Tang, H. Wang, In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem. Eng. J. 382, 122959 (2020). https://doi.org/10.1016/j.cej.2019.122959
X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao et al., Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 12(23), 2200197 (2022). https://doi.org/10.1002/aenm.202200197
W. Zheng, Q. Liu, Z. Wang, Z. Wu, S. Gu et al., Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Stor. Mater. 28, 300–306 (2020). https://doi.org/10.1016/j.ensm.2020.03.016
Y. Lai, H. Xie, P. Li, B. Li, A. Zhao et al., Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv. Mater. 34(47), 2206039 (2022). https://doi.org/10.1002/adma.202206039
H. Wang, Z. Cui, S.-A. He, J. Zhu, W. Luo et al., Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium–sulfur batteries. Nano-Micro Lett. 14(1), 189 (2022). https://doi.org/10.1007/s40820-022-00935-0
Q. Ding, W. Zheng, A. Zhao, Y. Zhao, K. Chen et al., W-doping induced efficient tunnel-to-layered structure transformation of Na0.44Mn1-xWxO2: phase evolution, sodium-storage properties, and moisture stability. Adv. Energy Mater. 13(21), 2203802 (2023). https://doi.org/10.1002/aenm.202203802
H.-G. Jung, J. Hassoun, J.-B. Park, Y.-K. Sun, B. Scrosati, An improved high-performance lithium–air battery. Nat. Chem. 4(7), 579–585 (2012). https://doi.org/10.1038/nchem.1376
F. Li, K. Fan, Y. Tian, P. Hou, H. Zhang et al., General flux-free synthesis of single crystal Ni-rich layered cathodes by employing a Li-containing spinel transition phase for lithium-ion batteries. J. Mater. Chem. A 10(31), 16420–16429 (2022). https://doi.org/10.1039/D2TA02865D
Y.C. Lu, A.N. Mansour, N. Yabuuchi, Y. Shao-Horn, Probing the origin of enhanced stability of “AlPO4” nanop coated LiCoO2 during cycling to high voltages: combined XRD and XPS studies. Chem. Mater. 21(19), 4408–4424 (2009). https://doi.org/10.1021/cm900862v
Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu et al., Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370(6522), 1313–1317 (2020). https://doi.org/10.1126/science.abc3167
L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47(17), 6505–6602 (2018). https://doi.org/10.1039/C8CS00322J