Self-Exfoliation of Flake Graphite for Bioinspired Compositing with Aramid Nanofiber toward Integration of Mechanical and Thermoconductive Properties
Corresponding Author: Jianfeng Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 168
Abstract
Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices. Herein, we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network. A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles, generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies, such as ultrasonication, high-shear mixing and ball milling. Inspired by nacre, a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol–gel-film transformation. It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers, but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.
Highlights:
1 A self-grinding exfoliation strategy that depends on mutual shear friction between flake graphite particles is successfully developed to prepare pristine graphene with largely enhanced yield and productivity.
2 Bioinspired assembly of pristine graphene nanosheets to an interconnected aramid nanofiber network is achieved by a continuous sol-gel-film transformation strategy and generates a flexible yet highly thermoconductive film.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
- J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b
- X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
- Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
- H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
- Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2019). https://doi.org/10.1088/2053-1583/ab48d9
- Y. Song, F. Jiang, N. Song, L. Shi, P. Ding, Multilayered structural design of flexible films for smart thermal management. Compos. Part A Appl. Sci. Manuf. 141, 106222 (2021). https://doi.org/10.1016/j.compositesa.2020.106222
- J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328(5975), 213–216 (2010). https://doi.org/10.1126/science.1184014
- X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008). https://doi.org/10.1038/nnano.2008.199
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
- Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng et al., The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4, 1–9 (2012). https://doi.org/10.1007/BF03353684
- A. Ciesielski, S. Haar, A. Aliprandi, M.E. Garah, G. Tregnago et al., Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano 10(12), 10768–10777 (2016). https://doi.org/10.1021/acsnano.6b03823
- Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008). https://doi.org/10.1038/nnano.2008.215
- A. Pattammattel, C.V. Kumar, Kitchen chemistry 101: multigram production of high quality biographene in a blender with edible proteins. Adv. Funct. Mater. 25(45), 7088–7098 (2015). https://doi.org/10.1002/adfm.201503247
- K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014). https://doi.org/10.1038/nmat3944
- D.S. Kim, J.M. Jeong, H.J. Park, Y.K. Kim, K.G. Lee et al., Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nano-Micro Lett. 13, 87 (2021). https://doi.org/10.1007/s40820-021-00617-3
- D. Shi, M. Yang, B. Chang, Z. Ai, K. Zhang et al., Ultrasonic-ball milling: a novel strategy to prepare large-size ultrathin 2D materials. Small 16(13), e1906734 (2020). https://doi.org/10.1002/smll.201906734
- C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren et al., Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27(20), 1700240 (2017). https://doi.org/10.1002/adfm.201700240
- L. Niu, J.N. Coleman, H. Zhang, H. Shin, M. Chhowalla et al., Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12(3), 272–293 (2016). https://doi.org/10.1002/smll.201502207
- T. Zhou, Q. Cheng, Chemical strategies for making strong graphene materials. Angew. Chem. Int. Ed. 60(34), 18397–18410 (2021). https://doi.org/10.1002/anie.202102761
- A. Walther, I. Bjurhager, J.M. Malho, J. Pere, J. Ruokolainen et al., Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 10(8), 2742–2748 (2010). https://doi.org/10.1021/nl1003224
- A. Eckert, M. Abbasi, T. Mang, K. Saalwächter, A. Walther, Structure, mechanical properties, and dynamics of polyethylenoxide/nanoclay nacre-mimetic nanocomposites. Macromolecules 53(5), 1716–1725 (2020). https://doi.org/10.1021/acs.macromol.9b01931
- F. Lossada, D. Jiao, D. Hoenders, A. Walther, Recyclable and light-adaptive vitrimer-based nacre-mimetic nanocomposites. ACS Nano 15(3), 5043–5055 (2021). https://doi.org/10.1021/acsnano.0c10001
- H. Yao, J. Ge, L. Mao, Y. Yan, S. Yu, 25th anniversary : artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: synthesis, fabrication and applications. Adv. Mater. 26(1), 163–187 (2014). https://doi.org/10.1002/adma.201303470
- H. Yao, Z. Tan, H. Fang, S. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem. Int. Ed. 49(52), 10127–10131 (2010). https://doi.org/10.1002/anie.201004748
- S. Li, L. Mao, H. Gao, H. Yao, S. Yu, Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness. Sci. China Mater. 60(10), 909–917 (2017). https://doi.org/10.1007/s40843-017-9102-1
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
- J. Peng, C. Huang, C. Cao, E. Saiz, Y. Du et al., Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2(1), 220–232 (2020). https://doi.org/10.1016/j.matt.2019.08.013
- H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang et al., Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28(1), 50–56 (2016). https://doi.org/10.1002/adma.201504313
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/pdms composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- S. Liu, J. Liu, Z. Xu, Y. Liu, P. Li et al., Artificial bicontinuous laminate synergistically reinforces and toughens dilute graphene composites. ACS Nano 12(11), 11236–11243 (2018). https://doi.org/10.1021/acsnano.8b05835
- S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
- T. Hu, Y. Song, J. Di, D. Xie, C. Teng, Highly thermally conductive layered polymer composite from solvent-exfoliated pristine graphene. Carbon 140, 596–602 (2018). https://doi.org/10.1016/j.carbon.2018.09.026
- C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
- M.A. Meyers, J. McKittrick, P.Y. Chen, Structural biological materials: critical mechanics-materials connections. Science 339(6121), 773–779 (2013). https://doi.org/10.1126/science.1220854
- M.I. Lopez, P.Y. Chen, J. McKittrick, M.A. Meyers, Growth of nacre in abalone: seasonal and feeding effects. Mater. Sci. Eng. C 31(2), 238–245 (2011). https://doi.org/10.1016/j.msec.2010.09.003
- J. Wang, Q. Cheng, Z. Tang, Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 41(3), 1111–1129 (2012). https://doi.org/10.1039/c1cs15106a
- D. Lee, B. Lee, K.H. Park, H.J. Ryu, S. Jeon et al., Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15(2), 1238–1244 (2015). https://doi.org/10.1021/nl504397h
- A. Stolle, T. Szuppa, S.E. Leonhardt, B. Ondruschka, Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev. 40(5), 2317–2329 (2011). https://doi.org/10.1039/c0cs00195c
- T.S. Tran, S.J. Park, S.S. Yoo, T.R. Lee, T. Kim, High shear-induced exfoliation of graphite into high quality graphene by taylor-couette flow. RSC Adv. 6(15), 12003–12008 (2016). https://doi.org/10.1039/c5ra22273g
- V. Trappe, V. Prasad, L. Cipelletti, P.N. Segre, D.A. Weitz, Jamming phase diagram for attractive ps. Nature 411(6839), 772–775 (2001). https://doi.org/10.1038/35081021
- C. Vallés, R.J. Young, D.J. Lomax, I.A. Kinloch, The rheological behaviour of concentrated dispersions of graphene oxide. J. Mater. Sci. 49(18), 6311–6320 (2014). https://doi.org/10.1007/s10853-014-8356-3
- D. Chan, R.L. Powell, Rheology of suspensions of spherical ps in a newtonian and a non-newtonian fluid. J. Non-Newton. Fluid Mechan. 15(2), 165–179 (1984). https://doi.org/10.1016/0377-0257(84)80004-X
- M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011). https://doi.org/10.1021/nn2014003
- B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu et al., Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30(22), 2000186 (2020). https://doi.org/10.1002/adfm.202000186
- E. Songfeng, Q. Ma, D. Ning, J. Huang, Z. Jin et al., Bio-inspired covalent crosslink of aramid nanofibers film for improved mechanical performances. Compos. Sci. Technol. 201, 108514 (2021). https://doi.org/10.1016/j.compscitech.2020.108514
- Q. Su, S. Pang, V. Alijani, C. Li, X. Feng et al., Composites of graphene with large aromatic molecules. Adv. Mater. 21(31), 3191–3195 (2009). https://doi.org/10.1002/adma.200803808
- W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017). https://doi.org/10.1039/c7tc00400a
References
L. Peng, Z. Xu, Z. Liu, Y. Guo, P. Li et al., Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29(27), 1700589 (2017). https://doi.org/10.1002/adma.201700589
J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang et al., Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management. J. Mater. Chem. C 6(6), 1363–1369 (2018). https://doi.org/10.1039/c7tc04860b
X. Zeng, J. Sun, Y. Yao, R. Sun, J.B. Xu et al., A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5), 5167–5178 (2017). https://doi.org/10.1021/acsnano.7b02359
Y. Wang, S. Xia, H. Li, J. Wang, Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 29(38), 1903876 (2019). https://doi.org/10.1002/adfm.201903876
H. Zhu, Y. Li, Z. Fang, J. Xu, F. Cao et al., Highly thermally conductive papers with percolative layered boron nitride nanosheets. ACS Nano 8(4), 3606–3613 (2014). https://doi.org/10.1021/nn500134m
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
X. Huang, C. Zhi, Y. Lin, H. Bao, G. Wu et al., Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 142, 100577 (2020). https://doi.org/10.1016/j.mser.2020.100577
Y. Fu, J. Hansson, Y. Liu, S. Chen, A. Zehri et al., Graphene related materials for thermal management. 2D Mater. 7(1), 012001 (2019). https://doi.org/10.1088/2053-1583/ab48d9
Y. Song, F. Jiang, N. Song, L. Shi, P. Ding, Multilayered structural design of flexible films for smart thermal management. Compos. Part A Appl. Sci. Manuf. 141, 106222 (2021). https://doi.org/10.1016/j.compositesa.2020.106222
J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken et al., Two-dimensional phonon transport in supported graphene. Science 328(5975), 213–216 (2010). https://doi.org/10.1126/science.1184014
X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3(8), 491–495 (2008). https://doi.org/10.1038/nnano.2008.199
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011). https://doi.org/10.1038/nmat3064
Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng et al., The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4, 1–9 (2012). https://doi.org/10.1007/BF03353684
A. Ciesielski, S. Haar, A. Aliprandi, M.E. Garah, G. Tregnago et al., Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots. ACS Nano 10(12), 10768–10777 (2016). https://doi.org/10.1021/acsnano.6b03823
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008). https://doi.org/10.1038/nnano.2008.215
A. Pattammattel, C.V. Kumar, Kitchen chemistry 101: multigram production of high quality biographene in a blender with edible proteins. Adv. Funct. Mater. 25(45), 7088–7098 (2015). https://doi.org/10.1002/adfm.201503247
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014). https://doi.org/10.1038/nmat3944
D.S. Kim, J.M. Jeong, H.J. Park, Y.K. Kim, K.G. Lee et al., Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application. Nano-Micro Lett. 13, 87 (2021). https://doi.org/10.1007/s40820-021-00617-3
D. Shi, M. Yang, B. Chang, Z. Ai, K. Zhang et al., Ultrasonic-ball milling: a novel strategy to prepare large-size ultrathin 2D materials. Small 16(13), e1906734 (2020). https://doi.org/10.1002/smll.201906734
C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren et al., Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27(20), 1700240 (2017). https://doi.org/10.1002/adfm.201700240
L. Niu, J.N. Coleman, H. Zhang, H. Shin, M. Chhowalla et al., Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12(3), 272–293 (2016). https://doi.org/10.1002/smll.201502207
T. Zhou, Q. Cheng, Chemical strategies for making strong graphene materials. Angew. Chem. Int. Ed. 60(34), 18397–18410 (2021). https://doi.org/10.1002/anie.202102761
A. Walther, I. Bjurhager, J.M. Malho, J. Pere, J. Ruokolainen et al., Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 10(8), 2742–2748 (2010). https://doi.org/10.1021/nl1003224
A. Eckert, M. Abbasi, T. Mang, K. Saalwächter, A. Walther, Structure, mechanical properties, and dynamics of polyethylenoxide/nanoclay nacre-mimetic nanocomposites. Macromolecules 53(5), 1716–1725 (2020). https://doi.org/10.1021/acs.macromol.9b01931
F. Lossada, D. Jiao, D. Hoenders, A. Walther, Recyclable and light-adaptive vitrimer-based nacre-mimetic nanocomposites. ACS Nano 15(3), 5043–5055 (2021). https://doi.org/10.1021/acsnano.0c10001
H. Yao, J. Ge, L. Mao, Y. Yan, S. Yu, 25th anniversary : artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: synthesis, fabrication and applications. Adv. Mater. 26(1), 163–187 (2014). https://doi.org/10.1002/adma.201303470
H. Yao, Z. Tan, H. Fang, S. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem. Int. Ed. 49(52), 10127–10131 (2010). https://doi.org/10.1002/anie.201004748
S. Li, L. Mao, H. Gao, H. Yao, S. Yu, Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness. Sci. China Mater. 60(10), 909–917 (2017). https://doi.org/10.1007/s40843-017-9102-1
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
J. Han, G. Du, W. Gao, H. Bai, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29(13), 1900412 (2019). https://doi.org/10.1002/adfm.201900412
J. Peng, C. Huang, C. Cao, E. Saiz, Y. Du et al., Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring. Matter 2(1), 220–232 (2020). https://doi.org/10.1016/j.matt.2019.08.013
H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang et al., Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28(1), 50–56 (2016). https://doi.org/10.1002/adma.201504313
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/pdms composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
S. Liu, J. Liu, Z. Xu, Y. Liu, P. Li et al., Artificial bicontinuous laminate synergistically reinforces and toughens dilute graphene composites. ACS Nano 12(11), 11236–11243 (2018). https://doi.org/10.1021/acsnano.8b05835
S. Wan, Y. Chen, S. Fang, S. Wang, Z. Xu et al., High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20(5), 624–631 (2021). https://doi.org/10.1038/s41563-020-00892-2
T. Hu, Y. Song, J. Di, D. Xie, C. Teng, Highly thermally conductive layered polymer composite from solvent-exfoliated pristine graphene. Carbon 140, 596–602 (2018). https://doi.org/10.1016/j.carbon.2018.09.026
C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
M.A. Meyers, J. McKittrick, P.Y. Chen, Structural biological materials: critical mechanics-materials connections. Science 339(6121), 773–779 (2013). https://doi.org/10.1126/science.1220854
M.I. Lopez, P.Y. Chen, J. McKittrick, M.A. Meyers, Growth of nacre in abalone: seasonal and feeding effects. Mater. Sci. Eng. C 31(2), 238–245 (2011). https://doi.org/10.1016/j.msec.2010.09.003
J. Wang, Q. Cheng, Z. Tang, Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 41(3), 1111–1129 (2012). https://doi.org/10.1039/c1cs15106a
D. Lee, B. Lee, K.H. Park, H.J. Ryu, S. Jeon et al., Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15(2), 1238–1244 (2015). https://doi.org/10.1021/nl504397h
A. Stolle, T. Szuppa, S.E. Leonhardt, B. Ondruschka, Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev. 40(5), 2317–2329 (2011). https://doi.org/10.1039/c0cs00195c
T.S. Tran, S.J. Park, S.S. Yoo, T.R. Lee, T. Kim, High shear-induced exfoliation of graphite into high quality graphene by taylor-couette flow. RSC Adv. 6(15), 12003–12008 (2016). https://doi.org/10.1039/c5ra22273g
V. Trappe, V. Prasad, L. Cipelletti, P.N. Segre, D.A. Weitz, Jamming phase diagram for attractive ps. Nature 411(6839), 772–775 (2001). https://doi.org/10.1038/35081021
C. Vallés, R.J. Young, D.J. Lomax, I.A. Kinloch, The rheological behaviour of concentrated dispersions of graphene oxide. J. Mater. Sci. 49(18), 6311–6320 (2014). https://doi.org/10.1007/s10853-014-8356-3
D. Chan, R.L. Powell, Rheology of suspensions of spherical ps in a newtonian and a non-newtonian fluid. J. Non-Newton. Fluid Mechan. 15(2), 165–179 (1984). https://doi.org/10.1016/0377-0257(84)80004-X
M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu et al., Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945–6954 (2011). https://doi.org/10.1021/nn2014003
B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu et al., Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 30(22), 2000186 (2020). https://doi.org/10.1002/adfm.202000186
E. Songfeng, Q. Ma, D. Ning, J. Huang, Z. Jin et al., Bio-inspired covalent crosslink of aramid nanofibers film for improved mechanical performances. Compos. Sci. Technol. 201, 108514 (2021). https://doi.org/10.1016/j.compscitech.2020.108514
Q. Su, S. Pang, V. Alijani, C. Li, X. Feng et al., Composites of graphene with large aromatic molecules. Adv. Mater. 21(31), 3191–3195 (2009). https://doi.org/10.1002/adma.200803808
W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu et al., Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 5(15), 3748–3756 (2017). https://doi.org/10.1039/c7tc00400a