Engineering Multi-field-coupled Synergistic Ion Transport System Based on the Heterogeneous Nanofluidic Membrane for High-Efficient Lithium Extraction
Corresponding Author: Liping Wen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 130
Abstract
The global carbon neutrality strategy brings a wave of rechargeable lithium‐ion batteries technique development and induces an ever-growing consumption and demand for lithium (Li). Among all the Li exploitation, extracting Li from spent LIBs would be a strategic and perspective approach, especially with the low energy consumption and eco-friendly membrane separation method. However, current membrane separation systems mainly focus on monotonous membrane design and structure optimization, and rarely further consider the coordination of inherent structure and applied external field, resulting in limited ion transport. Here, we propose a heterogeneous nanofluidic membrane as a platform for coupling multi-external fields (i.e., light-induced heat, electrical, and concentration gradient fields) to construct the multi-field-coupled synergistic ion transport system (MSITS) for Li-ion extraction from spent LIBs. The Li flux of the MSITS reaches 367.4 mmol m−2 h−1, even higher than the sum flux of those applied individual fields, reflecting synergistic enhancement for ion transport of the multi-field-coupled effect. Benefiting from the adaptation of membrane structure and multi-external fields, the proposed system exhibits ultrahigh selectivity with a Li+/Co2+ factor of 216,412, outperforming previous reports. MSITS based on nanofluidic membrane proves to be a promising ion transport strategy, as it could accelerate ion transmembrane transport and alleviate the ion concentration polarization effect. This work demonstrated a collaborative system equipped with an optimized membrane for high-efficient Li extraction, providing an expanded strategy to investigate the other membrane-based applications of their common similarities in core concepts.
Highlights:
1 The first construct of a multi-field-coupled synergistic ion transport system (MSITS) in Li+ extraction is proposed.
2 Effectively suppress the ion concentration polarization effect of the ion-enrichment zone at the membrane interface.
3 The MSITS equipped with heterogeneous membrane exhibited outstanding separation performance with Li+ flux of 367.4 mmol m−2 h−1 and Li+/Co2+ selectivity of 216,412, outperforming previous reports.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2(1), 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
- A. Battistel, M.S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32(23), 1905440 (2020). https://doi.org/10.1002/adma.201905440
- J. Hou, H. Zhang, A.W. Thornton, A.J. Hill, H. Wang et al., Lithium extraction by emerging metal-organic framework-based membranes. Adv. Funct. Mater. 31(46), 2105991 (2021). https://doi.org/10.1002/adfm.202105991
- G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
- M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson et al., Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3(11), 2622–2646 (2019). https://doi.org/10.1016/j.joule.2019.09.014
- W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen, Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 14(12), 6099–6121 (2021). https://doi.org/10.1039/D1EE00691F
- X. Chang, M. Fan, C.-F. Gu, W.-H. He, Q. Meng et al., Selective extraction of transition metals from spent LiNixCoyMn1−x−yO2 cathode via regulation of coordination environment. Angew. Chem. Int. Ed. 61(24), e202202558 (2022). https://doi.org/10.1002/anie.202202558
- J. Yu, X. Wang, M. Zhou, Q. Wang, A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy Environ. Sci. 12(9), 2672–2677 (2019). https://doi.org/10.1039/C9EE01478K
- M. Zheng, H. Salim, T. Liu, R.A. Stewart, J. Lu et al., Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy Environ. Sci. 14(11), 5801–5815 (2021). https://doi.org/10.1039/D1EE01812D
- M. Fan, X. Chang, Y.-J. Guo, W.-P. Chen, Y.-X. Yin et al., Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy Environ. Sci. 14(3), 1461–1468 (2021). https://doi.org/10.1039/D0EE03914D
- D.H.P. Kang, M. Chen, O.A. Ogunseitan, Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47(10), 5495–5503 (2013). https://doi.org/10.1021/es400614y
- B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
- Z. Lu, Y. Wu, L. Ding, Y. Wei, H. Wang, A lamellar mxene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 60(41), 22265–22269 (2021). https://doi.org/10.1002/anie.202108801
- L. Hou, W. Xian, S. Bing, Y. Song, Q. Sun et al., Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations. Adv. Funct. Mater. 31(16), 2009970 (2021). https://doi.org/10.1002/adfm.202009970
- J. Lu, G.W. Stevens, K.A. Mumford, Development of heterogeneous equilibrium model for lithium solvent extraction using organophosphinic acid. Sep. Purif. Technol. 276, 119307 (2021). https://doi.org/10.1016/j.seppur.2021.119307
- Z. Meng, M. Wang, X. Cao, T. Wang, Y. Wang et al., Highly flexible interconnected Li+ ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022). https://doi.org/10.1016/j.cej.2022.136780
- J. Yu, Q. Wu, L. Bu, Z. Nie, Y. Wang et al., Experimental study on improving lithium extraction efficiency of salinity-gradient solar pond through sodium carbonate addition and agitation. Sol. Energy 242, 364–377 (2022). https://doi.org/10.1016/j.solener.2022.07.027
- G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi et al., The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction. Nat. Commun. 13(1), 4579 (2022). https://doi.org/10.1038/s41467-022-32369-y
- L. Fu, Y. Teng, P. Liu, W. Xin, Y. Qian et al., Electrochemical ion-pumping-assisted transfer system featuring a heterogeneous membrane for lithium recovery. Chem. Eng. J. 435, 134955 (2022). https://doi.org/10.1016/j.cej.2022.134955
- J. Zhang, Z. Cheng, X. Qin, X. Gao, M. Wang et al., Recent advances in lithium extraction from salt lake brine using coupled and tandem technologies. Desalination 547, 116225 (2023). https://doi.org/10.1016/j.desal.2022.116225
- Z. Li, C. Li, X. Liu, L. Cao, P. Li et al., Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14(5), 3152–3159 (2021). https://doi.org/10.1039/D1EE00354B
- T. Zhang, H. Bai, Y. Zhao, B. Ren, T. Wen et al., Precise cation recognition in two-dimensional nanofluidic channels of clay membranes imparted from intrinsic selectivity of clays. ACS Nano 16(3), 4930–4939 (2022). https://doi.org/10.1021/acsnano.2c00866
- F. Sheng, B. Wu, X. Li, T. Xu, M.A. Shehzad et al., Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33(44), 2104404 (2021). https://doi.org/10.1002/adma.202104404
- R. Xu, Y. Kang, W. Zhang, X. Zhang, B. Pan, Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61(3), e202115443 (2022). https://doi.org/10.1002/anie.202115443
- H. Xiao, M. Chai, M. Abdollahzadeh, H. Ahmadi, V. Chen et al., A lithium ion selective membrane synthesized from a double layered Zrbased metal organic framework (MOF-on-MOF) thin film. Desalination 532, 115733 (2022). https://doi.org/10.1016/j.desal.2022.115733
- S. Bing, W. Xian, S. Chen, Y. Song, L. Hou et al., Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter 4(6), 2027–2038 (2021). https://doi.org/10.1016/j.matt.2021.03.017
- W. Xin, C. Lin, L. Fu, X.-Y. Kong, L. Yang et al., Nacre-like mechanically robust heterojunction for lithium-ion extraction. Matter 4(2), 737–754 (2021). https://doi.org/10.1016/j.matt.2020.12.003
- J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017). https://doi.org/10.1038/nnano.2017.21
- N. Reyes, D.C. Gadsby, Ion permeation through the Na+, K+-ATPase. Nature 443(7110), 470–474 (2006). https://doi.org/10.1038/nature05129
- C.R. Martin, Z.S. Siwy, Learning nature’s way: biosensing with synthetic nanopores. Science 317(5836), 331–332 (2007). https://doi.org/10.1126/science.1146126
- M. Graf, M. Lihter, D. Unuchek, A. Sarathy, J.-P. Leburton et al., Light-enhanced blue energy generation using MoS2 nanopores. Joule 3(6), 1549–1564 (2019). https://doi.org/10.1016/j.joule.2019.04.011
- Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding et al., Light-enhanced osmotic energy harvester using photoactive porphyrin metal–organic framework membranes. Angew. Chem. Int. Ed. 61(22), e202202698 (2022). https://doi.org/10.1002/anie.202202698
- P. Liu, T. Zhou, L. Yang, C. Zhu, Y. Teng et al., Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 14(8), 4400–4409 (2021). https://doi.org/10.1039/D1EE00908G
- L. Yu, M. Wang, X. Li, X. Hou, Thermally responsive ionic transport system reinforced by aligned functional carbon nanotubes backbone. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107785
- C. Chen, D. Liu, L. He, S. Qin, J. Wang et al., Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4(1), 247–261 (2020). https://doi.org/10.1016/j.joule.2019.11.010
- C. Zhu, X. Zuo, W. Xian, Q. Guo, Q.-W. Meng et al., Integration of thermoelectric conversion with reverse electrodialysis for mitigating ion concentration polarization and achieving enhanced output power density. ACS Energy Lett. 7(9), 2937–2943 (2022). https://doi.org/10.1021/acsenergylett.2c01681
- S. Adams, R.P. Rao, High power lithium ion battery materials by computational design. Phys. Status Solidi A 208(8), 1746–1753 (2011). https://doi.org/10.1002/pssa.201001116
- M. Sale, M. Avdeev, 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J. Appl. Crystallogr. 45(5), 1054–1056 (2012). https://doi.org/10.1107/S0021889812032906
- R. Xiao, H. Li, L. Chen, High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5(1), 14227 (2015). https://doi.org/10.1038/srep14227
- J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
- M. Weiss, D.A. Weber, A. Senyshyn, J. Janek, W.G. Zeier, Correlating transport and structural properties in Li1+xAlxGe2−x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl. Mater. Interfaces 10(13), 10935–10944 (2018). https://doi.org/10.1021/acsami.8b00842
- X. He, Q. Bai, Y. Liu, A.M. Nolan, C. Ling et al., Crystal structural framework of lithium super-ionic conductors. Adv. Energy Mater. 9(43), 1902078 (2019). https://doi.org/10.1002/aenm.201902078
- B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang et al., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 10, 139–159 (2018). https://doi.org/10.1016/j.ensm.2017.08.015
- P.H. Kuo, J. Du, Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+xAlxGe2−x(PO4)3 solid-state electrolytes. J. Phys. Chem. C 123(45), 27385–27398 (2019). https://doi.org/10.1021/acs.jpcc.9b08390
- C. Jiang, X. Lu, D. Cao, First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2−x(PO4)3 (LAGP). Sci. China Technol. Sci. 63(9), 1787–1794 (2020). https://doi.org/10.1007/s11431-020-1562-3
- J. Yang, G. Liu, M. Avdeev, H. Wan, F. Han et al., Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett. 5(9), 2835–2841 (2020). https://doi.org/10.1021/acsenergylett.0c01432
- Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song et al., Identifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms. Adv. Funct. Mater. 31(49), 2107747 (2021). https://doi.org/10.1002/adfm.202107747
- Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song et al., Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral nasicon. Adv. Energy Mater. 10(30), 2001486 (2020). https://doi.org/10.1002/aenm.202001486
- X. Song, Y. Wang, C. Wang, M. Huang, S. Gul et al., Solar-intensified ultrafiltration system based on porous photothermal membrane for efficient water treatment. ACS Sustain. Chem. Eng. 7(5), 4889–4896 (2019). https://doi.org/10.1021/acssuschemeng.8b05397
- Y. Wu, J. Feng, H. Gao, X. Feng, L. Jiang, Superwettability-based interfacial chemical reactions. Adv. Mater. 31(8), 1800718 (2019). https://doi.org/10.1002/adma.201800718
- C.-W. Chang, C.-W. Chu, Y.-S. Su, L.-H. Yeh, Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. J. Mater. Chem. A 10(6), 2867–2875 (2022). https://doi.org/10.1039/D1TA08560C
- S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler et al., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4(5), 1855–1865 (2011). https://doi.org/10.1039/C1EE01039E
- A.P. Vijaya Kumar Saroja, M. Muruganathan, K. Muthusamy, H. Mizuta, R. Sundara, Enhanced sodium ion storage in interlayer expanded multiwall carbon nanotubes. Nano Lett. 18(9), 5688–5696 (2018). https://doi.org/10.1021/acs.nanolett.8b02275
- Y. Sun, T. Dong, C. Lu, W. Xin, L. Yang et al., Tailoring a poly(ether sulfone) bipolar membrane: osmotic-energy generator with high power density. Angew. Chem. Int. Ed. 59(40), 17423–17428 (2020). https://doi.org/10.1002/anie.202006320
- W. Chen, T. Dong, Y. Xiang, Y. Qian, X. Zhao et al., Ionic crosslinking-induced nanochannels: nanophase separation for ion transport promotion. Adv. Mater. 34(3), 2108410 (2022). https://doi.org/10.1002/adma.202108410
- B. Han, Y.-L. Zhang, Q.-D. Chen, H.-B. Sun, Carbon-based photothermal actuators. Adv. Funct. Mater. 28(40), 1802235 (2018). https://doi.org/10.1002/adfm.201802235
- K. Xiao, G. SchmidtOliver, Light-driven ion transport in nanofluidic devices: photochemical, photoelectric, and photothermal effects. CCS Chem. 4(1), 54–65 (2021). https://doi.org/10.31635/ccschem.021.202101297
References
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2(1), 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z
A. Battistel, M.S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Electrochemical methods for lithium recovery: a comprehensive and critical review. Adv. Mater. 32(23), 1905440 (2020). https://doi.org/10.1002/adma.201905440
J. Hou, H. Zhang, A.W. Thornton, A.J. Hill, H. Wang et al., Lithium extraction by emerging metal-organic framework-based membranes. Adv. Funct. Mater. 31(46), 2105991 (2021). https://doi.org/10.1002/adfm.202105991
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater et al., Recycling lithium-ion batteries from electric vehicles. Nature 575(7781), 75–86 (2019). https://doi.org/10.1038/s41586-019-1682-5
M. Chen, X. Ma, B. Chen, R. Arsenault, P. Karlson et al., Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3(11), 2622–2646 (2019). https://doi.org/10.1016/j.joule.2019.09.014
W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen, Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 14(12), 6099–6121 (2021). https://doi.org/10.1039/D1EE00691F
X. Chang, M. Fan, C.-F. Gu, W.-H. He, Q. Meng et al., Selective extraction of transition metals from spent LiNixCoyMn1−x−yO2 cathode via regulation of coordination environment. Angew. Chem. Int. Ed. 61(24), e202202558 (2022). https://doi.org/10.1002/anie.202202558
J. Yu, X. Wang, M. Zhou, Q. Wang, A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy Environ. Sci. 12(9), 2672–2677 (2019). https://doi.org/10.1039/C9EE01478K
M. Zheng, H. Salim, T. Liu, R.A. Stewart, J. Lu et al., Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy Environ. Sci. 14(11), 5801–5815 (2021). https://doi.org/10.1039/D1EE01812D
M. Fan, X. Chang, Y.-J. Guo, W.-P. Chen, Y.-X. Yin et al., Increased residual lithium compounds guided design for green recycling of spent lithium-ion cathodes. Energy Environ. Sci. 14(3), 1461–1468 (2021). https://doi.org/10.1039/D0EE03914D
D.H.P. Kang, M. Chen, O.A. Ogunseitan, Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 47(10), 5495–5503 (2013). https://doi.org/10.1021/es400614y
B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017). https://doi.org/10.1016/j.seppur.2016.08.031
Z. Lu, Y. Wu, L. Ding, Y. Wei, H. Wang, A lamellar mxene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 60(41), 22265–22269 (2021). https://doi.org/10.1002/anie.202108801
L. Hou, W. Xian, S. Bing, Y. Song, Q. Sun et al., Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations. Adv. Funct. Mater. 31(16), 2009970 (2021). https://doi.org/10.1002/adfm.202009970
J. Lu, G.W. Stevens, K.A. Mumford, Development of heterogeneous equilibrium model for lithium solvent extraction using organophosphinic acid. Sep. Purif. Technol. 276, 119307 (2021). https://doi.org/10.1016/j.seppur.2021.119307
Z. Meng, M. Wang, X. Cao, T. Wang, Y. Wang et al., Highly flexible interconnected Li+ ion-sieve porous hydrogels with self-regulating nanonetwork structure for marine lithium recovery. Chem. Eng. J. 445, 136780 (2022). https://doi.org/10.1016/j.cej.2022.136780
J. Yu, Q. Wu, L. Bu, Z. Nie, Y. Wang et al., Experimental study on improving lithium extraction efficiency of salinity-gradient solar pond through sodium carbonate addition and agitation. Sol. Energy 242, 364–377 (2022). https://doi.org/10.1016/j.solener.2022.07.027
G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi et al., The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction. Nat. Commun. 13(1), 4579 (2022). https://doi.org/10.1038/s41467-022-32369-y
L. Fu, Y. Teng, P. Liu, W. Xin, Y. Qian et al., Electrochemical ion-pumping-assisted transfer system featuring a heterogeneous membrane for lithium recovery. Chem. Eng. J. 435, 134955 (2022). https://doi.org/10.1016/j.cej.2022.134955
J. Zhang, Z. Cheng, X. Qin, X. Gao, M. Wang et al., Recent advances in lithium extraction from salt lake brine using coupled and tandem technologies. Desalination 547, 116225 (2023). https://doi.org/10.1016/j.desal.2022.116225
Z. Li, C. Li, X. Liu, L. Cao, P. Li et al., Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14(5), 3152–3159 (2021). https://doi.org/10.1039/D1EE00354B
T. Zhang, H. Bai, Y. Zhao, B. Ren, T. Wen et al., Precise cation recognition in two-dimensional nanofluidic channels of clay membranes imparted from intrinsic selectivity of clays. ACS Nano 16(3), 4930–4939 (2022). https://doi.org/10.1021/acsnano.2c00866
F. Sheng, B. Wu, X. Li, T. Xu, M.A. Shehzad et al., Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33(44), 2104404 (2021). https://doi.org/10.1002/adma.202104404
R. Xu, Y. Kang, W. Zhang, X. Zhang, B. Pan, Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61(3), e202115443 (2022). https://doi.org/10.1002/anie.202115443
H. Xiao, M. Chai, M. Abdollahzadeh, H. Ahmadi, V. Chen et al., A lithium ion selective membrane synthesized from a double layered Zrbased metal organic framework (MOF-on-MOF) thin film. Desalination 532, 115733 (2022). https://doi.org/10.1016/j.desal.2022.115733
S. Bing, W. Xian, S. Chen, Y. Song, L. Hou et al., Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter 4(6), 2027–2038 (2021). https://doi.org/10.1016/j.matt.2021.03.017
W. Xin, C. Lin, L. Fu, X.-Y. Kong, L. Yang et al., Nacre-like mechanically robust heterojunction for lithium-ion extraction. Matter 4(2), 737–754 (2021). https://doi.org/10.1016/j.matt.2020.12.003
J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017). https://doi.org/10.1038/nnano.2017.21
N. Reyes, D.C. Gadsby, Ion permeation through the Na+, K+-ATPase. Nature 443(7110), 470–474 (2006). https://doi.org/10.1038/nature05129
C.R. Martin, Z.S. Siwy, Learning nature’s way: biosensing with synthetic nanopores. Science 317(5836), 331–332 (2007). https://doi.org/10.1126/science.1146126
M. Graf, M. Lihter, D. Unuchek, A. Sarathy, J.-P. Leburton et al., Light-enhanced blue energy generation using MoS2 nanopores. Joule 3(6), 1549–1564 (2019). https://doi.org/10.1016/j.joule.2019.04.011
Z.-Q. Li, G.-L. Zhu, R.-J. Mo, M.-Y. Wu, X.-L. Ding et al., Light-enhanced osmotic energy harvester using photoactive porphyrin metal–organic framework membranes. Angew. Chem. Int. Ed. 61(22), e202202698 (2022). https://doi.org/10.1002/anie.202202698
P. Liu, T. Zhou, L. Yang, C. Zhu, Y. Teng et al., Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 14(8), 4400–4409 (2021). https://doi.org/10.1039/D1EE00908G
L. Yu, M. Wang, X. Li, X. Hou, Thermally responsive ionic transport system reinforced by aligned functional carbon nanotubes backbone. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.107785
C. Chen, D. Liu, L. He, S. Qin, J. Wang et al., Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule 4(1), 247–261 (2020). https://doi.org/10.1016/j.joule.2019.11.010
C. Zhu, X. Zuo, W. Xian, Q. Guo, Q.-W. Meng et al., Integration of thermoelectric conversion with reverse electrodialysis for mitigating ion concentration polarization and achieving enhanced output power density. ACS Energy Lett. 7(9), 2937–2943 (2022). https://doi.org/10.1021/acsenergylett.2c01681
S. Adams, R.P. Rao, High power lithium ion battery materials by computational design. Phys. Status Solidi A 208(8), 1746–1753 (2011). https://doi.org/10.1002/pssa.201001116
M. Sale, M. Avdeev, 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J. Appl. Crystallogr. 45(5), 1054–1056 (2012). https://doi.org/10.1107/S0021889812032906
R. Xiao, H. Li, L. Chen, High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci. Rep. 5(1), 14227 (2015). https://doi.org/10.1038/srep14227
J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116(1), 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563
M. Weiss, D.A. Weber, A. Senyshyn, J. Janek, W.G. Zeier, Correlating transport and structural properties in Li1+xAlxGe2−x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl. Mater. Interfaces 10(13), 10935–10944 (2018). https://doi.org/10.1021/acsami.8b00842
X. He, Q. Bai, Y. Liu, A.M. Nolan, C. Ling et al., Crystal structural framework of lithium super-ionic conductors. Adv. Energy Mater. 9(43), 1902078 (2019). https://doi.org/10.1002/aenm.201902078
B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang et al., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 10, 139–159 (2018). https://doi.org/10.1016/j.ensm.2017.08.015
P.H. Kuo, J. Du, Lithium ion diffusion mechanism and associated defect behaviors in crystalline Li1+xAlxGe2−x(PO4)3 solid-state electrolytes. J. Phys. Chem. C 123(45), 27385–27398 (2019). https://doi.org/10.1021/acs.jpcc.9b08390
C. Jiang, X. Lu, D. Cao, First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2−x(PO4)3 (LAGP). Sci. China Technol. Sci. 63(9), 1787–1794 (2020). https://doi.org/10.1007/s11431-020-1562-3
J. Yang, G. Liu, M. Avdeev, H. Wan, F. Han et al., Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett. 5(9), 2835–2841 (2020). https://doi.org/10.1021/acsenergylett.0c01432
Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song et al., Identifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms. Adv. Funct. Mater. 31(49), 2107747 (2021). https://doi.org/10.1002/adfm.202107747
Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song et al., Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral nasicon. Adv. Energy Mater. 10(30), 2001486 (2020). https://doi.org/10.1002/aenm.202001486
X. Song, Y. Wang, C. Wang, M. Huang, S. Gul et al., Solar-intensified ultrafiltration system based on porous photothermal membrane for efficient water treatment. ACS Sustain. Chem. Eng. 7(5), 4889–4896 (2019). https://doi.org/10.1021/acssuschemeng.8b05397
Y. Wu, J. Feng, H. Gao, X. Feng, L. Jiang, Superwettability-based interfacial chemical reactions. Adv. Mater. 31(8), 1800718 (2019). https://doi.org/10.1002/adma.201800718
C.-W. Chang, C.-W. Chu, Y.-S. Su, L.-H. Yeh, Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. J. Mater. Chem. A 10(6), 2867–2875 (2022). https://doi.org/10.1039/D1TA08560C
S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler et al., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4(5), 1855–1865 (2011). https://doi.org/10.1039/C1EE01039E
A.P. Vijaya Kumar Saroja, M. Muruganathan, K. Muthusamy, H. Mizuta, R. Sundara, Enhanced sodium ion storage in interlayer expanded multiwall carbon nanotubes. Nano Lett. 18(9), 5688–5696 (2018). https://doi.org/10.1021/acs.nanolett.8b02275
Y. Sun, T. Dong, C. Lu, W. Xin, L. Yang et al., Tailoring a poly(ether sulfone) bipolar membrane: osmotic-energy generator with high power density. Angew. Chem. Int. Ed. 59(40), 17423–17428 (2020). https://doi.org/10.1002/anie.202006320
W. Chen, T. Dong, Y. Xiang, Y. Qian, X. Zhao et al., Ionic crosslinking-induced nanochannels: nanophase separation for ion transport promotion. Adv. Mater. 34(3), 2108410 (2022). https://doi.org/10.1002/adma.202108410
B. Han, Y.-L. Zhang, Q.-D. Chen, H.-B. Sun, Carbon-based photothermal actuators. Adv. Funct. Mater. 28(40), 1802235 (2018). https://doi.org/10.1002/adfm.201802235
K. Xiao, G. SchmidtOliver, Light-driven ion transport in nanofluidic devices: photochemical, photoelectric, and photothermal effects. CCS Chem. 4(1), 54–65 (2021). https://doi.org/10.31635/ccschem.021.202101297