Engineering Bipolar Doping in a Janus Dual-Atom Catalyst for Photo-Enhanced Rechargeable Zn-Air Battery
Corresponding Author: Zhiping Zeng
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 203
Abstract
Harnessing solar energy to enhance the rechargeable zinc–air batteries (RZABs) performance is a promising avenue toward sustainable energy storage and conversion. Simultaneously enhancing light-absorption capacity and carrier separation efficiency in nanomaterials, as well as improving electrical conductivity and configuration for electrocatalysis, presents a formidable challenge due to inherent trade-offs and interdependencies. Here, we have developed a Janus dual-atom catalyst (JDAC) with bifunctional centers for efficient charge separation and electrocatalytic performance through a bipolar doping strategy. The in situ X-ray absorption near-edge structure and Raman spectroscopy analyses demonstrated that the Ni and Fe centers in JDAC not only function as effective sites for oxygen evolution reaction and oxygen reduction reaction, respectively, but also serve as efficient hole and electron enrichment sites, effectively suppressing photoelectron recombination while enhancing photocurrent generation. As a result, the assembled JDAC-based light-assisted RZABs exhibited extraordinary stability at large current densities. This work delivers pivotal insight to design Janus dual-atom catalysts that efficiently convert solar energy into electric and chemical energy.
Highlights:
1 Janus dual-atom catalyst (JDAC) with bifunctional centers was synthesized via a single-step bipolar doping strategy to promote efficient charge separation and superior electrocatalytic performance.
2 The in situ X-ray absorption near-edge structure and Raman spectroscopy analyses demonstrated that Ni and Fe centers in JDAC function as effective sites for oxygen evolution reaction and oxygen reduction reaction, and effectively suppress photoelectron recombination while enhancing photocurrent generation.
3 The assembled JDAC-based light-assisted rechargeable zinc–air batteries exhibited extraordinary stability at large current densities (300 cycles at 50 mA cm−2, and 6000 cycles at 10 mA cm−2 under light illumination).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Qiao, Y. You, L. Kong, W. Feng, H. Zhang et al., Precisely constructing orbital-coupled Fe─Co dual-atom sites for high-energy-efficiency Zn-air/iodide hybrid batteries. Adv. Mater. 36, e2405533 (2024). https://doi.org/10.1002/adma.202405533
- H. Huang, D. Yu, F. Hu, S.C. Huang, J. Song et al., Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 61, e202116068 (2022). https://doi.org/10.1002/anie.202116068
- W. Zha, Q. Ruan, L. Ma, M. Liu, H. Lin et al., Highly stable photo-assisted zinc-ion batteries via regulated photo-induced proton transfer. Angew. Chem. Int. Ed. 135, e202400621 (2024). https://doi.org/10.1002/anie.202400621
- V. Andrei, R.A. Jagt, M. Rahaman, L. Lari, V.K. Lazarov et al., Long-term solar water and CO2 splitting with photoelectrochemical BiOI-BiVO4 tandems. Nat. Mater. 21, 864–868 (2022). https://doi.org/10.1038/s41563-022-01262-w
- Z. Zhi, C. Qin, H. Zhang, Y. Xie, C. Zhang et al., Enhancing photoelectrochemical properties of α-Fe2O3 using Zr-doped HfO2 ferroelectric nanops. J. Alloys Compd. 995, 174851 (2024). https://doi.org/10.1016/j.jallcom.2024.174851
- H. Han, S.-I. Moon, S. Choi, E. Enkhtuvshin, S.J. Kim et al., Enhanced photoelectrochemical characteristic of TiO2 nanotubes via surface plasma treatment. Ceram. Int. 47, 30741 (2021). https://doi.org/10.1016/j.ceramint.2021.07.253
- H. Jiao, G. Sun, Y. Wang, Z. Zhang, Z. Wang et al., Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. Chin. Chem. Lett. 33, 4008–4012 (2022). https://doi.org/10.1016/j.cclet.2021.11.086
- H. Feng, C. Zhang, Z. Liu, J. Sang, S. Xue et al., A light-activated TiO2@In2Se3@Ag3PO4 cathode for high-performance Zn-Air batteries. Chem. Eng. J. 434, 134650 (2022). https://doi.org/10.1016/j.cej.2022.134650
- Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng et al., Ni12P5 nanops as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8, 8121–8129 (2014). https://doi.org/10.1021/nn5022204
- J. Yang, Q. Zeng, B. Qin, J. Huang, X. Guo et al., Electropolymerization process dependent poly(1, 4-di(2-thienyl)benzene) based full spectrum activated photocathodes for efficient photoelectrochemical hydrogen evolution. J. Electroanal. Chem. 903, 115712 (2021). https://doi.org/10.1016/j.jelechem.2021.115712
- W. Fan, B. Zhang, X. Wang, W. Ma, D. Li et al., Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ. Sci. 13, 238–245 (2020). https://doi.org/10.1039/C9EE02247C
- X. Zou, Z. Sun, Y.H. Hu, G-C3N4-based photoelectrodes for photoelectrochemical water splitting: a review. J. Mater. Chem. A 8, 21474–21502 (2020). https://doi.org/10.1039/d0ta07345h
- Y. Teng, J. Zhao, Z.M. Ye, C.W. Tan, L.L. Ning et al., Covalent organic framework encapsulating layered oxide perovskite for efficient photosynthesis of H2O2. Adv. Energy Mater. 2404029 (2024). https://doi.org/10.1002/aenm.202404029
- C. Shu, L. Fang, M. Yang, L. Zhong, X. Chen et al., Cutting COF-like C4N to give colloidal quantum dots: towards optical encryption and bidirectional sulfur chemistry via functional group and edge effects. Angew. Chem. Int. Ed. 61, e202114182 (2022). https://doi.org/10.1002/anie.202114182
- G.G. Bessegato, T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, M.V.B. Zanoni, Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6, 415–441 (2015). https://doi.org/10.1007/s12678-015-0259-9
- S. Xue, H. Tang, M. Shen, X. Liang, X. Li et al., Establishing multiple-order built-in electric fields within heterojunctions to achieve photocarrier spatial separation. Adv. Mater. 36, 2311937 (2024). https://doi.org/10.1002/adma.202311937
- G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
- W. Jin, C.-Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg et al., Photocatalytic doping of organic semiconductors. Nature 630, 96–101 (2024). https://doi.org/10.1038/s41586-024-07400-5
- T. Xu, Y. Xie, S. Qi, H. Zhang, W. Ma et al., Simultaneous defect passivation and co-catalyst engineering leads to superior photocatalytic hydrogen evolution on metal halide perovskites. Angew. Chem. Int. Ed. 63, e202409945 (2024). https://doi.org/10.1002/anie.202409945
- S. Hou, X. Gao, X. Lv, Y. Zhao, X. Yin et al., Decade milestone advancement of defect-engineered g-C3N4 for solar catalytic applications. Nano-Micro Lett. 16, 70 (2024). https://doi.org/10.1007/s40820-023-01297-x
- S. Liang, L.-N. Song, X.-X. Wang, Y.-F. Wang, J.-Y. Wu et al., Fluid-induced piezoelectric field enhancing photo-assisted Zn-air batteries based on a Fe@P(V-T) microhelical cathode. Adv. Mater. 36, e2407718 (2024). https://doi.org/10.1002/adma.202407718
- Z. Yu, D. Zhang, Y. Wang, F. Liu, F. She et al., Spin manipulation of heterogeneous molecular electrocatalysts by an integrated magnetic field for efficient oxygen redox reactions. Adv. Mater. 36, e2408461 (2024). https://doi.org/10.1002/adma.202408461
- Z.-H. Xue, D. Luan, H. Zhang, X.W. David Lou, Single-atom catalysts for photocatalytic energy conversion. Joule 6, 92–133 (2022). https://doi.org/10.1016/j.joule.2021.12.011
- C.X. Zhao, X. Liu, J.N. Liu, J. Wang, X. Wan et al., Inductive effect on single-atom sites. J. Am. Chem. Soc. 145, 27531 (2023). https://doi.org/10.1021/jacs.3c09190
- K. He, Z. Huang, C. Chen, C. Qiu, Y.L. Zhong et al., Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 16, 23 (2023). https://doi.org/10.1007/s40820-023-01231-1
- R. Liu, Y. Chen, H. Yu, M. Položij, Y. Guo et al., Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024). https://doi.org/10.1038/s41929-023-01102-3
- M. Janeta, J.X. Heidlas, O. Daugulis, M. Brookhart, 2, 4, 6-triphenylpyridinium: a bulky, highly electron-withdrawing substituent that enhances properties of nickel(II) ethylene polymerization catalysts. Angew. Chem. Int. Ed. 60, 4566–4569 (2021). https://doi.org/10.1002/anie.202013854
- N. Panangattu Dharmarajan, M. Fawaz, C. Sathish, S.N. Talapaneni, K. Ramadass et al., Insights into atomic level π-electron modulations in supramolecular carbon nitride nanoarchitectonics for sustainable green hydrogen production. Adv. Energy Mater. 14, 2400686 (2024). https://doi.org/10.1002/aenm.202400686
- S. Hong, W. Lee, Y.J. Hwang, S. Song, S. Choi et al., Role of defect density in the TiOx protective layer of the n-Si photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 11, 3987–3999 (2023). https://doi.org/10.1039/D2TA07082K
- J. Ding, Z. Teng, X. Su, K. Kato, Y. Liu et al., Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem 9, 1017–1035 (2023). https://doi.org/10.1016/j.chempr.2023.02.011
- D. Li, H. Li, Q. Wen, C. Gao, F. Song et al., Investigation on photo-assisted Fenton-like mechanism of single-atom Mn–N–Fe–N–Ni charge transfer bridge across six-membered cavity of graphitic carbon nitride. Adv. Funct. Mater. 34, 2313631 (2024). https://doi.org/10.1002/adfm.202313631
- W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu et al., Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56, 9312–9317 (2017). https://doi.org/10.1002/anie.201704358
- M. Tamtaji, M.G. Kim, Z. Li, S. Cai, J. Wang et al., High-throughput screening of dual atom catalysts for oxygen reduction and evolution reactions and rechargeable zinc-air battery. Nano Energy 126, 109634 (2024). https://doi.org/10.1016/j.nanoen.2024.109634
- J. Song, Y. Chen, H. Huang, J. Wang, S.C. Huang et al., Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery. Adv. Sci. 9, 2104522 (2022). https://doi.org/10.1002/advs.202104522
- C. Hu, G. Xing, W. Han, Y. Hao, C. Zhang et al., Inhibiting demetalation of Fe─N─C via Mn sites for efficient oxygen reduction reaction in zinc-air batteries. Adv. Mater. 36, e2405763 (2024). https://doi.org/10.1002/adma.202405763
- S. Li, G. Xing, S. Zhao, J. Peng, L. Zhao et al., Fe-N Co-doped carbon nanofibers with Fe3C decoration for water activation induced oxygen reduction reaction. Natl. Sci. Rev. 11, nwae193 (2024). https://doi.org/10.1093/nsr/nwae193
- W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/physrev.140.a1133
- P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/physrev.136.b864
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 16, Revision C.01 (Gaussian Inc., Wallingford, 2016)
- C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999). https://doi.org/10.1063/1.478522
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple Zeta valence and quadruple Zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005). https://doi.org/10.1039/b508541a
- F. Weigend, Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006). https://doi.org/10.1039/b515623h
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- CYLview20: Legault, C Y Université de Sherbrooke, 2020. http://www.cylview.org
- IQmol, http://wwwiqmol.org/
- C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Adv. Mater. 28, 6845 (2016). https://doi.org/10.1002/adma.201601406
- Z. Fang, Y. Li, J. Li, C. Shu, L. Zhong et al., Capturing visible light in low-band-gap C4N-derived responsive bifunctional air electrodes for solar energy conversion and storage. Angew. Chem. Int. Ed. 60, 17615–17621 (2021). https://doi.org/10.1002/anie.202104790
- S.A. Chala, K. Lakshmanan, W.-H. Huang, A.W. Kahsay, C.-Y. Chang et al., Cooperative dual single atom Ni/Cu catalyst for highly selective CO2-to-ethanol reduction. Appl. Catal. B Environ. Energy 358, 124420 (2024). https://doi.org/10.1016/j.apcatb.2024.124420
- L. Meng, S. Ren, C. Ma, Y. Yu, Y. Lou et al., Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries. Chem. Commun. 55, 9491–9494 (2019). https://doi.org/10.1039/C9CC04036F
- Y. Li, C. Mo, J. Li, D. Yu, Pyrazine–nitrogen–rich exfoliated C4N nanosheets as efficient metal–free polymeric catalysts for oxygen reduction reaction. J. Energy Chem. 49, 243–247 (2020). https://doi.org/10.1016/j.jechem.2020.02.046
- X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng et al., Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 14, 7115 (2023). https://doi.org/10.1038/s41467-023-42887-y
- H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
- R. Ren, G. Liu, J.Y. Kim, R.E.A. Ardhi, M.X. Tran et al., Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered p-n heterojunction for rechargeable Zn-air batteries. Appl. Catal. B Environ. 306, 121096 (2022). https://doi.org/10.1016/j.apcatb.2022.121096
- N. Kumar, K. Naveen, M. Kumar, T.C. Nagaiah, R. Sakla et al., Multifunctionality exploration of Ca2FeRuO6: an efficient trifunctional electrocatalyst toward OER/ORR/HER and photocatalyst for water splitting. ACS Appl. Energy Mater. 4, 1323–1334 (2021). https://doi.org/10.1021/acsaem.0c02579
- Z. Xiao, X. Lv, S. Liu, Q. Liu, F. Wang et al., Electronic band structure engineering of transition metal oxide-N, S-doped carbon catalysts for photoassisted oxygen reduction and oxygen evolution catalysis. Adv. Mater. Interfaces 9, 2101386 (2022). https://doi.org/10.1002/admi.202101386
- Y. Yang, B. Hu, W. Zhao, Q. Yang, F. Yang et al., Bridging N-doped graphene and carbon rich C3N4 layers for photo-promoted multi-functional electrocatalysts. Electrochim. Acta 317, 25–33 (2019). https://doi.org/10.1016/j.electacta.2019.05.140
- S. Hu, J. Shi, R. Yan, S. Pang, Z. Zhang et al., Flexible rechargeable photo-assisted zinc-air batteries based on photo-active pTTh bifunctional oxygen electrocatalyst. Energy Storage Mater. 65, 103139 (2024). https://doi.org/10.1016/j.ensm.2023.103139
- S. Zheng, M. Chen, K. Chen, Y. Wu, J. Yu et al., Solar-light-responsive zinc-air battery with self-regulated charge-discharge performance based on photothermal effect. ACS Appl. Mater. Interfaces 15, 2985–2995 (2023). https://doi.org/10.1021/acsami.2c19663
- H. Liao, X. Zhang, S. Niu, P. Tan, K. Chen et al., Dynamic dissolution and re-adsorption of molybdate ion in iron incorporated nickel-molybdenum oxyhydroxide for promoting oxygen evolution reaction. Appl. Catal. B Environ. Energy 307, 121150 (2022). https://doi.org/10.1016/j.apcatb.2022.121150
- J. Hu, S. Li, J. Chu, S. Niu, J. Wang et al., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 9, 10705–10711 (2019). https://doi.org/10.1021/acscatal.9b03876
- J. Zhong, Z. Liang, N. Liu, Y. Xiang, B. Yan et al., Engineering symmetry-breaking centers and d-orbital modulation in triatomic catalysts for zinc-air batteries. ACS Nano 18, 5258–5269 (2024). https://doi.org/10.1021/acsnano.3c08839
- Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
- R. Ren, G. Liu, J. Y. Kim, R. E. A. Ardhi, M. X. Tran et al., Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered p-n heterojunction for rechargeable Zn-air batteries. Appl. Catal. B. Environ. 306, 121096 (2022). https://doi.org/10.1016/j.apcatb.2022.121096
- H. Yang, B. Wang, H. Li, B. Ni, K. Wang et al., Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn-air batteries. Adv. Energy Mater. 8 (34) 1801839–1801847 (2018). https://doi.org/10.1002/aenm.201801839
- T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28 1705048–1705056 (2018). https://doi.org/10.1002/adfm.201705048
- J. Lv, S.C. Abbas, Y. Huang, Q. Liu, M. Wu et al., A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 43, 130–137 (2018). https://doi.org/10.1016/j.nanoen.2017.11.020
- D. Zhu, Q. Zhao, G. Fan, S. Zhao, L. Wang, et al., Photoinduced oxygen reduction reaction boosts the output voltage of a zinc–air battery. Angew. Chem. Int. Ed. 58, 12460-12464 (2019). https://doi.org/10.1002/anie.201905954
- C. Zhao, J. Liu, B. Li, D. Ren, X. Chen et al. Multiscale construction of bifunctional electrocatalysts for long‐lifespan rechargeable zinc–air batteries. Adv. Funct. Mater. 30, 2003619 (2020). https://doi.org/10.1002/adfm.202003619
References
J. Qiao, Y. You, L. Kong, W. Feng, H. Zhang et al., Precisely constructing orbital-coupled Fe─Co dual-atom sites for high-energy-efficiency Zn-air/iodide hybrid batteries. Adv. Mater. 36, e2405533 (2024). https://doi.org/10.1002/adma.202405533
H. Huang, D. Yu, F. Hu, S.C. Huang, J. Song et al., Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 61, e202116068 (2022). https://doi.org/10.1002/anie.202116068
W. Zha, Q. Ruan, L. Ma, M. Liu, H. Lin et al., Highly stable photo-assisted zinc-ion batteries via regulated photo-induced proton transfer. Angew. Chem. Int. Ed. 135, e202400621 (2024). https://doi.org/10.1002/anie.202400621
V. Andrei, R.A. Jagt, M. Rahaman, L. Lari, V.K. Lazarov et al., Long-term solar water and CO2 splitting with photoelectrochemical BiOI-BiVO4 tandems. Nat. Mater. 21, 864–868 (2022). https://doi.org/10.1038/s41563-022-01262-w
Z. Zhi, C. Qin, H. Zhang, Y. Xie, C. Zhang et al., Enhancing photoelectrochemical properties of α-Fe2O3 using Zr-doped HfO2 ferroelectric nanops. J. Alloys Compd. 995, 174851 (2024). https://doi.org/10.1016/j.jallcom.2024.174851
H. Han, S.-I. Moon, S. Choi, E. Enkhtuvshin, S.J. Kim et al., Enhanced photoelectrochemical characteristic of TiO2 nanotubes via surface plasma treatment. Ceram. Int. 47, 30741 (2021). https://doi.org/10.1016/j.ceramint.2021.07.253
H. Jiao, G. Sun, Y. Wang, Z. Zhang, Z. Wang et al., Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. Chin. Chem. Lett. 33, 4008–4012 (2022). https://doi.org/10.1016/j.cclet.2021.11.086
H. Feng, C. Zhang, Z. Liu, J. Sang, S. Xue et al., A light-activated TiO2@In2Se3@Ag3PO4 cathode for high-performance Zn-Air batteries. Chem. Eng. J. 434, 134650 (2022). https://doi.org/10.1016/j.cej.2022.134650
Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng et al., Ni12P5 nanops as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8, 8121–8129 (2014). https://doi.org/10.1021/nn5022204
J. Yang, Q. Zeng, B. Qin, J. Huang, X. Guo et al., Electropolymerization process dependent poly(1, 4-di(2-thienyl)benzene) based full spectrum activated photocathodes for efficient photoelectrochemical hydrogen evolution. J. Electroanal. Chem. 903, 115712 (2021). https://doi.org/10.1016/j.jelechem.2021.115712
W. Fan, B. Zhang, X. Wang, W. Ma, D. Li et al., Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ. Sci. 13, 238–245 (2020). https://doi.org/10.1039/C9EE02247C
X. Zou, Z. Sun, Y.H. Hu, G-C3N4-based photoelectrodes for photoelectrochemical water splitting: a review. J. Mater. Chem. A 8, 21474–21502 (2020). https://doi.org/10.1039/d0ta07345h
Y. Teng, J. Zhao, Z.M. Ye, C.W. Tan, L.L. Ning et al., Covalent organic framework encapsulating layered oxide perovskite for efficient photosynthesis of H2O2. Adv. Energy Mater. 2404029 (2024). https://doi.org/10.1002/aenm.202404029
C. Shu, L. Fang, M. Yang, L. Zhong, X. Chen et al., Cutting COF-like C4N to give colloidal quantum dots: towards optical encryption and bidirectional sulfur chemistry via functional group and edge effects. Angew. Chem. Int. Ed. 61, e202114182 (2022). https://doi.org/10.1002/anie.202114182
G.G. Bessegato, T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, M.V.B. Zanoni, Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6, 415–441 (2015). https://doi.org/10.1007/s12678-015-0259-9
S. Xue, H. Tang, M. Shen, X. Liang, X. Li et al., Establishing multiple-order built-in electric fields within heterojunctions to achieve photocarrier spatial separation. Adv. Mater. 36, 2311937 (2024). https://doi.org/10.1002/adma.202311937
G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang et al., Metal-free 2D/2D van der waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Lett. 15, 132 (2023). https://doi.org/10.1007/s40820-023-01100-x
W. Jin, C.-Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg et al., Photocatalytic doping of organic semiconductors. Nature 630, 96–101 (2024). https://doi.org/10.1038/s41586-024-07400-5
T. Xu, Y. Xie, S. Qi, H. Zhang, W. Ma et al., Simultaneous defect passivation and co-catalyst engineering leads to superior photocatalytic hydrogen evolution on metal halide perovskites. Angew. Chem. Int. Ed. 63, e202409945 (2024). https://doi.org/10.1002/anie.202409945
S. Hou, X. Gao, X. Lv, Y. Zhao, X. Yin et al., Decade milestone advancement of defect-engineered g-C3N4 for solar catalytic applications. Nano-Micro Lett. 16, 70 (2024). https://doi.org/10.1007/s40820-023-01297-x
S. Liang, L.-N. Song, X.-X. Wang, Y.-F. Wang, J.-Y. Wu et al., Fluid-induced piezoelectric field enhancing photo-assisted Zn-air batteries based on a Fe@P(V-T) microhelical cathode. Adv. Mater. 36, e2407718 (2024). https://doi.org/10.1002/adma.202407718
Z. Yu, D. Zhang, Y. Wang, F. Liu, F. She et al., Spin manipulation of heterogeneous molecular electrocatalysts by an integrated magnetic field for efficient oxygen redox reactions. Adv. Mater. 36, e2408461 (2024). https://doi.org/10.1002/adma.202408461
Z.-H. Xue, D. Luan, H. Zhang, X.W. David Lou, Single-atom catalysts for photocatalytic energy conversion. Joule 6, 92–133 (2022). https://doi.org/10.1016/j.joule.2021.12.011
C.X. Zhao, X. Liu, J.N. Liu, J. Wang, X. Wan et al., Inductive effect on single-atom sites. J. Am. Chem. Soc. 145, 27531 (2023). https://doi.org/10.1021/jacs.3c09190
K. He, Z. Huang, C. Chen, C. Qiu, Y.L. Zhong et al., Exploring the roles of single atom in hydrogen peroxide photosynthesis. Nano-Micro Lett. 16, 23 (2023). https://doi.org/10.1007/s40820-023-01231-1
R. Liu, Y. Chen, H. Yu, M. Položij, Y. Guo et al., Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024). https://doi.org/10.1038/s41929-023-01102-3
M. Janeta, J.X. Heidlas, O. Daugulis, M. Brookhart, 2, 4, 6-triphenylpyridinium: a bulky, highly electron-withdrawing substituent that enhances properties of nickel(II) ethylene polymerization catalysts. Angew. Chem. Int. Ed. 60, 4566–4569 (2021). https://doi.org/10.1002/anie.202013854
N. Panangattu Dharmarajan, M. Fawaz, C. Sathish, S.N. Talapaneni, K. Ramadass et al., Insights into atomic level π-electron modulations in supramolecular carbon nitride nanoarchitectonics for sustainable green hydrogen production. Adv. Energy Mater. 14, 2400686 (2024). https://doi.org/10.1002/aenm.202400686
S. Hong, W. Lee, Y.J. Hwang, S. Song, S. Choi et al., Role of defect density in the TiOx protective layer of the n-Si photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 11, 3987–3999 (2023). https://doi.org/10.1039/D2TA07082K
J. Ding, Z. Teng, X. Su, K. Kato, Y. Liu et al., Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem 9, 1017–1035 (2023). https://doi.org/10.1016/j.chempr.2023.02.011
D. Li, H. Li, Q. Wen, C. Gao, F. Song et al., Investigation on photo-assisted Fenton-like mechanism of single-atom Mn–N–Fe–N–Ni charge transfer bridge across six-membered cavity of graphitic carbon nitride. Adv. Funct. Mater. 34, 2313631 (2024). https://doi.org/10.1002/adfm.202313631
W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu et al., Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56, 9312–9317 (2017). https://doi.org/10.1002/anie.201704358
M. Tamtaji, M.G. Kim, Z. Li, S. Cai, J. Wang et al., High-throughput screening of dual atom catalysts for oxygen reduction and evolution reactions and rechargeable zinc-air battery. Nano Energy 126, 109634 (2024). https://doi.org/10.1016/j.nanoen.2024.109634
J. Song, Y. Chen, H. Huang, J. Wang, S.C. Huang et al., Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery. Adv. Sci. 9, 2104522 (2022). https://doi.org/10.1002/advs.202104522
C. Hu, G. Xing, W. Han, Y. Hao, C. Zhang et al., Inhibiting demetalation of Fe─N─C via Mn sites for efficient oxygen reduction reaction in zinc-air batteries. Adv. Mater. 36, e2405763 (2024). https://doi.org/10.1002/adma.202405763
S. Li, G. Xing, S. Zhao, J. Peng, L. Zhao et al., Fe-N Co-doped carbon nanofibers with Fe3C decoration for water activation induced oxygen reduction reaction. Natl. Sci. Rev. 11, nwae193 (2024). https://doi.org/10.1093/nsr/nwae193
W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/physrev.140.a1133
P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/physrev.136.b864
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 16, Revision C.01 (Gaussian Inc., Wallingford, 2016)
C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999). https://doi.org/10.1063/1.478522
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple Zeta valence and quadruple Zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005). https://doi.org/10.1039/b508541a
F. Weigend, Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006). https://doi.org/10.1039/b515623h
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
CYLview20: Legault, C Y Université de Sherbrooke, 2020. http://www.cylview.org
IQmol, http://wwwiqmol.org/
C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Adv. Mater. 28, 6845 (2016). https://doi.org/10.1002/adma.201601406
Z. Fang, Y. Li, J. Li, C. Shu, L. Zhong et al., Capturing visible light in low-band-gap C4N-derived responsive bifunctional air electrodes for solar energy conversion and storage. Angew. Chem. Int. Ed. 60, 17615–17621 (2021). https://doi.org/10.1002/anie.202104790
S.A. Chala, K. Lakshmanan, W.-H. Huang, A.W. Kahsay, C.-Y. Chang et al., Cooperative dual single atom Ni/Cu catalyst for highly selective CO2-to-ethanol reduction. Appl. Catal. B Environ. Energy 358, 124420 (2024). https://doi.org/10.1016/j.apcatb.2024.124420
L. Meng, S. Ren, C. Ma, Y. Yu, Y. Lou et al., Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries. Chem. Commun. 55, 9491–9494 (2019). https://doi.org/10.1039/C9CC04036F
Y. Li, C. Mo, J. Li, D. Yu, Pyrazine–nitrogen–rich exfoliated C4N nanosheets as efficient metal–free polymeric catalysts for oxygen reduction reaction. J. Energy Chem. 49, 243–247 (2020). https://doi.org/10.1016/j.jechem.2020.02.046
X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng et al., Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nat. Commun. 14, 7115 (2023). https://doi.org/10.1038/s41467-023-42887-y
H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 (2016). https://doi.org/10.1126/sciadv.1501122
R. Ren, G. Liu, J.Y. Kim, R.E.A. Ardhi, M.X. Tran et al., Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered p-n heterojunction for rechargeable Zn-air batteries. Appl. Catal. B Environ. 306, 121096 (2022). https://doi.org/10.1016/j.apcatb.2022.121096
N. Kumar, K. Naveen, M. Kumar, T.C. Nagaiah, R. Sakla et al., Multifunctionality exploration of Ca2FeRuO6: an efficient trifunctional electrocatalyst toward OER/ORR/HER and photocatalyst for water splitting. ACS Appl. Energy Mater. 4, 1323–1334 (2021). https://doi.org/10.1021/acsaem.0c02579
Z. Xiao, X. Lv, S. Liu, Q. Liu, F. Wang et al., Electronic band structure engineering of transition metal oxide-N, S-doped carbon catalysts for photoassisted oxygen reduction and oxygen evolution catalysis. Adv. Mater. Interfaces 9, 2101386 (2022). https://doi.org/10.1002/admi.202101386
Y. Yang, B. Hu, W. Zhao, Q. Yang, F. Yang et al., Bridging N-doped graphene and carbon rich C3N4 layers for photo-promoted multi-functional electrocatalysts. Electrochim. Acta 317, 25–33 (2019). https://doi.org/10.1016/j.electacta.2019.05.140
S. Hu, J. Shi, R. Yan, S. Pang, Z. Zhang et al., Flexible rechargeable photo-assisted zinc-air batteries based on photo-active pTTh bifunctional oxygen electrocatalyst. Energy Storage Mater. 65, 103139 (2024). https://doi.org/10.1016/j.ensm.2023.103139
S. Zheng, M. Chen, K. Chen, Y. Wu, J. Yu et al., Solar-light-responsive zinc-air battery with self-regulated charge-discharge performance based on photothermal effect. ACS Appl. Mater. Interfaces 15, 2985–2995 (2023). https://doi.org/10.1021/acsami.2c19663
H. Liao, X. Zhang, S. Niu, P. Tan, K. Chen et al., Dynamic dissolution and re-adsorption of molybdate ion in iron incorporated nickel-molybdenum oxyhydroxide for promoting oxygen evolution reaction. Appl. Catal. B Environ. Energy 307, 121150 (2022). https://doi.org/10.1016/j.apcatb.2022.121150
J. Hu, S. Li, J. Chu, S. Niu, J. Wang et al., Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 9, 10705–10711 (2019). https://doi.org/10.1021/acscatal.9b03876
J. Zhong, Z. Liang, N. Liu, Y. Xiang, B. Yan et al., Engineering symmetry-breaking centers and d-orbital modulation in triatomic catalysts for zinc-air batteries. ACS Nano 18, 5258–5269 (2024). https://doi.org/10.1021/acsnano.3c08839
Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12, 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
R. Ren, G. Liu, J. Y. Kim, R. E. A. Ardhi, M. X. Tran et al., Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered p-n heterojunction for rechargeable Zn-air batteries. Appl. Catal. B. Environ. 306, 121096 (2022). https://doi.org/10.1016/j.apcatb.2022.121096
H. Yang, B. Wang, H. Li, B. Ni, K. Wang et al., Trimetallic sulfide mesoporous nanospheres as superior electrocatalysts for rechargeable Zn-air batteries. Adv. Energy Mater. 8 (34) 1801839–1801847 (2018). https://doi.org/10.1002/aenm.201801839
T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28 1705048–1705056 (2018). https://doi.org/10.1002/adfm.201705048
J. Lv, S.C. Abbas, Y. Huang, Q. Liu, M. Wu et al., A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 43, 130–137 (2018). https://doi.org/10.1016/j.nanoen.2017.11.020
D. Zhu, Q. Zhao, G. Fan, S. Zhao, L. Wang, et al., Photoinduced oxygen reduction reaction boosts the output voltage of a zinc–air battery. Angew. Chem. Int. Ed. 58, 12460-12464 (2019). https://doi.org/10.1002/anie.201905954
C. Zhao, J. Liu, B. Li, D. Ren, X. Chen et al. Multiscale construction of bifunctional electrocatalysts for long‐lifespan rechargeable zinc–air batteries. Adv. Funct. Mater. 30, 2003619 (2020). https://doi.org/10.1002/adfm.202003619