Single-Atom Cobalt-Based Electrochemical Biomimetic Uric Acid Sensor with Wide Linear Range and Ultralow Detection Limit
Corresponding Author: Chang Ming Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 7
Abstract
Uric acid (UA) detection is essential in diagnosis of arthritis, preeclampsia, renal disorder, and cardiovascular diseases, but it is very challenging to realize the required wide detection range and low detection limit. We present here a single-atom catalyst consisting of Co(II) atoms coordinated by an average of 3.4 N atoms on an N-doped graphene matrix (A–Co–NG) to build an electrochemical biomimetic sensor for UA detection. The A–Co–NG sensor achieves a wide detection range over 0.4–41,950 μM and an extremely low detection limit of 33.3 ± 0.024 nM, which are much better than previously reported sensors based on various nanostructured materials. Besides, the A–Co–NG sensor also demonstrates its accurate serum diagnosis for UA for its practical application. Combination of experimental and theoretical calculation discovers that the catalytic process of the A–Co–NG toward UA starts from the oxidation of Co species to form a Co3+–OH–UA*, followed by the generation of Co3+–OH + *UA_H, eventually leading to N–H bond dissociation for the formation of oxidized UA molecule and reduction of oxidized Co3+ to Co2+ for the regenerated A–Co–NG. This work provides a promising material to realize UA detection with wide detection range and low detection limit to meet the practical diagnosis requirements, and the proposed sensing mechanism sheds light on fundamental insights for guiding exploration of other biosensing processes.
Highlights:
1 A single-atom catalyst of A–Co–NG is explored for electrochemical uric acid (UA) detection for the first time and realize practical UA monitoring in serum samples.
2 The A–Co–NG sensor demonstrates high performance for UA detection with a wide detection range from 0.4 to 41950 μM and an extremely low detection limit of 33.3 nM.
3 Combination of experimental and theoretical calculation discovers mechanism for the UA oxidation on the single-atom catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Martinon, Mechanisms of uric acid crystal-mediated autoinflammation. Immunol. Rev. 233, 218–232 (2010). https://doi.org/10.1111/j.0105-2896.2009.00860.x
- M.A. Becker, M. Jolly, Hyperuricemia and associated diseases. Rheum. Dis. Clin. North Am. 32, 275–293 (2006). https://doi.org/10.1016/j.rdc.2006.02.005
- D.I. Feig, D.H. Kang, R.J. Johnson, Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821 (2008). https://doi.org/10.1056/NEJMra0800885
- I.M. Palmer, A.E. Schutte, H.W. Huisman, Uric acid and the cardiovascular profile of african and caucasian men. J. Hum. Hypertens. 24, 639–645 (2010). https://doi.org/10.1038/jhh.2010.1
- J.M. Roberts, H.S. Gammill, Preeclampsia: recent insights. Hypertension 46, 1243–1249 (2005). https://doi.org/10.1161/01.HYP.0000188408.49896.c5
- N. Dey, S. Bhattacharya, Nanomolar level detection of uric acid in blood serum and pest-infested grain samples by an amphiphilic probe. Anal. Chem. 89, 10376–10383 (2017). https://doi.org/10.1021/acs.analchem.7b02344
- X. Chen, J. Chen, F. Wang, X. Xiang, M. Luo, X. Ji, Z. He, Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens. Bioelectron. 35, 363–368 (2012). https://doi.org/10.1016/j.bios.2012.03.018
- I.A. Rebelo, J.A.P. Piedade, A.M. Oliveira-Brett, Development of an HPLC method with electrochemical detection of femtomoles of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine in the presence of uric acid. Talanta 63, 323–331 (2004). https://doi.org/10.1016/j.talanta.2003.10.051
- W. Pormsila, S. Krähenbühl, P.C. Hauser, Capillary electrophoresis with contactless conductivity detection for uric acid determination in biological fluids. Anal. Chim. Acta 636, 224–228 (2009). https://doi.org/10.1016/j.aca.2009.02.012
- C. Westley, Y. Xu, B. Thilaganathan, A.J. Carnell, N.J. Turner, R. Goodacre, Absolute quantification of uric acid in human urine using surface enhanced raman scattering with the standard addition method. Anal. Chem. 89, 2472–2477 (2017). https://doi.org/10.1021/acs.analchem.6b04588
- C. Wang, R. Yuan, Y. Chai, S. Chen, F. Hu, M. Zhang, Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Anal. Chim. Acta 741, 15–20 (2012). https://doi.org/10.1016/j.aca.2012.06.045
- R. Kumar, NiCo2O4 nano-/microstructures as high-performance biosensors: a review. Nano-Micro Lett. 12, 122 (2020). https://doi.org/10.1007/s40820-020-00462-w
- Z. Shi, X. Li, L. Yu, X. Wu, J. Wu, C. Guo, C.M. Li, Atomic matching catalysis to realize a highly selective and sensitive biomimetic uric acid sensor. Biosens. Bioelectron. 141, 111421 (2019). https://doi.org/10.1016/j.bios.2019.111421
- J.N. Tiwari, V. Vij, K.C. Kemp, K.S. Kim, Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10, 46–80 (2016). https://doi.org/10.1021/acsnano.5b05690
- B. Stibůrková, M. Pavlíková, J. Sokolová, V. Kožich, Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS ONE 9, e97646 (2014). https://doi.org/10.1371/journal.pone.0097646
- R. Jarosova, S.E. McClure, M. Gajda, M. Jovic, H.H. Girault et al., Inkjet-printed carbon nanotube electrodes for measuring pyocyanin and uric acid in a wound fluid simulant and culture media. Anal. Chem. 91, 8835–8844 (2019). https://doi.org/10.1021/acs.analchem.8b05591
- M.K. Alam, M.M. Rahman, M.M. Rahman, D. Kim, A.M. Asiri, F.A. Khan, In-situ synthesis of gold nanocrystals anchored graphene oxide and its application in biosensor and chemical sensor. J. Electroanal. Chem. 835, 329–337 (2019). https://doi.org/10.1016/j.jelechem.2019.01.023
- M.M. Hussain, M.M. Rahman, A.M. Asiri, M.R. Awual, Non-enzymatic simultaneous detection of l-glutamic acid and uric acid using mesoporous Co3O4 nanosheets. RSC Adv. 6, 80511–80521 (2016). https://doi.org/10.1039/C6RA12256F
- M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awualc, M.M. Rahman, Detection of uric acid based on doped ZnO/Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode. New J. Chem. 43, 8651–8659 (2019). https://doi.org/10.1039/c9nj01287g
- M.M. Rahman, J. Ahmedc, A.M. Asiri, A glassy carbon electrode modified with g-Ce2S3-decorated CNT nanocomposites for uric acid sensor development: a real sample analysis. RSC Adv. 7, 14649–14659 (2017). https://doi.org/10.1039/c6ra27414e
- H. Xiang, W. Feng, Y. Chen, Single-atom catalysts in catalytic biomedicine. Adv. Mater. 32, e1905994 (2020). https://doi.org/10.1002/adma.201905994
- Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Lett. 11, 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
- Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
- B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
- J.J. Gao, H.B. Yang, X. Huang, S.F. Hung, W.Z. Cai et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
- H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58, 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
- L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, e5490 (2019). https://doi.org/10.1126/sciadv.aav5490
- F.X. Hu, J.L. Xie, S.J. Bao, L. Yu, C.M. Li, Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Biosens. Bioelectron. 70, 310–317 (2015). https://doi.org/10.1016/j.bios.2015.03.056
- M. Newville, EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 8, 96–100 (2001). https://doi.org/10.1107/S0909049500016290
- J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000). https://doi.org/10.1103/RevModPhys.72.621
- H. Pang, X. Li, Q. Zhao, H. Xue, W.Y. Lai, Z. Hu, W. Huang, One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy 35, 138–145 (2017). https://doi.org/10.1016/j.nanoen.2017.02.044
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- X. Liu, Y. Hao, J. Shu, H.M.K. Sari, L. Lin et al., Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57, 414–423 (2019). https://doi.org/10.1016/j.nanoen.2018.12.024
- F. Hu, S. Chen, C. Wang, R. Yuan, Y. Chai, Y. Xiang, C. Wang, ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B Enzym. 72, 298–304 (2011). https://doi.org/10.1016/j.molcatb.2011.07.005
- X.J. Huang, H.S. Im, O. Yarimaga, J.H. Kim, D.H. Lee, H.S. Kim, Y.K. Choi, Direct electrochemistry of uric acid at chemically assembled carboxylated single-walled carbon nanotubes netlike electrode. J. Phys. Chem. B 110, 21850–21856 (2006). https://doi.org/10.1021/jp063749q
- C. Xiong, T. Zhang, W. Kong, Z. Zhang, H. Qu et al., ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 101, 21–28 (2018). https://doi.org/10.1016/j.bios.2017.10.004
- Q. Lu, J. Deng, Y. Hou, H. Wang, H. Li, Y. Zhang, One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem. Commun. 51, 12251–12253 (2015). https://doi.org/10.1039/C5CC04231C
- L. Yang, D. Liu, J. Huang, T. You, Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensor Actuat. B Chem. 193, 166–172 (2014). https://doi.org/10.1016/j.snb.2013.11.104
- J. Guo, Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal. Chem. 88, 11986–11989 (2016). https://doi.org/10.1021/acs.analchem.6b04345
- T. Hou, P. Gai, M. Song, S. Zhang, F. Li, Synthesis of a three-layered SiO2@Au nanoparticle@ polyaniline nanocomposite and its application in simultaneous electrochemical detection of uric acid and ascorbic acid. J. Mater. Chem. B 4, 2314–2321 (2016). https://doi.org/10.1039/C5TB02765A
- M.U. Anu Prathap, R. Srivastava, Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sensor Actuat. B Chem. 177, 239–250 (2013). https://doi.org/10.1016/j.snb.2012.10.138
- L. Zhang, C. Zhang, J. Lian, Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode its use for the simultaneous determination of ascorbic acid and uric acid. Biosens. Bioelectron. 24, 690–695 (2008). https://doi.org/10.1016/j.bios.2008.06.025
- H. Dai, N. Wang, D. Wang, X. Zhang, H. Ma, M. Lin, Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Microchim. Acta 183, 3053–3059 (2016). https://doi.org/10.1007/s00604-016-1953-x
- Y. Li, H. Lin, H. Peng, R. Qi, C. Luo, A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim. Acta 183, 2517–2523 (2016). https://doi.org/10.1007/s00604-016-1897-1
- A.B. Patil, Z. Meng, R. Wu, L. Ma, Z. Xu et al., Tailoring the meso-structure of gold nanoparticles in keratin-based activated carbon toward high-performance flexible sensor. Nano-Micro Lett. 12, 117 (2020). https://doi.org/10.1007/s40820-020-00459-5
- J. Liu, Y. Xie, K. Wang, Q. Zeng, R. Liu, X. Liu, A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim. Acta 184, 1739–1745 (2017). https://doi.org/10.1007/s00604-017-2185-4
- M. Motshakeri, J. Travas-Sejdic, A.R.J. Phillips, P.A. Kilmartin, Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk. Electrochim. Acta 265, 184–193 (2018). https://doi.org/10.1016/j.electacta.2018.01.147
- X. Zhang, Y.C. Zhang, L.X. Ma, One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensor Actuat. B Chem. 227, 488–496 (2016). https://doi.org/10.1016/j.snb.2015.12.073
- B. Peng, J. Cui, Y. Wang, J. Liu, H. Zheng et al., CeO2−x/C/RGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale 10, 1939–1945 (2018). https://doi.org/10.1039/C7NR08858B
- H.L. Zou, B.L. Li, H.Q. Luo, N.B. Li, 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sensor Actuat. B Chem. 253, 352–360 (2017). https://doi.org/10.1016/j.snb.2017.06.158
- W.A. Adeosun, A.M. Asiri, H.M. Marwani, M.M. Rahman, Enzymeless electrocatalytic detection of uric acid using polydopamine/polypyrrole copolymeric film. ChemistrySelect 5, 156–164 (2020). https://doi.org/10.1002/slct.201903628
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
References
F. Martinon, Mechanisms of uric acid crystal-mediated autoinflammation. Immunol. Rev. 233, 218–232 (2010). https://doi.org/10.1111/j.0105-2896.2009.00860.x
M.A. Becker, M. Jolly, Hyperuricemia and associated diseases. Rheum. Dis. Clin. North Am. 32, 275–293 (2006). https://doi.org/10.1016/j.rdc.2006.02.005
D.I. Feig, D.H. Kang, R.J. Johnson, Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821 (2008). https://doi.org/10.1056/NEJMra0800885
I.M. Palmer, A.E. Schutte, H.W. Huisman, Uric acid and the cardiovascular profile of african and caucasian men. J. Hum. Hypertens. 24, 639–645 (2010). https://doi.org/10.1038/jhh.2010.1
J.M. Roberts, H.S. Gammill, Preeclampsia: recent insights. Hypertension 46, 1243–1249 (2005). https://doi.org/10.1161/01.HYP.0000188408.49896.c5
N. Dey, S. Bhattacharya, Nanomolar level detection of uric acid in blood serum and pest-infested grain samples by an amphiphilic probe. Anal. Chem. 89, 10376–10383 (2017). https://doi.org/10.1021/acs.analchem.7b02344
X. Chen, J. Chen, F. Wang, X. Xiang, M. Luo, X. Ji, Z. He, Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices. Biosens. Bioelectron. 35, 363–368 (2012). https://doi.org/10.1016/j.bios.2012.03.018
I.A. Rebelo, J.A.P. Piedade, A.M. Oliveira-Brett, Development of an HPLC method with electrochemical detection of femtomoles of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine in the presence of uric acid. Talanta 63, 323–331 (2004). https://doi.org/10.1016/j.talanta.2003.10.051
W. Pormsila, S. Krähenbühl, P.C. Hauser, Capillary electrophoresis with contactless conductivity detection for uric acid determination in biological fluids. Anal. Chim. Acta 636, 224–228 (2009). https://doi.org/10.1016/j.aca.2009.02.012
C. Westley, Y. Xu, B. Thilaganathan, A.J. Carnell, N.J. Turner, R. Goodacre, Absolute quantification of uric acid in human urine using surface enhanced raman scattering with the standard addition method. Anal. Chem. 89, 2472–2477 (2017). https://doi.org/10.1021/acs.analchem.6b04588
C. Wang, R. Yuan, Y. Chai, S. Chen, F. Hu, M. Zhang, Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. Anal. Chim. Acta 741, 15–20 (2012). https://doi.org/10.1016/j.aca.2012.06.045
R. Kumar, NiCo2O4 nano-/microstructures as high-performance biosensors: a review. Nano-Micro Lett. 12, 122 (2020). https://doi.org/10.1007/s40820-020-00462-w
Z. Shi, X. Li, L. Yu, X. Wu, J. Wu, C. Guo, C.M. Li, Atomic matching catalysis to realize a highly selective and sensitive biomimetic uric acid sensor. Biosens. Bioelectron. 141, 111421 (2019). https://doi.org/10.1016/j.bios.2019.111421
J.N. Tiwari, V. Vij, K.C. Kemp, K.S. Kim, Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10, 46–80 (2016). https://doi.org/10.1021/acsnano.5b05690
B. Stibůrková, M. Pavlíková, J. Sokolová, V. Kožich, Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS ONE 9, e97646 (2014). https://doi.org/10.1371/journal.pone.0097646
R. Jarosova, S.E. McClure, M. Gajda, M. Jovic, H.H. Girault et al., Inkjet-printed carbon nanotube electrodes for measuring pyocyanin and uric acid in a wound fluid simulant and culture media. Anal. Chem. 91, 8835–8844 (2019). https://doi.org/10.1021/acs.analchem.8b05591
M.K. Alam, M.M. Rahman, M.M. Rahman, D. Kim, A.M. Asiri, F.A. Khan, In-situ synthesis of gold nanocrystals anchored graphene oxide and its application in biosensor and chemical sensor. J. Electroanal. Chem. 835, 329–337 (2019). https://doi.org/10.1016/j.jelechem.2019.01.023
M.M. Hussain, M.M. Rahman, A.M. Asiri, M.R. Awual, Non-enzymatic simultaneous detection of l-glutamic acid and uric acid using mesoporous Co3O4 nanosheets. RSC Adv. 6, 80511–80521 (2016). https://doi.org/10.1039/C6RA12256F
M.M. Alam, A.M. Asiri, M.T. Uddin, M.A. Islam, M.R. Awualc, M.M. Rahman, Detection of uric acid based on doped ZnO/Ag2O/Co3O4 nanoparticle loaded glassy carbon electrode. New J. Chem. 43, 8651–8659 (2019). https://doi.org/10.1039/c9nj01287g
M.M. Rahman, J. Ahmedc, A.M. Asiri, A glassy carbon electrode modified with g-Ce2S3-decorated CNT nanocomposites for uric acid sensor development: a real sample analysis. RSC Adv. 7, 14649–14659 (2017). https://doi.org/10.1039/c6ra27414e
H. Xiang, W. Feng, Y. Chen, Single-atom catalysts in catalytic biomedicine. Adv. Mater. 32, e1905994 (2020). https://doi.org/10.1002/adma.201905994
Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano-Micro Lett. 11, 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang et al., Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nano-Micro Lett. 12, 21 (2020). https://doi.org/10.1007/s40820-019-0349-y
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). https://doi.org/10.1038/nchem.1095
J.J. Gao, H.B. Yang, X. Huang, S.F. Hung, W.Z. Cai et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
H.B. Yang, S.F. Hung, S. Liu, K. Yuan, S. Miao et al., Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58, 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
L. Huang, J. Chen, L. Gan, J. Wang, S. Dong, Single-atom nanozymes. Sci. Adv. 5, e5490 (2019). https://doi.org/10.1126/sciadv.aav5490
F.X. Hu, J.L. Xie, S.J. Bao, L. Yu, C.M. Li, Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Biosens. Bioelectron. 70, 310–317 (2015). https://doi.org/10.1016/j.bios.2015.03.056
M. Newville, EXAFS analysis using FEFF and FEFFIT. J. Synchrotron Radiat. 8, 96–100 (2001). https://doi.org/10.1107/S0909049500016290
J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000). https://doi.org/10.1103/RevModPhys.72.621
H. Pang, X. Li, Q. Zhao, H. Xue, W.Y. Lai, Z. Hu, W. Huang, One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy 35, 138–145 (2017). https://doi.org/10.1016/j.nanoen.2017.02.044
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
X. Liu, Y. Hao, J. Shu, H.M.K. Sari, L. Lin et al., Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57, 414–423 (2019). https://doi.org/10.1016/j.nanoen.2018.12.024
F. Hu, S. Chen, C. Wang, R. Yuan, Y. Chai, Y. Xiang, C. Wang, ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B Enzym. 72, 298–304 (2011). https://doi.org/10.1016/j.molcatb.2011.07.005
X.J. Huang, H.S. Im, O. Yarimaga, J.H. Kim, D.H. Lee, H.S. Kim, Y.K. Choi, Direct electrochemistry of uric acid at chemically assembled carboxylated single-walled carbon nanotubes netlike electrode. J. Phys. Chem. B 110, 21850–21856 (2006). https://doi.org/10.1021/jp063749q
C. Xiong, T. Zhang, W. Kong, Z. Zhang, H. Qu et al., ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 101, 21–28 (2018). https://doi.org/10.1016/j.bios.2017.10.004
Q. Lu, J. Deng, Y. Hou, H. Wang, H. Li, Y. Zhang, One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem. Commun. 51, 12251–12253 (2015). https://doi.org/10.1039/C5CC04231C
L. Yang, D. Liu, J. Huang, T. You, Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensor Actuat. B Chem. 193, 166–172 (2014). https://doi.org/10.1016/j.snb.2013.11.104
J. Guo, Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal. Chem. 88, 11986–11989 (2016). https://doi.org/10.1021/acs.analchem.6b04345
T. Hou, P. Gai, M. Song, S. Zhang, F. Li, Synthesis of a three-layered SiO2@Au nanoparticle@ polyaniline nanocomposite and its application in simultaneous electrochemical detection of uric acid and ascorbic acid. J. Mater. Chem. B 4, 2314–2321 (2016). https://doi.org/10.1039/C5TB02765A
M.U. Anu Prathap, R. Srivastava, Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sensor Actuat. B Chem. 177, 239–250 (2013). https://doi.org/10.1016/j.snb.2012.10.138
L. Zhang, C. Zhang, J. Lian, Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode its use for the simultaneous determination of ascorbic acid and uric acid. Biosens. Bioelectron. 24, 690–695 (2008). https://doi.org/10.1016/j.bios.2008.06.025
H. Dai, N. Wang, D. Wang, X. Zhang, H. Ma, M. Lin, Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Microchim. Acta 183, 3053–3059 (2016). https://doi.org/10.1007/s00604-016-1953-x
Y. Li, H. Lin, H. Peng, R. Qi, C. Luo, A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim. Acta 183, 2517–2523 (2016). https://doi.org/10.1007/s00604-016-1897-1
A.B. Patil, Z. Meng, R. Wu, L. Ma, Z. Xu et al., Tailoring the meso-structure of gold nanoparticles in keratin-based activated carbon toward high-performance flexible sensor. Nano-Micro Lett. 12, 117 (2020). https://doi.org/10.1007/s40820-020-00459-5
J. Liu, Y. Xie, K. Wang, Q. Zeng, R. Liu, X. Liu, A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim. Acta 184, 1739–1745 (2017). https://doi.org/10.1007/s00604-017-2185-4
M. Motshakeri, J. Travas-Sejdic, A.R.J. Phillips, P.A. Kilmartin, Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk. Electrochim. Acta 265, 184–193 (2018). https://doi.org/10.1016/j.electacta.2018.01.147
X. Zhang, Y.C. Zhang, L.X. Ma, One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sensor Actuat. B Chem. 227, 488–496 (2016). https://doi.org/10.1016/j.snb.2015.12.073
B. Peng, J. Cui, Y. Wang, J. Liu, H. Zheng et al., CeO2−x/C/RGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale 10, 1939–1945 (2018). https://doi.org/10.1039/C7NR08858B
H.L. Zou, B.L. Li, H.Q. Luo, N.B. Li, 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sensor Actuat. B Chem. 253, 352–360 (2017). https://doi.org/10.1016/j.snb.2017.06.158
W.A. Adeosun, A.M. Asiri, H.M. Marwani, M.M. Rahman, Enzymeless electrocatalytic detection of uric acid using polydopamine/polypyrrole copolymeric film. ChemistrySelect 5, 156–164 (2020). https://doi.org/10.1002/slct.201903628
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y