Sulfide-Based All-Solid-State Lithium–Sulfur Batteries: Challenges and Perspectives
Corresponding Author: Tianpin Wu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 75
Abstract
Lithium–sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns. Introducing inorganic solid-state electrolytes into lithium–sulfur systems is believed as an effective approach to eliminate these issues without sacrificing the high-energy density, which determines sulfide-based all-solid-state lithium–sulfur batteries. However, the lack of design principles for high-performance composite sulfur cathodes limits their further application. The sulfur cathode regulation should take several factors including the intrinsic insulation of sulfur, well-designed conductive networks, integrated sulfur-electrolyte interfaces, and porous structure for volume expansion, and the correlation between these factors into account. Here, we summarize the challenges of regulating composite sulfur cathodes with respect to ionic/electronic diffusions and put forward the corresponding solutions for obtaining stable positive electrodes. In the last section, we also outlook the future research pathways of architecture sulfur cathode to guide the develop high-performance all-solid-state lithium–sulfur batteries.
Highlights:
1 The composite cathode composition, preparation method, and chemical compatibility play critical roles in constructing triple-phase interfaces.
2 Understanding the electrolyte degradation is critical for boosting the high-performance composite sulfur cathode.
3 The volume change of sulfur challenges the mechanical stability of composite sulfur cathode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xiang, L. Lu, A.G.P. Kottapalli, Y. Pei, Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium–sulfur batteries. Carbon Energy 4(3), 346–398 (2022). https://doi.org/10.1002/cey2.185
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium–ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5(16), 1500408 (2015). https://doi.org/10.1002/aenm.201500408
- M. Zhao, B. Li, X. Zhang, J. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries. ACS Central Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
- A. Manthiram, S. Chung, C. Zu, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
- L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai et al., Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11(1), 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
- G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, L. Jun, Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), 1705590 (2018). https://doi.org/10.1002/adma.201705590
- H. Pan, Z. Cheng, P. He, H. Zhou, A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry. Energy Fuels 34(10), 11942–11961 (2020). https://doi.org/10.1021/acs.energyfuels.0c02647
- E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state lithium-sulfur batteries using high Li–ion conductive solid electrolytes. Electrochem. Energy Rev. 2(2), 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
- P. Wang, Z. Gong, K. Ye, V. Kumar, K. Zhu et al., Design and construction of a three-dimensional electrode with biomass-derived carbon current collector and water-soluble binder for high-sulfur-loading lithium–sulfur batteries. Carbon Energy 2(4), 635–645 (2020). https://doi.org/10.1002/cey2.49
- X. Zhu, W. Jiang, S. Zhao, R. Huang, M. Ling, C. Liang, L. Wang, Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy 96, 107093 (2022). https://doi.org/10.1016/j.nanoen.2022.107093
- S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3(6), 866–894 (2021). https://doi.org/10.1002/cey2.129
- W. Jiang, X. Zhu, R. Huang, S. Zhao, X. Fan et al., Revealing the design principles of ni-rich cathodes for all-solid-state batteries. Adv. Energy Mater. 12(13), 2103473 (2022). https://doi.org/10.1002/aenm.202103473
- X. Wang, K. He, S. Li, J. Zhang, Y. Lu, Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: a review. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4526-9
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
- B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
- W. Zhang, Y. Zhang, L. Peng, S. Li, X. Wang et al., Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy 76, 105083 (2020). https://doi.org/10.1016/j.nanoen.2020.105083
- K. Suzuki, D. Kato, K. Hara, T. Yano, M. Hirayama et al., Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li2S-GeS2-P2S5-based thio-LISICON solid electrolyte. Electrochem. 86, 1–5 (2017). https://doi.org/10.5796/electrochemistry.17-00055
- R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019). https://doi.org/10.1021/acsenergylett.9b00430
- Z. Jiang, Y. Hongling Peng, Z.L. Liu, Y. Zhong, X. Wang, X. Xia, G. Changdong, T. Jiangping, A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv. Energy Mater. 11(36), 2101521 (2021). https://doi.org/10.1002/aenm.202101521
- Q. Wang, Y. Chen, J. Jin, Z. Wen, A new high-capacity cathode for all-solid-state lithium-sulfur battery. Solid State Ionics 357, 115500 (2020). https://doi.org/10.1016/j.ssi.2020.115500
- J. Yi, L. Chen, Y. Liu, H. Geng, L. Fan, High capacity and superior cyclic performances of all-solid-state lithium–sulfur batteries enabled by a high-conductivity Li10SnP2S12 Solid electrolyte. ACS Appl. Mater. Interfaces 11(40), 36774–36781 (2019). https://doi.org/10.1021/acsami.9b12846
- S. Ohno, W.G. Zeier, Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2(10), 869–880 (2021). https://doi.org/10.1021/accountsmr.1c00116
- K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. Rupp, Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11(1), 2002689 (2021). https://doi.org/10.1002/aenm.202002689
- D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple et al., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4(10), 2418–2427 (2019). https://doi.org/10.1021/acsenergylett.9b01693
- J.A. Lewis, J. Tippens, F.J.Q. Cortes, M.T. McDowell, Chemo-Mechanical challenges in solid-state batteries. Trends Chem. 1(9), 845–857 (2019). https://doi.org/10.1016/j.trechm.2019.06.013
- S. Zhao, X. Zhu, W. Jiang, Z. Ji, M. Ling et al., Fundamental air stability in solid-state electrolytes: principles and solutions. Mater. Chem. Front. 5(20), 7452–7466 (2021). https://doi.org/10.1039/D1QM00951F
- M. Nagao, A. Hayashi, M. Tatsumisago, Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochim. Acta 56(17), 6055–6059 (2011). https://doi.org/10.1016/j.electacta.2011.04.084
- M. Nagao, A. Hayashi, M. Tatsumisago, Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 1(2–3), 186–192 (2013). https://doi.org/10.1002/ente.201200019
- T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182(2), 621–625 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.030
- K. Suzuki, N. Mashimo, Y. Ikeda, T. Yokoi, M. Hirayama et al., High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 1(6), 2373–2377 (2018). https://doi.org/10.1021/acsaem.8b00227
- H. Nagata, Y. Chikusa, Activation of sulfur active material in an all-solid-state lithium–sulfur battery. J. Power Sources 263, 141–144 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.032
- H. Nagata, Y. Chikusa, A lithium sulfur battery with high power density. J. Power Sources 264, 206–210 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.106
- F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
- Z. Lin, Z. Liu, N.J. Dudney, C. Liang, Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7(3), 2829–2833 (2013). https://doi.org/10.1021/nn400391h
- L. Wang, X. Lei, T. Liu, A. Dai, D. Su et al., Regulation of surface defect chemistry toward stable Ni-Rich cathodes. Adv. Mater. 34(19), 2200744 (2022). https://doi.org/10.1002/adma.202200744
- X. Li, J. Liang, J. Luo, C. Wang, X. Li et al., High-performance Li-SeSx all-solid-state lithium batteries. Adv. Mater. 31(17), e1808100 (2019). https://doi.org/10.1002/adma.201808100
- R.C. Xu, X.L. Wang, S.Z. Zhang, Y. Xia, X.H. Xia et al., Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J. Power Sources 374, 107–112 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.093
- T.K. Schwietert, V.A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis et al., Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19(4), 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0
- Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
- Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora et al., Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31(44), 1901131 (2019). https://doi.org/10.1002/adma.201901131
- J. Lau, R.H. DeBlock, D.M. Butts, D.S. Ashby, C.S. Choi et al., Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 8(27), 1800933 (2018). https://doi.org/10.1002/aenm.201800933
- L. Wang, J. Li, G. Lu, W. Li, Q. Tao et al., Fundamentals of electrolytes for solid-state batteries: challenges and perspectives. Front. Mater. 7, 111 (2020). https://doi.org/10.3389/fmats.2020.00111
- F. Walther, S. Randau, Y. Schneider, J. Sann, M. Rohnke et al., Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries. Chem. Mater. 32(14), 6123–6136 (2020). https://doi.org/10.1021/acs.chemmater.0c01825
- S. Chen, D. Xie, G. Liu, J.P. Mwizerwa, Q. Zhang et al., Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–1474 (2018). https://doi.org/10.1016/j.ensm.2018.02.020
- Z. Sun, Y. Lai, N. lv, Y. Hu, B. Li et al., Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5–xClOx, x=0–1). ACS Appl. Mater. Interfaces 13(46), 54924–54935 (2021). https://doi.org/10.1021/acsami.1c14573
- L. Wang, T. Liu, A. Dai, V. De Andrade, Y. Ren et al., Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 12(1), 5370 (2021). https://doi.org/10.1038/s41467-021-25686-1
- H. Xu, Y. Yu, Z. Wang, G. Shao, First principle material genome approach for all solid-state batteries. Energy Environ. Mater. 2(4), 234–250 (2019). https://doi.org/10.1002/eem2.12053
- S.Y. Han, C. Lee, J.A. Lewis, D. Yeh, Y. Liu et al., Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5(9), 2450–2465 (2021). https://doi.org/10.1016/j.joule.2021.07.002
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13(1), 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- R. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A.O. Kondrakov et al., Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11(8), 2142–2158 (2018). https://doi.org/10.1039/C8EE00907D
- L.A. Blanquer, F. Marchini, J.R. Seitz, N. Daher, F. Bétermier, J. Huang, C. Gervillié, J.-M. Tarascon, Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-28792-w
- T.Y. Kwon, K.T. Kim, O. Dae Yang, Y.B. Song, S. Jun, Y.S. Jung, Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure. Energy Storage Mater. 49, 219–226 (2022). https://doi.org/10.1016/j.ensm.2022.04.017
- G. Jiabao, Z. Liang, J. Shi, Y. Yang, Electrochemo‐mechanical stresses and their measurements in sulfide‐based all‐solid‐state batteries: a review. Adv. Energy Mater. 13(2), 2203153 (2022). https://doi.org/10.1002/aenm.202203153
- X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7(17), 1602923 (2017). https://doi.org/10.1002/aenm.201602923
- A. Sakuda, Y. Sato, A. Hayashi, M. Tatsumisago, Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium–sulfur batteries. Energy Technol. 7(12), 1900077 (2019). https://doi.org/10.1002/ente.201900077
- B. Chen, S. Deng, M. Jiang, M. Wu, J. Wu et al., Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. Chem. Eng. J. 448, 137712 (2022). https://doi.org/10.1016/j.cej.2022.137712
- Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014). https://doi.org/10.1002/adma.201401191
- G. Ai, Y. Dai, W. Mao, H. Zhao, Y. Fu et al., Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries. Nano Lett. 16(9), 5365–5372 (2016). https://doi.org/10.1021/acs.nanolett.6b01434
- Y. Shi, N. Yang, J. Niu, S. Yang, F. Wang, A highly durable rubber‐derived lithium‐conducting elastomer for lithium metal batteries. Adv. Sci. 9(16), 2200553 (2022). https://doi.org/10.1002/advs.202200553
- Y.J. Nam, D.Y. Oh, S.H. Jung, Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.031
- S. Hong, Y. Lee, U. Kim, C. Bak, Y.M. Lee et al., All-solid-state lithium batteries: Li+-conducting ionomer binder for dry-processed composite cathodes. ACS Energy Lett. 7(3), 1092–1100 (2022). https://doi.org/10.1021/acsenergylett.1c02756
- F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019). https://doi.org/10.1016/j.ensm.2019.05.033
- D.H. Kim, Y. Lee, Y.B. Song, H. Kwak, S. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li–Ion batteries. ACS Energy Lett. 5(3), 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
- Y. Zheng, N. Yang, R. Gao, Z. Li, H. Dou et al., “Tree-Trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 34(44), 2203417 (2022). https://doi.org/10.1002/adma.202203417
- L. Wang, T. Liu, T. Wu, J. Lu, Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611(7934), 61–67 (2022). https://doi.org/10.1038/s41586-022-05238-3
- N. Ahmad, L. Zhou, M. Faheem, M.K. Tufail, L. Yang et al., Enhanced air stability and high Li-Ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12(19), 21548–21558 (2020). https://doi.org/10.1021/acsami.0c00393
References
Y. Xiang, L. Lu, A.G.P. Kottapalli, Y. Pei, Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium–sulfur batteries. Carbon Energy 4(3), 346–398 (2022). https://doi.org/10.1002/cey2.185
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium–ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li–S batteries. Adv. Energy Mater. 5(16), 1500408 (2015). https://doi.org/10.1002/aenm.201500408
M. Zhao, B. Li, X. Zhang, J. Huang, Q. Zhang, A perspective toward practical lithium–sulfur batteries. ACS Central Sci. 6(7), 1095–1104 (2020). https://doi.org/10.1021/acscentsci.0c00449
A. Manthiram, S. Chung, C. Zu, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai et al., Housing sulfur in polymer composite frameworks for Li–S batteries. Nano-Micro Lett. 11(1), 17 (2019). https://doi.org/10.1007/s40820-019-0249-1
G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, L. Jun, Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), 1705590 (2018). https://doi.org/10.1002/adma.201705590
H. Pan, Z. Cheng, P. He, H. Zhou, A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry. Energy Fuels 34(10), 11942–11961 (2020). https://doi.org/10.1021/acs.energyfuels.0c02647
E. Umeshbabu, B. Zheng, Y. Yang, Recent progress in all-solid-state lithium-sulfur batteries using high Li–ion conductive solid electrolytes. Electrochem. Energy Rev. 2(2), 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3
P. Wang, Z. Gong, K. Ye, V. Kumar, K. Zhu et al., Design and construction of a three-dimensional electrode with biomass-derived carbon current collector and water-soluble binder for high-sulfur-loading lithium–sulfur batteries. Carbon Energy 2(4), 635–645 (2020). https://doi.org/10.1002/cey2.49
X. Zhu, W. Jiang, S. Zhao, R. Huang, M. Ling, C. Liang, L. Wang, Exploring the concordant solid-state electrolytes for all-solid-state lithium-sulfur batteries. Nano Energy 96, 107093 (2022). https://doi.org/10.1016/j.nanoen.2022.107093
S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3(6), 866–894 (2021). https://doi.org/10.1002/cey2.129
W. Jiang, X. Zhu, R. Huang, S. Zhao, X. Fan et al., Revealing the design principles of ni-rich cathodes for all-solid-state batteries. Adv. Energy Mater. 12(13), 2103473 (2022). https://doi.org/10.1002/aenm.202103473
X. Wang, K. He, S. Li, J. Zhang, Y. Lu, Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: a review. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4526-9
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama et al., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1(4), 16030 (2016). https://doi.org/10.1038/nenergy.2016.30
B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin et al., Solid-state lithium–sulfur batteries: advances, challenges and perspectives. Mater. Today 40, 114–131 (2020). https://doi.org/10.1016/j.mattod.2020.05.020
W. Zhang, Y. Zhang, L. Peng, S. Li, X. Wang et al., Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy 76, 105083 (2020). https://doi.org/10.1016/j.nanoen.2020.105083
K. Suzuki, D. Kato, K. Hara, T. Yano, M. Hirayama et al., Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li2S-GeS2-P2S5-based thio-LISICON solid electrolyte. Electrochem. 86, 1–5 (2017). https://doi.org/10.5796/electrochemistry.17-00055
R. Xu, J. Yue, S. Liu, J. Tu, F. Han et al., Cathode-supported all-solid-state lithium–sulfur batteries with high cell-level energy density. ACS Energy Lett. 4(5), 1073–1079 (2019). https://doi.org/10.1021/acsenergylett.9b00430
Z. Jiang, Y. Hongling Peng, Z.L. Liu, Y. Zhong, X. Wang, X. Xia, G. Changdong, T. Jiangping, A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv. Energy Mater. 11(36), 2101521 (2021). https://doi.org/10.1002/aenm.202101521
Q. Wang, Y. Chen, J. Jin, Z. Wen, A new high-capacity cathode for all-solid-state lithium-sulfur battery. Solid State Ionics 357, 115500 (2020). https://doi.org/10.1016/j.ssi.2020.115500
J. Yi, L. Chen, Y. Liu, H. Geng, L. Fan, High capacity and superior cyclic performances of all-solid-state lithium–sulfur batteries enabled by a high-conductivity Li10SnP2S12 Solid electrolyte. ACS Appl. Mater. Interfaces 11(40), 36774–36781 (2019). https://doi.org/10.1021/acsami.9b12846
S. Ohno, W.G. Zeier, Toward practical solid-state lithium-sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2(10), 869–880 (2021). https://doi.org/10.1021/accountsmr.1c00116
K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. Rupp, Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11(1), 2002689 (2021). https://doi.org/10.1002/aenm.202002689
D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple et al., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4(10), 2418–2427 (2019). https://doi.org/10.1021/acsenergylett.9b01693
J.A. Lewis, J. Tippens, F.J.Q. Cortes, M.T. McDowell, Chemo-Mechanical challenges in solid-state batteries. Trends Chem. 1(9), 845–857 (2019). https://doi.org/10.1016/j.trechm.2019.06.013
S. Zhao, X. Zhu, W. Jiang, Z. Ji, M. Ling et al., Fundamental air stability in solid-state electrolytes: principles and solutions. Mater. Chem. Front. 5(20), 7452–7466 (2021). https://doi.org/10.1039/D1QM00951F
M. Nagao, A. Hayashi, M. Tatsumisago, Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochim. Acta 56(17), 6055–6059 (2011). https://doi.org/10.1016/j.electacta.2011.04.084
M. Nagao, A. Hayashi, M. Tatsumisago, Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 1(2–3), 186–192 (2013). https://doi.org/10.1002/ente.201200019
T. Kobayashi, Y. Imade, D. Shishihara, K. Homma, M. Nagao et al., All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182(2), 621–625 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.030
K. Suzuki, N. Mashimo, Y. Ikeda, T. Yokoi, M. Hirayama et al., High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 1(6), 2373–2377 (2018). https://doi.org/10.1021/acsaem.8b00227
H. Nagata, Y. Chikusa, Activation of sulfur active material in an all-solid-state lithium–sulfur battery. J. Power Sources 263, 141–144 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.032
H. Nagata, Y. Chikusa, A lithium sulfur battery with high power density. J. Power Sources 264, 206–210 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.106
F. Han, J. Yue, X. Fan, T. Gao, C. Luo et al., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 16(7), 4521–4527 (2016). https://doi.org/10.1021/acs.nanolett.6b01754
Z. Lin, Z. Liu, N.J. Dudney, C. Liang, Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano 7(3), 2829–2833 (2013). https://doi.org/10.1021/nn400391h
L. Wang, X. Lei, T. Liu, A. Dai, D. Su et al., Regulation of surface defect chemistry toward stable Ni-Rich cathodes. Adv. Mater. 34(19), 2200744 (2022). https://doi.org/10.1002/adma.202200744
X. Li, J. Liang, J. Luo, C. Wang, X. Li et al., High-performance Li-SeSx all-solid-state lithium batteries. Adv. Mater. 31(17), e1808100 (2019). https://doi.org/10.1002/adma.201808100
R.C. Xu, X.L. Wang, S.Z. Zhang, Y. Xia, X.H. Xia et al., Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J. Power Sources 374, 107–112 (2018). https://doi.org/10.1016/j.jpowsour.2017.10.093
T.K. Schwietert, V.A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis et al., Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19(4), 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0
Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7(42), 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517
Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora et al., Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31(44), 1901131 (2019). https://doi.org/10.1002/adma.201901131
J. Lau, R.H. DeBlock, D.M. Butts, D.S. Ashby, C.S. Choi et al., Sulfide solid electrolytes for lithium battery applications. Adv. Energy Mater. 8(27), 1800933 (2018). https://doi.org/10.1002/aenm.201800933
L. Wang, J. Li, G. Lu, W. Li, Q. Tao et al., Fundamentals of electrolytes for solid-state batteries: challenges and perspectives. Front. Mater. 7, 111 (2020). https://doi.org/10.3389/fmats.2020.00111
F. Walther, S. Randau, Y. Schneider, J. Sann, M. Rohnke et al., Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries. Chem. Mater. 32(14), 6123–6136 (2020). https://doi.org/10.1021/acs.chemmater.0c01825
S. Chen, D. Xie, G. Liu, J.P. Mwizerwa, Q. Zhang et al., Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–1474 (2018). https://doi.org/10.1016/j.ensm.2018.02.020
Z. Sun, Y. Lai, N. lv, Y. Hu, B. Li et al., Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5–xClOx, x=0–1). ACS Appl. Mater. Interfaces 13(46), 54924–54935 (2021). https://doi.org/10.1021/acsami.1c14573
L. Wang, T. Liu, A. Dai, V. De Andrade, Y. Ren et al., Reaction inhomogeneity coupling with metal rearrangement triggers electrochemical degradation in lithium-rich layered cathode. Nat. Commun. 12(1), 5370 (2021). https://doi.org/10.1038/s41467-021-25686-1
H. Xu, Y. Yu, Z. Wang, G. Shao, First principle material genome approach for all solid-state batteries. Energy Environ. Mater. 2(4), 234–250 (2019). https://doi.org/10.1002/eem2.12053
S.Y. Han, C. Lee, J.A. Lewis, D. Yeh, Y. Liu et al., Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5(9), 2450–2465 (2021). https://doi.org/10.1016/j.joule.2021.07.002
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13(1), 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
R. Koerver, W. Zhang, L. de Biasi, S. Schweidler, A.O. Kondrakov et al., Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11(8), 2142–2158 (2018). https://doi.org/10.1039/C8EE00907D
L.A. Blanquer, F. Marchini, J.R. Seitz, N. Daher, F. Bétermier, J. Huang, C. Gervillié, J.-M. Tarascon, Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat. Commun. (2022). https://doi.org/10.1038/s41467-022-28792-w
T.Y. Kwon, K.T. Kim, O. Dae Yang, Y.B. Song, S. Jun, Y.S. Jung, Three-dimensional networking binders prepared in situ during wet-slurry process for all-solid-state batteries operating under low external pressure. Energy Storage Mater. 49, 219–226 (2022). https://doi.org/10.1016/j.ensm.2022.04.017
G. Jiabao, Z. Liang, J. Shi, Y. Yang, Electrochemo‐mechanical stresses and their measurements in sulfide‐based all‐solid‐state batteries: a review. Adv. Energy Mater. 13(2), 2203153 (2022). https://doi.org/10.1002/aenm.202203153
X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan et al., High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7(17), 1602923 (2017). https://doi.org/10.1002/aenm.201602923
A. Sakuda, Y. Sato, A. Hayashi, M. Tatsumisago, Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium–sulfur batteries. Energy Technol. 7(12), 1900077 (2019). https://doi.org/10.1002/ente.201900077
B. Chen, S. Deng, M. Jiang, M. Wu, J. Wu et al., Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. Chem. Eng. J. 448, 137712 (2022). https://doi.org/10.1016/j.cej.2022.137712
Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium–sulfur batteries. Adv. Mater. 26(30), 5113–5118 (2014). https://doi.org/10.1002/adma.201401191
G. Ai, Y. Dai, W. Mao, H. Zhao, Y. Fu et al., Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries. Nano Lett. 16(9), 5365–5372 (2016). https://doi.org/10.1021/acs.nanolett.6b01434
Y. Shi, N. Yang, J. Niu, S. Yang, F. Wang, A highly durable rubber‐derived lithium‐conducting elastomer for lithium metal batteries. Adv. Sci. 9(16), 2200553 (2022). https://doi.org/10.1002/advs.202200553
Y.J. Nam, D.Y. Oh, S.H. Jung, Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.031
S. Hong, Y. Lee, U. Kim, C. Bak, Y.M. Lee et al., All-solid-state lithium batteries: Li+-conducting ionomer binder for dry-processed composite cathodes. ACS Energy Lett. 7(3), 1092–1100 (2022). https://doi.org/10.1021/acsenergylett.1c02756
F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki et al., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019). https://doi.org/10.1016/j.ensm.2019.05.033
D.H. Kim, Y. Lee, Y.B. Song, H. Kwak, S. Lee et al., Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li–Ion batteries. ACS Energy Lett. 5(3), 718–727 (2020). https://doi.org/10.1021/acsenergylett.0c00251
Y. Zheng, N. Yang, R. Gao, Z. Li, H. Dou et al., “Tree-Trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 34(44), 2203417 (2022). https://doi.org/10.1002/adma.202203417
L. Wang, T. Liu, T. Wu, J. Lu, Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 611(7934), 61–67 (2022). https://doi.org/10.1038/s41586-022-05238-3
N. Ahmad, L. Zhou, M. Faheem, M.K. Tufail, L. Yang et al., Enhanced air stability and high Li-Ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12(19), 21548–21558 (2020). https://doi.org/10.1021/acsami.0c00393