Wearable Battery-Free Perspiration Analyzing Sites Based on Sweat Flowing on ZnO Nanoarrays
Corresponding Author: Xinyu Xue
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 105
Abstract
We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply. The device mainly consists of ZnO nanowire (NW) arrays and flexible polydimethylsiloxane substrate. Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs. The sweat flowing on the NWs (with lactate oxidase modification) can output a DC electrical signal, and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal. ZnO NWs generate electric double layer (EDL) in sweat, which causes a potential difference between the upper and lower ends (hydrovoltaic effect). The product of the enzymatic reaction can adjust the EDL and influence the output. This device can be integrated with wireless transmitter and may have potential application in constructing sports big data. This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.
Highlights:
1 Wearable battery-free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays was fabricated.
2 Coupling of hydrovoltaic effect and enzymatic reaction were analyzed.
3 The wearable wireless physiological status monitoring system has potential application in constructing sports big data.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Talanta 177, 163–170 (2018). https://doi.org/10.1016/j.talanta.2017.08.077
- Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
- L. Zhao, H. Li, J. Meng, A. Wang, P. Tan et al., Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. 30(5), 1907999 (2020). https://doi.org/10.1002/adfm.201907999
- P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singhet, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
- X. Wang, Z. Liu, J. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
- A. Tricoli, N. Nasiri, S. De, Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27(15), 1605271 (2017). https://doi.org/10.1002/adfm.201605271
- L. Zhao, H. Li, J. Meng, Z. Li, The recent advances in self-powered medical information sensors. InfoMat 2, 212–234 (2020). https://doi.org/10.1002/inf2.12064
- J. Kim, S. Imani, W.R. de Araujo, J. Warchall, G. Valdes-Ramirez, T. Paixao, P.P. Mercier, J. Wang, Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015). https://doi.org/10.1016/j.bios.2015.07.039
- Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
- S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, P. Joshi, A. Hu, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
- H. Lee, T. Choi, Y. Lee, H. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetesmonitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016). https://doi.org/10.1038/NNANO.2016.38
- J. Sun, A. Yang, C. Zhao, F. Liu, Z. Li, Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 64(18), 1336–1347 (2019). https://doi.org/10.1016/j.scib.2019.07.001
- P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11(1), 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
- L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi, C. Chen, M. Peng, Y. Liu, X. Sun, Spiral steel wirebased fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
- E. Mezghani, E. Exposito, K. Drira, M. Da Silveira, C. Pruski, A semantic big data platform for integrating heterogeneous wearable data in healthcare. J. Med. Syst. 39(12), 185 (2015). https://doi.org/10.1007/s10916-015-0344-x
- H. Guan, T. Zhong, H. He, T. Zhao, L. Xing, Y. Zhang, X. Xue, A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy 59, 754–761 (2019). https://doi.org/10.1007/10.1016/j.nanoen.2019.03.026
- M. Chen, Y. Ma, J. Song, C.-F. Lai, B. Hu, Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mobile Netw. Appl. 21(5), 825–845 (2016). https://doi.org/10.1007/s11036-016-0745-1
- A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1(5), 464–482 (2016). https://doi.org/10.1021/acssensors.6b00250
- W. Dang, L. Manjakkal, W. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107, 192–202 (2018). https://doi.org/10.1016/j.bios.2018.02.025
- J. Kim, A.S. Campbell, B.E.F. de Avila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
- A. Koh, D. Kang, Y. Xue, S. Lee, R. Pielak et al., Wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8(366), 366ra165 (2016). https://doi.org/10.1126/scitranslmed.aaf2593
- E.E. Coris, A.M. Ramirez, D.J. Van Durme, Heat illness in athletes—the dangerous combination of heat, humidity and exercise. Sports Med. 34(1), 9–16 (2004). https://doi.org/10.2165/00007256-200434010-00002
- G. Matzeu, L. Florea, D. Diamond, Advances in wearable chemical sensor design for monitoring biological fluids. Sens. Actuator B-Chem. 211, 403–418 (2015). https://doi.org/10.1016/j.snb.2015.01.077
- S. Nakata, T. Arie, S. Akita, K. Takei, Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sens. 2(3), 443–448 (2017). https://doi.org/10.1021/acssensors.7b00047
- V. Curto, C. Fay, S. Coyle, R. Byrne, C. O’Toole et al., Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens. Actuator B-Chem. 171, 1327–1334 (2012). https://doi.org/10.1016/j.snb.2012.06.048
- A. Martin, J. Kim, J. Kurniawan, J. Sempionatto, J. Moreto et al., Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens. 2(12), 1860–1868 (2017). https://doi.org/10.1021/acssensors.7b00729
- W. Han, H. He, L. Zhang, C. Dong, H. Zeng et al., A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. ACS Appl. Mater. Interfaces 9(35), 29526–29537 (2017). https://doi.org/10.1021/acsami.7b07990
- W. Jia, A.J. Bandodkar, G. Valdes-Ramirez, J.R. Windmiller, Z. Yang, J. Ramirez, G. Chan, J. Wang, Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85(14), 6553–6560 (2013). https://doi.org/10.1021/ac401573r
- J.R. Sempionatto, T. Nakagawa, A. Pavinatto, S.T. Mensah, S. Imani, P. Mercier, J. Wang, Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17(10), 1834–1842 (2017). https://doi.org/10.1039/c7lc00192d
- D.-H. Choi, Y. Li, G.R. Cutting, P.C. Searson, A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sens. Actuator B-Chem. 250, 673–678 (2017). https://doi.org/10.1016/j.snb.2017.04.129
- S. Tuteja, C. Ormsby, S. Neethirajan, Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-Micro Lett. 10(3), 41 (2018). https://doi.org/10.1007/s40820-018-0193-5
- V. Oncescu, D. O’Dell, D. Erickson, Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13(16), 3232–3238 (2013). https://doi.org/10.1039/c3lc50431j
- A.J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine et al., Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5(1), eaav3294 (2019). https://doi.org/10.1126/sciadv.aav3294
- H. Xu, Y. Lu, J. Xiang, M. Zhang, Y. Zhao, Z. Xie, Z. Gu, A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4), 2090–2098 (2018). https://doi.org/10.1039/c7nr07225b
- Y. Yang, J. Qi, Q. Liao, Y. Zhang, L. Tang, Z. Qin, Synthesis and characterization of Sb-doped ZnO nanobelts with single-side zigzag boundaries. J. Phys. Chem. C 112(46), 17916–17919 (2008). https://doi.org/10.1021/jp8064213
- N. Ye, J. Qi, Z. Qi, X. Zhang, Y. Yang, J. Liu, Y. Zhang, Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. J. Power Sources 195(17), 5806–5809 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.036
- Y. Yang, J. Qi, W. Guo, Y. Gu, Y. Huang, Y. Zhang, Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Phys. Chem. Chem. Phys. 12(39), 12415–12419 (2010). https://doi.org/10.1039/c0cp00420k
- J. Zhao, X. Yan, Y. Yang, Y. Huang, Y. Zhang, Raman spectra and photoluminescence properties of In-doped ZnO nanostructures. Mater. Lett. 64(5), 569–572 (2010). https://doi.org/10.1016/j.matlet.2009.11.074
- Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 97(22), 223107 (2010). https://doi.org/10.1063/1.3522885
- Y. Yang, J. Qi, Q. Liao, H. Li, Y. Wang, L. Tang, Y. Zhang, High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology 20(12), 125201 (2009). https://doi.org/10.1088/0957-4484/20/12/125201
- Q. Zhang, J. Qi, Y. Yang, Y. Huang, X. Li, Y. Zhang, Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure. Appl. Phys. Lett. 96(25), 253112 (2010). https://doi.org/10.1063/1.3457169
- Y. Yang, J. Qi, Y. Gu, X. Wang, Y. Zhang, Piezotronic strain sensor based on single bridged ZnO wires. Phys. Status Solidi-Rapid Res. Lett. 3(7), 269–271 (2009). https://doi.org/10.1002/pssr.200903231
- W. Zhang, L. Zhang, H. Gao, W. Yang, S. Wang, L. Xing, X. Xue, Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 10(2), 32 (2018). https://doi.org/10.1007/s40820-017-0185-x
- H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19(7), 1046–1053 (2009). https://doi.org/10.1007/10.1002/adfm.200801633
- D. Kay, D.R. Taaffe, F.E. Marino, Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. J. Sports Sci. 17(12), 937–944 (1999). https://doi.org/10.1080/026404199365326
- C.J. Tyler, T. Reeve, G.J. Hodges, S.S. Cheung, The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 46(11), 1699–1724 (2016). https://doi.org/10.1007/s40279-016-0538-5
- Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). https://doi.org/10.1039/c3nr06809a
- P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 3(7), 3529–3535 (2015). https://doi.org/10.1039/c4ta06266c
- J. Yu, Y. Zhang, S. Liu, Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens. Bioelectron. 55, 307–312 (2014). https://doi.org/10.1016/j.bios.2013.12.042
- L. Viry, A. Levi, M. Totaro, A. Mondini, V. Mattoli, B. Mazzolai, L. Beccai, Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 26(17), 2659–2664 (2014). https://doi.org/10.1002/adma.201305064
- Z. Li, R. Yang, M. Yu, F. Bai, C. Li, Z. Wang, Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112(51), 20114–20117 (2008). https://doi.org/10.1021/jp808878p
- R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh et al., Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2(1), 31–36 (2010). https://doi.org/10.1016/10.1007/BF03353614
- L. Guo, Y. Ji, H. Xu, P. Simon, Z. Wu, Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002). https://doi.org/10.1021/ja027947g
- J. Lao, J. Huang, D. Wang, Z. Ren, ZnO nanobridges and nanonails. Nano Lett. 3(2), 235–238 (2003). https://doi.org/10.1021/nl025884u
- W. Zang, Y. Nie, D. Zhu, P. Deng, L. Xing, X. Xue, Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 118(17), 9209–9216 (2014). https://doi.org/10.1021/jp500516t
- Y. Zhao, P. Deng, Y. Nie, P. Wang, Y. Zhang, L. Xing, X. Xue, Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor. Biosens. Bioelectron. 57, 269–275 (2014). https://doi.org/10.1016/j.bios.2014.02.022
- X. Li, C. Shen, Q. Wang, C. Luk, B. Li, J. Yin, S. Lau, W. Guo, Hydroelectric generator from transparent flexible zinc oxide nanofilms. Nano Energy 32, 125–129 (2017). https://doi.org/10.1016/j.nanoen.2016.11.050
- A.A. Kornyshev, Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111(20), 5545–5557 (2007). https://doi.org/10.1021/jp067857o
- D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett et al., Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014). https://doi.org/10.1039/c3ee42099j
- J. Sun, P. Li, J. Qu, X. Lu, Y. Xie et al., Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 57, 269–278 (2019). https://doi.org/10.1016/j.nanoen.2018.12.042
- T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27(22), 1700551 (2017). https://doi.org/10.1002/adfm.201700551
- G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/NNANO.2016.300
References
A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review. Talanta 177, 163–170 (2018). https://doi.org/10.1016/j.talanta.2017.08.077
Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
L. Zhao, H. Li, J. Meng, A. Wang, P. Tan et al., Reversible conversion between schottky and ohmic contacts for highly sensitive, multifunctional biosensors. Adv. Funct. Mater. 30(5), 1907999 (2020). https://doi.org/10.1002/adfm.201907999
P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singhet, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
X. Wang, Z. Liu, J. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
A. Tricoli, N. Nasiri, S. De, Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27(15), 1605271 (2017). https://doi.org/10.1002/adfm.201605271
L. Zhao, H. Li, J. Meng, Z. Li, The recent advances in self-powered medical information sensors. InfoMat 2, 212–234 (2020). https://doi.org/10.1002/inf2.12064
J. Kim, S. Imani, W.R. de Araujo, J. Warchall, G. Valdes-Ramirez, T. Paixao, P.P. Mercier, J. Wang, Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015). https://doi.org/10.1016/j.bios.2015.07.039
Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang et al., A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat. Commun. 10, 2695 (2019). https://doi.org/10.1038/s41467-019-10433-4
S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma, P. Joshi, A. Hu, Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
H. Lee, T. Choi, Y. Lee, H. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetesmonitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016). https://doi.org/10.1038/NNANO.2016.38
J. Sun, A. Yang, C. Zhao, F. Liu, Z. Li, Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 64(18), 1336–1347 (2019). https://doi.org/10.1016/j.scib.2019.07.001
P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng, H. Liu, Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11(1), 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi, C. Chen, M. Peng, Y. Liu, X. Sun, Spiral steel wirebased fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 11(1), 39 (2019). https://doi.org/10.1007/s40820-019-0271-3
E. Mezghani, E. Exposito, K. Drira, M. Da Silveira, C. Pruski, A semantic big data platform for integrating heterogeneous wearable data in healthcare. J. Med. Syst. 39(12), 185 (2015). https://doi.org/10.1007/s10916-015-0344-x
H. Guan, T. Zhong, H. He, T. Zhao, L. Xing, Y. Zhang, X. Xue, A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy 59, 754–761 (2019). https://doi.org/10.1007/10.1016/j.nanoen.2019.03.026
M. Chen, Y. Ma, J. Song, C.-F. Lai, B. Hu, Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mobile Netw. Appl. 21(5), 825–845 (2016). https://doi.org/10.1007/s11036-016-0745-1
A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1(5), 464–482 (2016). https://doi.org/10.1021/acssensors.6b00250
W. Dang, L. Manjakkal, W. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107, 192–202 (2018). https://doi.org/10.1016/j.bios.2018.02.025
J. Kim, A.S. Campbell, B.E.F. de Avila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37(4), 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
A. Koh, D. Kang, Y. Xue, S. Lee, R. Pielak et al., Wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8(366), 366ra165 (2016). https://doi.org/10.1126/scitranslmed.aaf2593
E.E. Coris, A.M. Ramirez, D.J. Van Durme, Heat illness in athletes—the dangerous combination of heat, humidity and exercise. Sports Med. 34(1), 9–16 (2004). https://doi.org/10.2165/00007256-200434010-00002
G. Matzeu, L. Florea, D. Diamond, Advances in wearable chemical sensor design for monitoring biological fluids. Sens. Actuator B-Chem. 211, 403–418 (2015). https://doi.org/10.1016/j.snb.2015.01.077
S. Nakata, T. Arie, S. Akita, K. Takei, Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sens. 2(3), 443–448 (2017). https://doi.org/10.1021/acssensors.7b00047
V. Curto, C. Fay, S. Coyle, R. Byrne, C. O’Toole et al., Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens. Actuator B-Chem. 171, 1327–1334 (2012). https://doi.org/10.1016/j.snb.2012.06.048
A. Martin, J. Kim, J. Kurniawan, J. Sempionatto, J. Moreto et al., Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens. 2(12), 1860–1868 (2017). https://doi.org/10.1021/acssensors.7b00729
W. Han, H. He, L. Zhang, C. Dong, H. Zeng et al., A self-powered wearable noninvasive electronic-skin for perspiration analysis based on piezo-biosensing unit matrix of enzyme/ZnO nanoarrays. ACS Appl. Mater. Interfaces 9(35), 29526–29537 (2017). https://doi.org/10.1021/acsami.7b07990
W. Jia, A.J. Bandodkar, G. Valdes-Ramirez, J.R. Windmiller, Z. Yang, J. Ramirez, G. Chan, J. Wang, Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85(14), 6553–6560 (2013). https://doi.org/10.1021/ac401573r
J.R. Sempionatto, T. Nakagawa, A. Pavinatto, S.T. Mensah, S. Imani, P. Mercier, J. Wang, Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 17(10), 1834–1842 (2017). https://doi.org/10.1039/c7lc00192d
D.-H. Choi, Y. Li, G.R. Cutting, P.C. Searson, A wearable potentiometric sensor with integrated salt bridge for sweat chloride measurement. Sens. Actuator B-Chem. 250, 673–678 (2017). https://doi.org/10.1016/j.snb.2017.04.129
S. Tuteja, C. Ormsby, S. Neethirajan, Noninvasive label-free detection of cortisol and lactate using graphene embedded screen-printed electrode. Nano-Micro Lett. 10(3), 41 (2018). https://doi.org/10.1007/s40820-018-0193-5
V. Oncescu, D. O’Dell, D. Erickson, Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13(16), 3232–3238 (2013). https://doi.org/10.1039/c3lc50431j
A.J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y. Sekine et al., Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5(1), eaav3294 (2019). https://doi.org/10.1126/sciadv.aav3294
H. Xu, Y. Lu, J. Xiang, M. Zhang, Y. Zhao, Z. Xie, Z. Gu, A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4), 2090–2098 (2018). https://doi.org/10.1039/c7nr07225b
Y. Yang, J. Qi, Q. Liao, Y. Zhang, L. Tang, Z. Qin, Synthesis and characterization of Sb-doped ZnO nanobelts with single-side zigzag boundaries. J. Phys. Chem. C 112(46), 17916–17919 (2008). https://doi.org/10.1021/jp8064213
N. Ye, J. Qi, Z. Qi, X. Zhang, Y. Yang, J. Liu, Y. Zhang, Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. J. Power Sources 195(17), 5806–5809 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.036
Y. Yang, J. Qi, W. Guo, Y. Gu, Y. Huang, Y. Zhang, Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Phys. Chem. Chem. Phys. 12(39), 12415–12419 (2010). https://doi.org/10.1039/c0cp00420k
J. Zhao, X. Yan, Y. Yang, Y. Huang, Y. Zhang, Raman spectra and photoluminescence properties of In-doped ZnO nanostructures. Mater. Lett. 64(5), 569–572 (2010). https://doi.org/10.1016/j.matlet.2009.11.074
Y. Yang, W. Guo, J. Qi, Y. Zhang, Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Appl. Phys. Lett. 97(22), 223107 (2010). https://doi.org/10.1063/1.3522885
Y. Yang, J. Qi, Q. Liao, H. Li, Y. Wang, L. Tang, Y. Zhang, High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology 20(12), 125201 (2009). https://doi.org/10.1088/0957-4484/20/12/125201
Q. Zhang, J. Qi, Y. Yang, Y. Huang, X. Li, Y. Zhang, Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure. Appl. Phys. Lett. 96(25), 253112 (2010). https://doi.org/10.1063/1.3457169
Y. Yang, J. Qi, Y. Gu, X. Wang, Y. Zhang, Piezotronic strain sensor based on single bridged ZnO wires. Phys. Status Solidi-Rapid Res. Lett. 3(7), 269–271 (2009). https://doi.org/10.1002/pssr.200903231
W. Zhang, L. Zhang, H. Gao, W. Yang, S. Wang, L. Xing, X. Xue, Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 10(2), 32 (2018). https://doi.org/10.1007/s40820-017-0185-x
H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19(7), 1046–1053 (2009). https://doi.org/10.1007/10.1002/adfm.200801633
D. Kay, D.R. Taaffe, F.E. Marino, Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. J. Sports Sci. 17(12), 937–944 (1999). https://doi.org/10.1080/026404199365326
C.J. Tyler, T. Reeve, G.J. Hodges, S.S. Cheung, The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 46(11), 1699–1724 (2016). https://doi.org/10.1007/s40279-016-0538-5
Y. Lin, P. Deng, Y. Nie, Y. Hu, L. Xing, Y. Zhang, X. Xue, Room-temperature self-powered ethanol sensing of a Pd/ZnO nanoarray nanogenerator driven by human finger movement. Nanoscale 6(9), 4604–4610 (2014). https://doi.org/10.1039/c3nr06809a
P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 3(7), 3529–3535 (2015). https://doi.org/10.1039/c4ta06266c
J. Yu, Y. Zhang, S. Liu, Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens. Bioelectron. 55, 307–312 (2014). https://doi.org/10.1016/j.bios.2013.12.042
L. Viry, A. Levi, M. Totaro, A. Mondini, V. Mattoli, B. Mazzolai, L. Beccai, Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 26(17), 2659–2664 (2014). https://doi.org/10.1002/adma.201305064
Z. Li, R. Yang, M. Yu, F. Bai, C. Li, Z. Wang, Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112(51), 20114–20117 (2008). https://doi.org/10.1021/jp808878p
R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh et al., Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Lett. 2(1), 31–36 (2010). https://doi.org/10.1016/10.1007/BF03353614
L. Guo, Y. Ji, H. Xu, P. Simon, Z. Wu, Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002). https://doi.org/10.1021/ja027947g
J. Lao, J. Huang, D. Wang, Z. Ren, ZnO nanobridges and nanonails. Nano Lett. 3(2), 235–238 (2003). https://doi.org/10.1021/nl025884u
W. Zang, Y. Nie, D. Zhu, P. Deng, L. Xing, X. Xue, Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 118(17), 9209–9216 (2014). https://doi.org/10.1021/jp500516t
Y. Zhao, P. Deng, Y. Nie, P. Wang, Y. Zhang, L. Xing, X. Xue, Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor. Biosens. Bioelectron. 57, 269–275 (2014). https://doi.org/10.1016/j.bios.2014.02.022
X. Li, C. Shen, Q. Wang, C. Luk, B. Li, J. Yin, S. Lau, W. Guo, Hydroelectric generator from transparent flexible zinc oxide nanofilms. Nano Energy 32, 125–129 (2017). https://doi.org/10.1016/j.nanoen.2016.11.050
A.A. Kornyshev, Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111(20), 5545–5557 (2007). https://doi.org/10.1021/jp067857o
D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett et al., Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014). https://doi.org/10.1039/c3ee42099j
J. Sun, P. Li, J. Qu, X. Lu, Y. Xie et al., Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 57, 269–278 (2019). https://doi.org/10.1016/j.nanoen.2018.12.042
T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27(22), 1700551 (2017). https://doi.org/10.1002/adfm.201700551
G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/NNANO.2016.300