Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo
Corresponding Author: Xinyu Xue
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 32
Abstract
Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.
Highlights:
1 Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo was fabricated.
2 The distinct interdigitated electrode ensures piezo-potential of individual nanowires in the same direction. Piezo-biosensing process does not require an external power supply. And the piezoelectric-enzyme-reaction coupling effect is proposed.
3 The device can run well in live mouse and detect in real time the glucose level.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Alberti, P.Z. Zimmet, W.H.O. Consultation, Definition, diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus—provisional report of a who consultation. Diabet. Med. 15(7), 539–553 (1998). https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539:aid-dia668>3.0.co;2-s
- S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes—estimates for the year 2000 and projections for 2030. Diabetes Care 27(5), 1047–1053 (2004). https://doi.org/10.2337/diacare.27.5.1047
- A. Gani, A.V. Gribok, S. Rajaraman, W.K. Ward, J. Reifman, Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans. Biomed. Eng. 56(2), 246–254 (2009). https://doi.org/10.1109/tbme.2008.2005937
- D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014). https://doi.org/10.1038/nnano.2014.38
- Y.J. Li, C.C. Lu, W.L. Tsai, M.H. Tai, An intra-oral drug delivery system design for painless, long-term and continuous drug release. Sens. Actuator B Chem. 227, 573–582 (2016). https://doi.org/10.1016/j.snb.2015.12.081
- T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- N.Q. Luo, W.X. Dai, C.L. Li, Z.Q. Zhou, L.Y. Lu, C.C.Y. Poon, S.C. Chen, Y.T. Zhang, N. Zhao, Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 26(8), 1178–1187 (2016). https://doi.org/10.1002/adfm.201504560
- N.M. Iverson, P.W. Barone, M. Shandell, L.J. Trudel, S. Sen et al., In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8(11), 873–880 (2013). https://doi.org/10.1038/nnano.2013.222
- D. Khodagholy, J.N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G.G. Malliaras, G. Buzsaki, Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18(2), 310–315 (2015). https://doi.org/10.1038/nn.3905
- J. Kim, P. Gutruf, A.M. Chiarelli, S.Y. Heo, K. Cho et al., Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27(1), 1604373 (2017). https://doi.org/10.1002/adfm.201604373
- I. Ilhan, I. Yildiz, M. Kayrak, Development of a wireless blood pressure measuring device with smart mobile device. Comput. Methods Programs Biomed. 125, 94–102 (2016). https://doi.org/10.1016/j.cmpb.2015.11.003
- M. Staples, K. Daniel, M.J. Cima, R. Langer, Application of micro- and nano-electromechanical devices to drug delivery. Pharmacol. Res. 23(5), 847–863 (2006). https://doi.org/10.1007/s11095-006-9906-4
- G. Sehra, M. Cole, J.W. Gardner, Miniature taste sensing system based on dual sh-saw sensor device: an electronic tongue. Sens. Actuator B Chem. 103(1–2), 233–239 (2004). https://doi.org/10.1016/j.snb.2004.04.055
- X.Y. Xue, Z. Qu, Y.M. Fu, B.W. Yu, L.L. Xing, Y. Zhang, Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process. Nano Energy 26, 148–156 (2016). https://doi.org/10.1016/j.nanoen.2016.05.021
- Y. Xiang, Y. Lu, Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3(9), 697–703 (2011). https://doi.org/10.1038/nchem.1092
- G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005). https://doi.org/10.1016/j.bios.2004.12.003
- E.W. Nery, M. Kundys, P.S. Jelen, M. Jonsson-Niedziolka, Electrochemical glucose sensing: is there still room for improvement? Anal. Chem. 88(23), 11271–11282 (2016). https://doi.org/10.1021/acs.analchem.6b03151
- R. Gifford, Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 14(10), 2032–2044 (2013). https://doi.org/10.1002/cphc.201300172
- Y. Zhang, X.Q. Yan, Y. Yang, Y.H. Huang, Q.L. Liao, J.J. Qi, Scanning probe study on the piezotronic effect in zno nanomaterials and nanodevices. Adv. Mater. 24(34), 4647–4655 (2012). https://doi.org/10.1002/adma.201104382
- Y. Zhang, Y. Yang, Y.S. Gu, X.Q. Yan, Q.L. Liao, P.F. Li, Z. Zhang, Z.Z. Wang, Performance and service behavior in 1-d nanostructured energy conversion devices. Nano Energy 14, 30–48 (2015). https://doi.org/10.1016/j.nanoen.2014.12.039
- M.Y. Ma, Q.L. Liao, G.J. Zhang, Z. Zhang, Q.J. Liang, Y. Zhang, Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 25(41), 6489–6494 (2015). https://doi.org/10.1002/adfm.201503180
- M.Y. Ma, Z. Zhang, Q.L. Liao, F. Yi, L.H. Han, G.J. Zhang, S. Liu, X.Q. Liao, Y. Zhang, Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 32, 389–396 (2017). https://doi.org/10.1016/j.nanoen.2017.01.004
- Z.L. Wang, The new field of nanopiezotronics. Mater. Today 10(5), 20–28 (2007). https://doi.org/10.1016/s1369-7021(07)70076-7
- S. Lee, R. Hinchet, Y. Lee, Y. Yang, Z.H. Lin, G. Ardila, L. Montes, M. Mouis, Z.L. Wang, Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv. Funct. Mater. 24(8), 1163–1168 (2014). https://doi.org/10.1002/adfm.201301971
- H.L. Zhang, Y. Yang, T.C. Hou, Y.J. Su, C.G. Hu, Z.L. Wang, Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2(5), 1019–1024 (2013). https://doi.org/10.1016/j.nanoen.2013.03.024
- I. You, B. Kim, J. Park, K. Koh, S. Shin, S. Jung, U. Jeong, Stretchable e-skin apexcardiogram sensor. Adv. Mater. 28(30), 6359–6364 (2016). https://doi.org/10.1002/adma.201600720
- Y. Zhang, Z. Kang, X.Q. Yan, Q.L. Liao, Zno nanostructures in enzyme biosensors. Sci. China Mater. 58(1), 60–76 (2015). https://doi.org/10.1007/s40843-015-0017-6
- P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8, 193 (2016). https://doi.org/10.1007/s40820-015-0077-x
- H.N. Si, Z. Kang, Q.L. Liao, Z. Zhang, X.M. Zhang, L. Wang, Y. Zhang, Design and tailoring of patterned ZnO nanostructures for energy conversion applications. Sci. China Mater. 60(9), 793–810 (2017). https://doi.org/10.1007/s40843-017-9105-3
- S.S. Ma, J.J. Xue, Y.M. Zhou, Z.W. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A 2(20), 7272–7280 (2014). https://doi.org/10.1039/c4ta00464g
- L. Zhang, S. Bai, C. Su, Y.B. Zheng, Y. Qin, C. Xu, Z.L. Wang, A high-reliability kevlar fiber-zno nanowires hybrid nanogenerator and its application on self-powered uv detection. Adv. Funct. Mater. 25(36), 5794–5798 (2015). https://doi.org/10.1002/adfm.201502646
- M. Kevin, Y.H. Fou, A.S.W. Wong, G.W. Ho, A novel maskless approach towards aligned, density modulated and multi-junction zno nanowires for enhanced surface area and light trapping solar cells. Nanotechnology 21(31), 9 (2010). https://doi.org/10.1088/0957-4484/21/31/315602
- Y.M. Sung, K. Noh, W.C. Kwak, T.G. Kim, Enhanced glucose detection using enzyme-immobilized zno/zns core/sheath nanowires. Sens. Actuator B Chem. 161(1), 453–459 (2012). https://doi.org/10.1016/j.snb.2011.10.061
- J.C. Yu, Y.J. Zhang, S.Q. Liu, Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens. Bioelectron. 55, 307–312 (2014). https://doi.org/10.1016/j.bios.2013.12.042
- H.X. He, Y.M. Fu, W.L. Zang, Q. Wang, L.L. Xing, Y. Zhang, X.Y. Xue, A flexible self-powered t-zno/pvdf/fabric electronic-skin with multi functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy 31, 37–48 (2017). https://doi.org/10.1016/j.nanoen.2016.11.020
- Y. Sun, S.P. Lacour, R.A. Brooks, N. Rushton, J. Fawcett, R.E. Cameron, Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. A 90A(3), 648–655 (2009). https://doi.org/10.1002/jbm.a.32125
- M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 24(16), 2673–2683 (2003). https://doi.org/10.1016/s0142-9612(03)00069-3
- A. Wei, L.H. Pan, W. Huang, Recent progress in the zno nanostructure-based sensors. Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 176(18), 1409–1421 (2011). https://doi.org/10.1016/j.mseb.2011.09.005
- M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 54(3), 397–425 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004
- X. Chen, J.G. Patil, S.H.L. Lok, O.L. Kon, Human liver-derived cells stably modified for regulated proinsulin secretion function as bioimplants in vivo. J. Gene Med. 4(4), 447–458 (2002). https://doi.org/10.1002/jgm.263
- Y.J. Su, X.N. Wen, G. Zhu, J. Yang, J. Chen, P. Bai, Z.M. Wu, Y.D. Jiang, Z.L. Wang, Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 9, 186–195 (2014). https://doi.org/10.1016/j.nanoen.2014.07.006
- M.Y. Choi, D. Choi, M.J. Jin, I. Kim, S.H. Kim, J.Y. Choi, S.Y. Lee, J.M. Kim, S.W. Kim, Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21(21), 2185–2189 (2009). https://doi.org/10.1002/adma.200803605
- X. Liu, P. Lin, X.Q. Yan, Z. Kang, Y.G. Zhao, Y. Lei, C.B. Li, H.W. Du, Y. Zhang, Enzyme-coated single ZnO nanowire fet biosensor for detection of uric acid. Sens. Actuator B Chem. 176, 22–27 (2013). https://doi.org/10.1016/j.snb.2012.08.043
- L. Guo, Y.L. Ji, H.B. Xu, P. Simon, Z.Y. Wu, Regularly shaped, single-crystalline zno nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002). https://doi.org/10.1021/ja027947g
- J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3(2), 235–238 (2003). https://doi.org/10.1021/nl025884u
- H.Y. Zhao, X.Y. Guo, Y.Y. Wang, X.X. Duan, H.M. Qu, H. Zhang, D.H. Zhang, W. Pang, Microchip based electrochemical-piezoelectric integrated multi-mode sensing system for continuous glucose monitoring. Sens. Actuator B Chem. 223, 83–88 (2016). https://doi.org/10.1016/j.snb.2015.09.022
- J.F. Zang, C.M. Li, X.Q. Cui, J.X. Wang, X.W. Sun, H. Dong, C.Q. Sun, Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19(9), 1008–1014 (2007). https://doi.org/10.1002/elan.200603808
- J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006). https://doi.org/10.1063/1.2210078
- W.L. Zang, Y.X. Nie, D. Zhu, P. Deng, L.L. Xing, X.Y. Xue, Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 118(17), 9209–9216 (2014). https://doi.org/10.1021/jp500516t
- Y.Y. Zhao, Y.M. Fu, P.L. Wang, L.L. Xing, X.Y. Xue, Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect. Nanoscale 7(5), 1904–1911 (2015). https://doi.org/10.1039/c4nr06461e
- T. Kong, Y. Chen, Y.P. Ye, K. Zhang, Z.X. Wang, X.P. Wang, An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens. Actuator B Chem. 138(1), 344–350 (2009). https://doi.org/10.1016/j.snb.2009.01.002
- S.Q. Liu, H.X. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron. 19(3), 177–183 (2003). https://doi.org/10.1016/s0956-5663(03)00172-6
- S.N. Sarangi, S. Nozaki, S.N. Sahu, ZnO nanorod-based non-enzymatic optical glucose biosensor. J. Biomed. Nanotechnol. 11(6), 988–996 (2015). https://doi.org/10.1166/jbn.2015.2048
- M.D. Bartlett, E.J. Markvicka, C. Majidi, Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Adv. Funct. Mater. 26(46), 8496–8504 (2016). https://doi.org/10.1002/adfm.201602733
- R.M. Yu, C.F. Pan, J. Chen, G. Zhu, Z.L. Wang, Enhanced performance of a zno nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 23(47), 5868–5874 (2013). https://doi.org/10.1002/adfm.201300593
- M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5), 4855–4886 (2010). https://doi.org/10.3390/s100504855
- F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, K. Yamamoto, Immobilization of uricase on zno nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519(2), 155–160 (2004). https://doi.org/10.1016/j.aca.2004.05.070
- M. Ahmad, C.F. Pan, Z.X. Luo, J. Zhu, A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J. Phys. Chem. C 114(20), 9308–9313 (2010). https://doi.org/10.1021/jp102505g
- G.A. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010). https://doi.org/10.1021/nl101973h
- Y. Tanaka, H. Fujita, Fluid driving system for a micropump by differentiating ips cells into cardiomyocytes on a tent-like structure. Sens. Actuator B Chem. 210, 267–272 (2015). https://doi.org/10.1016/j.snb.2014.12.069
- W. Farris, S. Mansourian, Y. Chang, L. Lindsley, E.A. Eckman et al., Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100(7), 4162–4167 (2003). https://doi.org/10.1073/pnas.0230450100
- R.D. Jayant, M.J. McShane, R. Srivastava, In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: Towards localized implant inflammation suppression. Int. J. Pharm. 403(1–2), 268–275 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.035
References
K. Alberti, P.Z. Zimmet, W.H.O. Consultation, Definition, diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus—provisional report of a who consultation. Diabet. Med. 15(7), 539–553 (1998). https://doi.org/10.1002/(sici)1096-9136(199807)15:7<539:aid-dia668>3.0.co;2-s
S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes—estimates for the year 2000 and projections for 2030. Diabetes Care 27(5), 1047–1053 (2004). https://doi.org/10.2337/diacare.27.5.1047
A. Gani, A.V. Gribok, S. Rajaraman, W.K. Ward, J. Reifman, Predicting subcutaneous glucose concentration in humans: data-driven glucose modeling. IEEE Trans. Biomed. Eng. 56(2), 246–254 (2009). https://doi.org/10.1109/tbme.2008.2005937
D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014). https://doi.org/10.1038/nnano.2014.38
Y.J. Li, C.C. Lu, W.L. Tsai, M.H. Tai, An intra-oral drug delivery system design for painless, long-term and continuous drug release. Sens. Actuator B Chem. 227, 573–582 (2016). https://doi.org/10.1016/j.snb.2015.12.081
T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
N.Q. Luo, W.X. Dai, C.L. Li, Z.Q. Zhou, L.Y. Lu, C.C.Y. Poon, S.C. Chen, Y.T. Zhang, N. Zhao, Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 26(8), 1178–1187 (2016). https://doi.org/10.1002/adfm.201504560
N.M. Iverson, P.W. Barone, M. Shandell, L.J. Trudel, S. Sen et al., In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8(11), 873–880 (2013). https://doi.org/10.1038/nnano.2013.222
D. Khodagholy, J.N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G.G. Malliaras, G. Buzsaki, Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18(2), 310–315 (2015). https://doi.org/10.1038/nn.3905
J. Kim, P. Gutruf, A.M. Chiarelli, S.Y. Heo, K. Cho et al., Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27(1), 1604373 (2017). https://doi.org/10.1002/adfm.201604373
I. Ilhan, I. Yildiz, M. Kayrak, Development of a wireless blood pressure measuring device with smart mobile device. Comput. Methods Programs Biomed. 125, 94–102 (2016). https://doi.org/10.1016/j.cmpb.2015.11.003
M. Staples, K. Daniel, M.J. Cima, R. Langer, Application of micro- and nano-electromechanical devices to drug delivery. Pharmacol. Res. 23(5), 847–863 (2006). https://doi.org/10.1007/s11095-006-9906-4
G. Sehra, M. Cole, J.W. Gardner, Miniature taste sensing system based on dual sh-saw sensor device: an electronic tongue. Sens. Actuator B Chem. 103(1–2), 233–239 (2004). https://doi.org/10.1016/j.snb.2004.04.055
X.Y. Xue, Z. Qu, Y.M. Fu, B.W. Yu, L.L. Xing, Y. Zhang, Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymatic-reaction coupling process. Nano Energy 26, 148–156 (2016). https://doi.org/10.1016/j.nanoen.2016.05.021
Y. Xiang, Y. Lu, Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3(9), 697–703 (2011). https://doi.org/10.1038/nchem.1092
G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20(12), 2388–2403 (2005). https://doi.org/10.1016/j.bios.2004.12.003
E.W. Nery, M. Kundys, P.S. Jelen, M. Jonsson-Niedziolka, Electrochemical glucose sensing: is there still room for improvement? Anal. Chem. 88(23), 11271–11282 (2016). https://doi.org/10.1021/acs.analchem.6b03151
R. Gifford, Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 14(10), 2032–2044 (2013). https://doi.org/10.1002/cphc.201300172
Y. Zhang, X.Q. Yan, Y. Yang, Y.H. Huang, Q.L. Liao, J.J. Qi, Scanning probe study on the piezotronic effect in zno nanomaterials and nanodevices. Adv. Mater. 24(34), 4647–4655 (2012). https://doi.org/10.1002/adma.201104382
Y. Zhang, Y. Yang, Y.S. Gu, X.Q. Yan, Q.L. Liao, P.F. Li, Z. Zhang, Z.Z. Wang, Performance and service behavior in 1-d nanostructured energy conversion devices. Nano Energy 14, 30–48 (2015). https://doi.org/10.1016/j.nanoen.2014.12.039
M.Y. Ma, Q.L. Liao, G.J. Zhang, Z. Zhang, Q.J. Liang, Y. Zhang, Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 25(41), 6489–6494 (2015). https://doi.org/10.1002/adfm.201503180
M.Y. Ma, Z. Zhang, Q.L. Liao, F. Yi, L.H. Han, G.J. Zhang, S. Liu, X.Q. Liao, Y. Zhang, Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 32, 389–396 (2017). https://doi.org/10.1016/j.nanoen.2017.01.004
Z.L. Wang, The new field of nanopiezotronics. Mater. Today 10(5), 20–28 (2007). https://doi.org/10.1016/s1369-7021(07)70076-7
S. Lee, R. Hinchet, Y. Lee, Y. Yang, Z.H. Lin, G. Ardila, L. Montes, M. Mouis, Z.L. Wang, Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv. Funct. Mater. 24(8), 1163–1168 (2014). https://doi.org/10.1002/adfm.201301971
H.L. Zhang, Y. Yang, T.C. Hou, Y.J. Su, C.G. Hu, Z.L. Wang, Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2(5), 1019–1024 (2013). https://doi.org/10.1016/j.nanoen.2013.03.024
I. You, B. Kim, J. Park, K. Koh, S. Shin, S. Jung, U. Jeong, Stretchable e-skin apexcardiogram sensor. Adv. Mater. 28(30), 6359–6364 (2016). https://doi.org/10.1002/adma.201600720
Y. Zhang, Z. Kang, X.Q. Yan, Q.L. Liao, Zno nanostructures in enzyme biosensors. Sci. China Mater. 58(1), 60–76 (2015). https://doi.org/10.1007/s40843-015-0017-6
P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8, 193 (2016). https://doi.org/10.1007/s40820-015-0077-x
H.N. Si, Z. Kang, Q.L. Liao, Z. Zhang, X.M. Zhang, L. Wang, Y. Zhang, Design and tailoring of patterned ZnO nanostructures for energy conversion applications. Sci. China Mater. 60(9), 793–810 (2017). https://doi.org/10.1007/s40843-017-9105-3
S.S. Ma, J.J. Xue, Y.M. Zhou, Z.W. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A 2(20), 7272–7280 (2014). https://doi.org/10.1039/c4ta00464g
L. Zhang, S. Bai, C. Su, Y.B. Zheng, Y. Qin, C. Xu, Z.L. Wang, A high-reliability kevlar fiber-zno nanowires hybrid nanogenerator and its application on self-powered uv detection. Adv. Funct. Mater. 25(36), 5794–5798 (2015). https://doi.org/10.1002/adfm.201502646
M. Kevin, Y.H. Fou, A.S.W. Wong, G.W. Ho, A novel maskless approach towards aligned, density modulated and multi-junction zno nanowires for enhanced surface area and light trapping solar cells. Nanotechnology 21(31), 9 (2010). https://doi.org/10.1088/0957-4484/21/31/315602
Y.M. Sung, K. Noh, W.C. Kwak, T.G. Kim, Enhanced glucose detection using enzyme-immobilized zno/zns core/sheath nanowires. Sens. Actuator B Chem. 161(1), 453–459 (2012). https://doi.org/10.1016/j.snb.2011.10.061
J.C. Yu, Y.J. Zhang, S.Q. Liu, Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens. Bioelectron. 55, 307–312 (2014). https://doi.org/10.1016/j.bios.2013.12.042
H.X. He, Y.M. Fu, W.L. Zang, Q. Wang, L.L. Xing, Y. Zhang, X.Y. Xue, A flexible self-powered t-zno/pvdf/fabric electronic-skin with multi functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy 31, 37–48 (2017). https://doi.org/10.1016/j.nanoen.2016.11.020
Y. Sun, S.P. Lacour, R.A. Brooks, N. Rushton, J. Fawcett, R.E. Cameron, Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. A 90A(3), 648–655 (2009). https://doi.org/10.1002/jbm.a.32125
M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 24(16), 2673–2683 (2003). https://doi.org/10.1016/s0142-9612(03)00069-3
A. Wei, L.H. Pan, W. Huang, Recent progress in the zno nanostructure-based sensors. Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 176(18), 1409–1421 (2011). https://doi.org/10.1016/j.mseb.2011.09.005
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 54(3), 397–425 (2009). https://doi.org/10.1016/j.pmatsci.2008.06.004
X. Chen, J.G. Patil, S.H.L. Lok, O.L. Kon, Human liver-derived cells stably modified for regulated proinsulin secretion function as bioimplants in vivo. J. Gene Med. 4(4), 447–458 (2002). https://doi.org/10.1002/jgm.263
Y.J. Su, X.N. Wen, G. Zhu, J. Yang, J. Chen, P. Bai, Z.M. Wu, Y.D. Jiang, Z.L. Wang, Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 9, 186–195 (2014). https://doi.org/10.1016/j.nanoen.2014.07.006
M.Y. Choi, D. Choi, M.J. Jin, I. Kim, S.H. Kim, J.Y. Choi, S.Y. Lee, J.M. Kim, S.W. Kim, Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21(21), 2185–2189 (2009). https://doi.org/10.1002/adma.200803605
X. Liu, P. Lin, X.Q. Yan, Z. Kang, Y.G. Zhao, Y. Lei, C.B. Li, H.W. Du, Y. Zhang, Enzyme-coated single ZnO nanowire fet biosensor for detection of uric acid. Sens. Actuator B Chem. 176, 22–27 (2013). https://doi.org/10.1016/j.snb.2012.08.043
L. Guo, Y.L. Ji, H.B. Xu, P. Simon, Z.Y. Wu, Regularly shaped, single-crystalline zno nanorods with wurtzite structure. J. Am. Chem. Soc. 124(50), 14864–14865 (2002). https://doi.org/10.1021/ja027947g
J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3(2), 235–238 (2003). https://doi.org/10.1021/nl025884u
H.Y. Zhao, X.Y. Guo, Y.Y. Wang, X.X. Duan, H.M. Qu, H. Zhang, D.H. Zhang, W. Pang, Microchip based electrochemical-piezoelectric integrated multi-mode sensing system for continuous glucose monitoring. Sens. Actuator B Chem. 223, 83–88 (2016). https://doi.org/10.1016/j.snb.2015.09.022
J.F. Zang, C.M. Li, X.Q. Cui, J.X. Wang, X.W. Sun, H. Dong, C.Q. Sun, Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19(9), 1008–1014 (2007). https://doi.org/10.1002/elan.200603808
J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006). https://doi.org/10.1063/1.2210078
W.L. Zang, Y.X. Nie, D. Zhu, P. Deng, L.L. Xing, X.Y. Xue, Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. J. Phys. Chem. C 118(17), 9209–9216 (2014). https://doi.org/10.1021/jp500516t
Y.Y. Zhao, Y.M. Fu, P.L. Wang, L.L. Xing, X.Y. Xue, Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect. Nanoscale 7(5), 1904–1911 (2015). https://doi.org/10.1039/c4nr06461e
T. Kong, Y. Chen, Y.P. Ye, K. Zhang, Z.X. Wang, X.P. Wang, An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens. Actuator B Chem. 138(1), 344–350 (2009). https://doi.org/10.1016/j.snb.2009.01.002
S.Q. Liu, H.X. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron. 19(3), 177–183 (2003). https://doi.org/10.1016/s0956-5663(03)00172-6
S.N. Sarangi, S. Nozaki, S.N. Sahu, ZnO nanorod-based non-enzymatic optical glucose biosensor. J. Biomed. Nanotechnol. 11(6), 988–996 (2015). https://doi.org/10.1166/jbn.2015.2048
M.D. Bartlett, E.J. Markvicka, C. Majidi, Rapid fabrication of soft, multilayered electronics for wearable biomonitoring. Adv. Funct. Mater. 26(46), 8496–8504 (2016). https://doi.org/10.1002/adfm.201602733
R.M. Yu, C.F. Pan, J. Chen, G. Zhu, Z.L. Wang, Enhanced performance of a zno nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 23(47), 5868–5874 (2013). https://doi.org/10.1002/adfm.201300593
M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5), 4855–4886 (2010). https://doi.org/10.3390/s100504855
F.F. Zhang, X.L. Wang, S.Y. Ai, Z.D. Sun, Q. Wan, Z.Q. Zhu, Y.Z. Xian, L.T. Jin, K. Yamamoto, Immobilization of uricase on zno nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 519(2), 155–160 (2004). https://doi.org/10.1016/j.aca.2004.05.070
M. Ahmad, C.F. Pan, Z.X. Luo, J. Zhu, A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J. Phys. Chem. C 114(20), 9308–9313 (2010). https://doi.org/10.1021/jp102505g
G.A. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010). https://doi.org/10.1021/nl101973h
Y. Tanaka, H. Fujita, Fluid driving system for a micropump by differentiating ips cells into cardiomyocytes on a tent-like structure. Sens. Actuator B Chem. 210, 267–272 (2015). https://doi.org/10.1016/j.snb.2014.12.069
W. Farris, S. Mansourian, Y. Chang, L. Lindsley, E.A. Eckman et al., Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100(7), 4162–4167 (2003). https://doi.org/10.1073/pnas.0230450100
R.D. Jayant, M.J. McShane, R. Srivastava, In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: Towards localized implant inflammation suppression. Int. J. Pharm. 403(1–2), 268–275 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.035