Solution-Processed Thin Film Transparent Photovoltaics: Present Challenges and Future Development
Corresponding Author: Yuljae Cho
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 49
Abstract
Electrical energy is essential for modern society to sustain economic growths. The soaring demand for the electrical energy, together with an awareness of the environmental impact of fossil fuels, has been driving a shift towards the utilization of solar energy. However, traditional solar energy solutions often require extensive spaces for a panel installation, limiting their practicality in a dense urban environment. To overcome the spatial constraint, researchers have developed transparent photovoltaics (TPV), enabling windows and facades in vehicles and buildings to generate electric energy. Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels. In this review, we first briefly introduce wavelength- and non-wavelength-selective strategies to achieve transparency. Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology. Then we highlight recent progress in different types of TPVs, with a particular focus on solution-processed thin-film photovoltaics (PVs), including colloidal quantum dot PVs, metal halide perovskite PVs and organic PVs. The applications of TPVs are also reviewed, with emphasis on agrivoltaics, smart windows and facades. Finally, current challenges and future opportunities in TPV research are pointed out.
Highlights:
1 Recent advancement in solution-processed thin film transparent photovoltaics (TPVs) is summarized, including perovskites, organics, and colloidal quantum dots.
2 Pros and cons of the emerging TPVs are analyzed according to the materials characteristics and the application requirements on the aesthetics and energy generation.
3 Promising TPV applications are discussed with emphasis on agrivoltaics, smart windows and facades.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Wang, L. Wang, Renewable energy consumption and economic growth in OECD countries: a nonlinear panel data analysis. Energy 207, 118200 (2020). https://doi.org/10.1016/j.energy.2020.118200
- A. Kausar, A. Sattar, C. Xu, S. Zhang, Z. Kang et al., Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 50, 2696 (2021). https://doi.org/10.1039/D0CS01316A
- D. Meng, R. Zheng, Y. Zhao, E. Zhang, L. Dou et al., Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, 2107330 (2022). https://doi.org/10.1002/adma.202107330
- K. Lee, H.-D. Um, D. Choi, J. Park, N. Kim et al., The development of transparent photovoltaics. Cell Rep. Phys. Sci. 1, 100143 (2020). https://doi.org/10.1016/j.xcrp.2020.100143
- J. Bing, L.G. Caro, H.P. Talathi, N.L. Chang, D.R. Mckenzie et al., Perovskite solar cells for building integrated photovoltaics—glazing applications. Joule 6, 1446 (2022). https://doi.org/10.1016/j.joule.2022.06.003
- T.M. Koh, H. Wang, Y.F. Ng, A. Bruno, S. Mhaisalkar et al., Halide perovskite solar cells for building integrated photovoltaics: transforming building façades into power generators. Adv. Mater. 34, 2104661 (2022). https://doi.org/10.1002/adma.202104661
- Y. Li, X. Huang, H.K.M. Sheriff, S.R. Forrest, Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. (2022). https://doi.org/10.1038/s41578-022-00514-0
- T. Salameh, M.E.H. Assad, M. Tawalbeh, C. Ghenai, A. Merabet et al., Analysis of cooling load on commercial building in UAE climate using building integrated photovoltaic façade system. Sol. Energy 199, 617 (2020). https://doi.org/10.1016/j.solener.2020.02.062
- A. Anctil, E. Lee, R.R. Lunt, Net energy and cost benefit of transparent organic solar cells in building-integrated applications. Appl. Energy 261, 114429 (2020). https://doi.org/10.1016/j.apenergy.2019.114429
- C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2, 849 (2017). https://doi.org/10.1038/s41560-017-0016-9
- K. Lee, N. Kim, K. Kim, H.-D. Um, W. Jin et al., Neutral-colored transparent crystalline silicon photovoltaics. Joule 4, 235 (2020). https://doi.org/10.1016/j.joule.2019.11.008
- D. Kim, S.S. Shin, S.M. Lee, J. Cho, J.H. Yun et al., Flexible and semi-transparent ultra-thin CIGSe solar cells prepared on ultra-thin glass substrate: a key to flexible bifacial photovoltaic applications. Adv. Funct. Mater. 30, 2001775 (2020). https://doi.org/10.1002/adfm.202001775
- S. Xie, D. Yang, J. Zhang, L. Wu, Development of semitransparent CdTe polycrystalline thin-film solar cells modified with a CuCl layer for BIPV. Sol. Energy 267, 112212 (2024). https://doi.org/10.1016/j.solener.2023.112212
- S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10, 1902492 (2020). https://doi.org/10.1002/aenm.201902492
- M.A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen et al., Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D–3D perovskite solar cells: a review. Adv. Funct. Mater. 32, 2009164 (2022). https://doi.org/10.1002/adfm.202009164
- H. Bi, J. Liu, Z. Zhang, L. Wang, R. Beresneviciute et al., All-perovskite tandem solar cells approach 26.5% efficiency by employing wide bandgap lead perovskite solar cells with new monomolecular hole transport layer. ACS Energy Lett. 8, 3852 (2023). https://doi.org/10.1021/acsenergylett.3c01275
- Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439 (2022). https://doi.org/10.1039/d2ee01326f
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416 (2022). https://doi.org/10.1126/science.abm8566
- K. Jeong, J. Byeon, J. Jang, N. Ahn, M. Choi, Pulsatile therapy for perovskite solar cells. Joule 6, 1 (2022). https://doi.org/10.1016/j.joule.2022.04.007
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352 (2020). https://doi.org/10.1126/science.aba0893
- X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 10, 2006435 (2021). https://doi.org/10.1002/adma.202006435
- S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404 (2023). https://doi.org/10.1126/science.adg3755
- X. Huang, D. Fan, Y. Li, S.R. Forrest, Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule 6, 1581 (2022). https://doi.org/10.1016/j.joule.2022.06.015
- W. Xu, X. Zhu, X. Ma, H. Zhou, X. Li et al., Achieving 15.81% and 15.29% efficiency of all-polymer solar cells based on layer-by-layer and bulk heterojunction structures. J. Mater. Chem. A 10, 13492 (2022). https://doi.org/10.1039/D2TA02914F
- A. Karki, A.J. Gillett, R.H. Friend, T. Nguyen, The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv. Energy Mater. 11, 2003441 (2021). https://doi.org/10.1002/aenm.202003441
- X. Wang, H. Lu, Y. Liu, A. Zhang, N. Yu et al., Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 11, 2102591 (2021). https://doi.org/10.1002/aenm.202102591
- D. Luo, W. Jang, D.D. Babu, M.S. Kim, D.H. Wang et al., Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices. J. Mater. Chem. A 10, 3255 (2022). https://doi.org/10.1039/D1TA10707K
- J. Chen, D. Jia, E.M.J. Johansson, A. Hagfeldt, X. Zhang, Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224 (2021). https://doi.org/10.1039/D0EE02900A
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92 (2016). https://doi.org/10.1126/science.aag2700
- S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6, 2229 (2021). https://doi.org/10.1021/acsenergylett.1c00462
- X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, 2001906 (2020). https://doi.org/10.1002/adma.202001906
- J. Khan, X. Zhang, J. Yuan, Y. Wang, G. Shi et al., Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett. 5, 3322 (2020). https://doi.org/10.1021/acsenergylett.0c01849
- B. Hou, Y. Cho, B.S. Kim, J. Hong, J.B. Park et al., Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Lett. 1, 834 (2016). https://doi.org/10.1021/acsenergylett.6b00294
- B. Hou, F.C. Mocanu, Y. Cho, J. Lim, J. Feng et al., Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting. Nano Lett. 23, 2277 (2023). https://doi.org/10.1021/acs.nanolett.2c04851
- Y. Cho, B. Hou, P. Giraud, S. Pak, S. Cha, Ferroelectric field effect induced charge carrier transport modulation at quantum dot solar cell heterojunction interface. ACS Appl. Energy Mater. 4, 12056 (2021). https://doi.org/10.1021/acsaem.1c01525
- Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak et al., Balancing charge carrier transport in a quantum dot p–n junction toward hysteresis-free high-performance solar cells. ACS Energy Lett. 3, 1036 (2018). https://doi.org/10.1021/acsenergylett.8b00130
- B. Hou, B. Kim, H.K.H. Lee, Y. Cho, P. Giraud et al., Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv. Funct. Mater. 30, 2004563 (2020). https://doi.org/10.1002/adfm.202004563
- Y. Cho, P. Giraud, B. Hou, Y. Lee, J. Hong et al., Charge transport modulation of a flexible quantum dot solar cell using a piezoelectric effect. Adv. Energy Mater. 8, 1700809 (2018). https://doi.org/10.1002/aenm.201700809
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. 32, 425 (2024). https://doi.org/10.1002/pip.3831
- L. Chao, T. Niu, W. Gao, C. Ran, L. Song et al., Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 33, 2005410 (2021). https://doi.org/10.1002/adma.202005410
- Y.-W. Zhang, P.-P. Cheng, W.-Y. Tan, Y. Min, Balance the thickness, transparency and stability of semi-transparent perovskite solar cells by solvent engineering and using a bifunctional additive. Appl. Surf. Sci. 537, 147908 (2021). https://doi.org/10.1016/j.apsusc.2020.147908
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014). https://doi.org/10.1038/nmat4014
- A. Mahapatra, D. Prochowicz, M.M. Tavakoli, S. Trivedi, P. Kumar et al., A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. A 8, 27 (2020). https://doi.org/10.1039/C9TA07657C
- F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
- Z. Wang, L. Liu, X. Liu, D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022). https://doi.org/10.1016/j.cej.2021.134367
- J. Sanchez-Diaz, R.S. Sánchez, S. Masi, M. Kreĉmarová, A.O. Alvarez et al., Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule 6, 861 (2022). https://doi.org/10.1016/j.joule.2022.02.014
- J.-W. Lee, S. Tan, S.I. Seok, Y. Yang, N.-G. Park, Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022). https://doi.org/10.1126/science.abj1186
- M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016). https://doi.org/10.1039/C5EE03874J
- M. He, J. Liang, Z. Zhang, Y. Qiu, Z. Deng et al., Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 8, 25831 (2020). https://doi.org/10.1039/D0TA09209F
- C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656 (2016). https://doi.org/10.1039/C5EE03255E
- D.J. Kubicki, D. Prochowicz, A. Hofstetter, M. Saski, P. Yadav et al., Formation of stable mixed guanidinium–methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140, 3345 (2018). https://doi.org/10.1021/jacs.7b12860
- F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 24, 2002989 (2020). https://doi.org/10.1002/aenm.202002989
- X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao et al., Highly efficient perovskite solar cells via nickel passivation. Adv. Funct. Mater. 28, 1804286 (2018). https://doi.org/10.1002/adfm.201804286
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444 (2021). https://doi.org/10.1038/s41586-021-03964-8
- Z. Dai, S.K. Yadavalli, M. Chen, A. Abbaspourtamijani et al., Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618 (2021). https://doi.org/10.1126/science.abf5602
- M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847 (2018). https://doi.org/10.1038/s41560-018-0219-8
- E. Aktas, N. Phung, H. Köbler, D.A. González, M. Méndez et al., Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14, 3976 (2021). https://doi.org/10.1039/D0EE03807E
- E. Li, C. Liu, H. Lin, X. Xu, S. Liu et al., Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31, 2103847 (2021). https://doi.org/10.1002/adfm.202103847
- J.W. Jung, F. Liu, T.P. Russell, W.H. Jo, A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy Environ. Sci. 5, 6857 (2012). https://doi.org/10.1039/c2ee21149a
- G. Oklem, X. Song, L. Toppare, D. Baran, G. Gunbas, A new NIR absorbing DPP-based polymer for thick organic solar cells. J. Mater. Chem. C 6, 2957 (2018). https://doi.org/10.1039/C8TC00113H
- L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu et al., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635 (2020). https://doi.org/10.1039/C9EE03710A
- Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li et al., An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170 (2015). https://doi.org/10.1002/adma.201404317
- J. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang et al., Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 10, 570 (2019). https://doi.org/10.1038/s41467-019-08386-9
- Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang et al., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019). https://doi.org/10.1038/s41467-019-10351-5
- R. Wang, J. Yuan, R. Wang, G. Han, T. Huang et al., Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics. Adv. Mater. 31, 1904215 (2019). https://doi.org/10.1002/adma.201904215
- Y. Kan, Y. Sun, Y. Ren, Y. Xu, X. Jiang et al., Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells. Adv. Mater. 36, 2312635 (2024). https://doi.org/10.1002/adma.202312635
- R. Ma, K. Zhou, Y. Sun, T. Liu, Y. Kan et al., Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 5, 725 (2022). https://doi.org/10.1016/j.matt.2021.12.002
- C. Chen, L. Wang, W. Xia, K. Qiu, C. Guo et al., Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nat. Commun. 15, 6865 (2024). https://doi.org/10.1038/s41467-024-51359-w
- Y. Sun, L. Nian, Y. Kan, Y. Ren, Z. Chen et al., Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 6, 2835 (2022). https://doi.org/10.1016/j.joule.2022.10.005
- Y. Miao, Y. Sun, W. Zou, X. Zhang, Y. Kan et al., Isomerization engineering of solid additives enables highly efficient organic solar cells via manipulating molecular stacking and aggregation of active layer. Adv. Mater. 36, 2406623 (2024). https://doi.org/10.1002/adma.202406623
- H. Guo, F. Hou, X. Ren, X. Ning, Y. Wang et al., Recent progresses on transparent electrodes and active layers toward neutral, color semitransparent perovskite solar cells. Sol. RRL (2023). https://doi.org/10.1002/solr.202300333
- Y. Huang, C. Jiang, Y. Zhu, S. Zhang, G. Li et al., A near-infrared acceptor incorporating selenium heterocycles for efficient semi-transparent photovoltaics and sensitive photodetectors. Org. Electron. 110, 106642 (2022). https://doi.org/10.1016/j.orgel.2022.106642
- H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang et al., Semi-transparent organic photovoltaics. Chem. Soc. Rev. 52, 4132 (2023). https://doi.org/10.1039/D3CS00233K
- G.P. Kini, S.J. Jeon, D.K. Moon, Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells. Adv. Funct. Mater. 31, 2007931 (2021). https://doi.org/10.1002/adfm.202007931
- I. Burgués-Ceballos, L. Lucera, P. Tiwana, K. Ocytko, L.W. Tan et al., Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule 5, 2261 (2021). https://doi.org/10.1016/j.joule.2021.07.004
- E. Pulli, E. Rozzi, F. Bella, Transparent photovoltaic technologies: Current trends towards upscaling. Energy Convers. Manag. 219, 112982 (2020). https://doi.org/10.1016/j.enconman.2020.112982
- W. Zou, L. Shan, W. Cao, J. Chen, X. Liu et al., Precrystallized-heterojunction strategy on precursor solution enables high-performance semitransparent perovskite solar cells. Adv. Opt. Mater. 11, 2202982 (2023). https://doi.org/10.1002/adom.202202982
- Z. Yang, Y. Niu, X. Zhang, Z. Zhang, L. Hu, Efficiency improvement of semi-transparent perovskite solar cells via crystallinity enhancement. J. Mater. Chem. A 11, 3070 (2023). https://doi.org/10.1039/D2TA08362K
- R. Meng, Q. Jiang, D. Liu, Balancing efficiency and transparency in organic transparent photovoltaics. npj Flex. Electron. 6, 39 (2022). https://doi.org/10.1038/s41528-022-00173-9
- M.L. Ball, Q. Burlingame, H.L. Smith, T. Liu, S.R. Parkin et al., Design of UV-absorbing donor molecules for nearly imperceptible organic solar cells. ACS Energy Lett. 7, 180 (2022). https://doi.org/10.1021/acsenergylett.1c02244
- I. Massiot, A. Cattoni, S. Collin, Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959 (2020). https://doi.org/10.1038/s41560-020-00714-4
- Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou et al., Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater. 31, 1903173 (2019). https://doi.org/10.1002/adma.201903173
- S. Castelletto, A. Boretti, Luminescence solar concentrators: a technology update. Nano Energy 109, 108269 (2023). https://doi.org/10.1016/j.nanoen.2023.108269
- I. Papakonstantinou, M. Portnoi, M.G. Debije, The hidden potential of luminescent solar concentrators. Adv. Energy Mater. 11, 2002883 (2021). https://doi.org/10.1002/aenm.202002883
- B. Zhang, G. Lyu, E.A. Kelly, R.C. Evans, Förster resonance energy transfer in luminescent solar concentrators. Adv. Sci. 9, 2201160 (2022). https://doi.org/10.1002/advs.202201160
- F. Matteocci, D. Rossi, L.A. Castriotta, D. Ory, S. Mejaouri et al., Wide bandgap halide perovskite absorbers for semi-transparent photovoltaics: from theoretical design to modules. Nano Energy 101, 107560 (2022). https://doi.org/10.1016/j.nanoen.2022.107560
- W. Yue, H. Yang, H. Cai, Y. Xiong, T. Zhou et al., Printable high-efficiency and stable FAPbBr3 perovskite solar cells for multifunctional building-integrated photovoltaics. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301548
- X. Liu, Z. Zhong, R. Zhu, J. Yu, G. Li, Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 6, 1918 (2022). https://doi.org/10.1016/j.joule.2022.06.009
- J. Kim, D. Kim, W. Kim, S. Woo, S.-W. Baek et al., Efficient semi-transparent perovskite quantum dot photovoltaics enabled by asymmetric dielectric/metal/dielectric transparent electrodes. Chem. Eng. J. 469, 143824 (2023). https://doi.org/10.1016/j.cej.2023.143824
- Y.-M. Sung, M.-Z. Li, D. Luo, Y.-D. Li, S. Biring et al., A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy 80, 105565 (2021). https://doi.org/10.1016/j.nanoen.2020.105565
- X. Li, R. Xia, K. Yan, J. Ren, H.-L. Yip et al., Semitransparent organic solar cells with vivid colors. ACS Energy Lett. 5, 3115 (2020). https://doi.org/10.1021/acsenergylett.0c01554
- T. Liu, X. Zhao, P. Wang, Q.C. Burlingame, J. Hu et al., Highly transparent, scalable, and stable perovskite solar cells with minimal aesthetic compromise. Adv. Energy Mater. 13, 2200402 (2022). https://doi.org/10.1002/aenm.202200402
- J. Zhang, G. Xu, F. Tao, G. Zeng, M. Zhang et al., Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater. 31, 1807159 (2019). https://doi.org/10.1002/adma.201807159
- M. Wang, F. Cao, M. Wang, K. Deng, L. Li, Intermediate-adduct-assisted growth of stable CsPbI2Br inorganic perovskite films for high-efficiency semitransparent solar cells. Adv. Mater. 33, 2006745 (2021). https://doi.org/10.1002/adma.202006745
- Q. Wei, Y. Zhang, T. Shan, H. Zhong, A near-infrared polymer enables over 50% transmittance in semi-transparent organic solar cells. J. Mater. Chem. C 10, 5887 (2022). https://doi.org/10.1039/D2TC00025C
- J.C. Yu, B. Li, C.J. Dunn, J. Yan, B.T. Diroll et al., High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 9, 2201487 (2022). https://doi.org/10.1002/advs.202201487
- Y. Ding, M. Young, Y. Zhao, C. Traverse, A. Benard et al., Influence of photovoltaic angle-dependence on overall power output for fixed building integrated configurations. Sol. Energy Mat. Sol. Cells 132, 523 (2015). https://doi.org/10.1016/j.solmat.2014.09.031
- K.-T. Lee, J.-Y. Jang, S.J. Park, S.A. Ok, H.J. Park, Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale 9, 13983 (2017). https://doi.org/10.1039/C7NR04069E
- R.R. Lunt, Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 101, 043902 (2012). https://doi.org/10.1063/1.4738896
- Y. Jin, H. Feng, Z. Fang, L. Yang, K. Liu et al., Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Res. 17, 1500 (2023). https://doi.org/10.1007/s12274-023-5975-5
- W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018). https://doi.org/10.1002/adma.201800855
- M. Young, C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Angle dependence of transparent photovoltaics in conventional and optically inverted configurations. Appl. Phys. Lett. 103, 133304 (2013). https://doi.org/10.1063/1.4823462
- X. Zhang, Y. Qian, X. Ling, Y. Wang, Y. Zhang et al., α-CsPbBr3 perovskite quantum dots for application in semitransparent photovoltaics. ACS Appl. Mater. Interfaces 12, 27307 (2020). https://doi.org/10.1021/acsami.0c07667
- J. Barichello, D. Di Girolamo, E. Nonni, B. Paci, A. Generosi et al., Semi-transparent blade-coated FAPbBr3 paerovskite solar cells: a scalable low-temperature manufacturing process under ambient condition. Sol. RRL 7, 2200739 (2023). https://doi.org/10.1002/solr.202200739
- S. Liu, H. Li, X. Wu, D. Chen, L. Zhang et al., Pseudo-planar heterojunction organic photovoltaics with optimized light utilization for printable solar windows. Adv. Mater. 34, 2201604 (2022). https://doi.org/10.1002/adma.202201604
- X. Zhang, D. Jia, C. Hägglund, V.A. Öberg, J. Du et al., Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy 53, 373 (2018). https://doi.org/10.1016/j.nanoen.2018.08.068
- S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews et al., Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221 (2014). https://doi.org/10.1039/C4TA00435C
- V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014). https://doi.org/10.1038/ncomms4586
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013). https://doi.org/10.1126/science.1243982
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724 (2023). https://doi.org/10.1038/s41586-023-05825-y
- C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona et al., High efficiency single-junction semitransparent perovskite solar cells. Energy Environ. Sci. 7, 2968 (2014). https://doi.org/10.1039/C4EE01389A
- Y. Guo, K. Shoyama, W. Sato, E. Nakamura, Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 6, 1502317 (2016). https://doi.org/10.1002/aenm.201502317
- J.H. Heo, H.J. Han, M. Lee, M. Song, D.H. Kim et al., Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ. Sci. 8, 2922 (2015). https://doi.org/10.1039/C5EE01050K
- L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15, 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
- S.B. Shivarudraiah, N. Tewari, M. Ng, C.-H.A. Li, D. Chen et al., Optically clear films of formamidinium lead bromide perovskite for wide-band-gap, solution-processed, semitransparent solar cells. ACS Appl. Mater. Interfaces 13, 37223 (2021). https://doi.org/10.1021/acsami.1c10657
- M.Z. Tun, P. Pansa-Ngat, P. Ruankham, K.K. Shin Thant, S. Kamnoedmanee et al., Improving morphology and optoelectronic properties of ultra-wide bandgap perovskite via Cs tuning for clear solar cell and UV detection applications. Sci. Rep. 13, 2965 (2023). https://doi.org/10.1038/s41598-023-29409-y
- R. Garai, B. Sharma, M.A. Afroz, S. Choudhary, T. Sharma et al., High-efficiency semitransparent perovskite solar cells enabled by controlling the crystallization of ultrathin films. ACS Energy Lett. 9, 2936 (2024). https://doi.org/10.1021/acsenergylett.4c01149
- C. Li, R. Tao, Y. Ding, C. Liu, X. Ding et al., Highly visible-transparent and color-neutral perovskite solar cells for self-powered smart windows Sol. RRL 6, 2101009 (2022). https://doi.org/10.1002/solr.202101009
- Y. Zhu, L. Shu, Q. Zhang, Y. Zhu, S. Poddar et al., Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 3, e12117 (2021). https://doi.org/10.1002/eom2.12117
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778 (2019). https://doi.org/10.1039/C9EE02020A
- S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258 (2020). https://doi.org/10.1039/C9EE02162K
- Z. Yuan, M. Zhang, Z. Yen, M. Feng, X. Jin et al., High-performance semi-transparent perovskite solar cells with over 22% visible transparency: pushing the limit through mxene interface engineering. ACS Appl. Mater. Interfaces 15, 37629 (2023). https://doi.org/10.1021/acsami.3c03804
- B. Sharma, R. Garai, M.A. Afroz, T. Sharma, S. Choudhary et al., Enhancing light utilization efficiency of semi-transparent perovskite solar cells via tailored interfacial engineering. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202402473
- D.D. Girolamo, G. Vidon, J. Barichello, F.D. Giacomo, F. Jafarzadeh et al., Breaking 1.7 V open circuit voltage in large area transparent perovskite solar cells using interfaces passivation. Adv. Energy Mater. 14, 2400663 (2024). https://doi.org/10.1002/aenm.202400663
- X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
- C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38 (2021). https://doi.org/10.1038/s41560-020-00721-5
- S. Sidhik, W. Li, M.H.K. Samani, H. Zhang, Y. Wang et al., Memory seeds enable high structural phase purity in 2D perovskite films for high-efficiency devices. Adv. Mater. 33, 2007176 (2021). https://doi.org/10.1002/adma.202007176
- S. Bhandari, S. Valsalakumar, Y. Chanchangi, P. Selvaraj, T.K. Mallick, Effect of novel graphitic carbon/NiO hole transporting electrode on the photovoltaic and optical performance of semi-transparent perovskite solar cells. RSC Adv. 13, 7380 (2023). https://doi.org/10.1039/D2RA08198A
- L. Zuo, X. Shi, W. Fu, A.K.-Y. Jen, Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Adv. Mater. 31, 1901683 (2019). https://doi.org/10.1002/adma.201901683
- F. Liang, Z. Ying, Y. Lin, B. Tu, Z. Zhang et al., High-performance semitransparent and bifacial perovskite solar cells with MoOx/Ag/WOx as the rear transparent electrode. Adv. Mater. Interfaces 7, 2000591 (2020). https://doi.org/10.1002/admi.202000591
- R.F. Bailey-Salzman, B.P. Rand, S.R. Forrest, Semitransparent organic photovoltaic cells. Appl. Phys. Lett. 88, 233502 (2006). https://doi.org/10.1063/1.2209176
- Y. Dai, Y. Huang, X. He, D. Hui, Y. Bai, Continuous performance assessment of thin-film flexible photovoltaic cells under mechanical loading for building integration. Sol. Energy 183, 96 (2019). https://doi.org/10.1016/j.solener.2019.03.018
- C. Xu, K. Jin, Z. Xiao, Z. Zhao, Y. Yan et al., Efficient semitransparent layer-by-layer organic photovoltaics via optimizing wide bandgap and narrow absorption polymer layer thickness. Sol. RRL 6, 2200308 (2022). https://doi.org/10.1002/solr.202200308
- B. Park, H. Bae, J.-W. Ha, C. Lee, J. Lee et al., Synthesis of a halogenated low bandgap polymeric donor for semi-transparent and near-infrared organic solar cells. Org. Electron. 113, 106717 (2023). https://doi.org/10.1016/j.orgel.2022.106717
- W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang et al., Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed. 61, e202116111 (2022). https://doi.org/10.1002/anie.202116111
- X. Duan, Y. Yang, J. Yu, C. Liu, X. Li et al., Solid additive dual-regulates spectral response enabling high-performance semitransparent organic solar cells. Adv. Mater. 36, 2308750 (2024). https://doi.org/10.1002/adma.202308750
- D. Wang, R. Qin, G. Zhou, X. Li, R. Xia et al., High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32, 2001621 (2020). https://doi.org/10.1002/adma.202001621
- Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An et al., Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 55, 424 (2019). https://doi.org/10.1016/j.nanoen.2018.11.010
- H. Shi, R. Xia, G. Zhang, H. Yip, Y. Cao, Spectral engineering of semitransparent polymer solar cells for greenhouse applications. Adv. Energy Mater. 9, 1803438 (2019). https://doi.org/10.1002/aenm.201803438
- Y. Xie, L. Huo, B. Fan, H. Fu, Y. Cai et al., High-performance semitransparent ternary organic solar cells. Adv. Funct. Mater. 28, 1800627 (2018). https://doi.org/10.1002/adfm.201800627
- M.F. Albab, M. Jahandar, Y.H. Kim, Y.-K. Kim, M. Shin et al., High-performance semi-transparent organic solar cells driven by the dipole-controlled optoelectrical response of bilateral self-assembled monolayer strategy. Nano Energy 121, 109219 (2024). https://doi.org/10.1016/j.nanoen.2023.109219
- D. Xie, Y. Zhang, X. Yuan, Y. Li, F. Huang et al., A 2.20 eV bandgap polymer donor for efficient colorful semitransparent organic solar cells. Adv. Funct. Mater. 33, 2212601 (2023). https://doi.org/10.1002/adfm.202212601
- X. Xu, Q. Wei, Z. Zhou, H. He, J. Tian et al., Efficient semitransparent organic solar cells with CRI over 90% enabled by an ultralow-bandgap A-DA’D-A small molecule acceptor. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305017
- L. Xiao, G. Huang, H. Zhang, X. Zhang, Y. Li et al., Light managements and transparent electrodes for semitransparent organic and perovskite solar cells. Sol. RRL 6, 2100818 (2022). https://doi.org/10.1002/solr.202100818
- K. Khandelwal, S. Biswas, G.D. Sharma, Advancing multifunctional semitransparent organic solar cells through strategic optical layer integration. ACS Appl. Energy Mater. 7, 7085 (2024). https://doi.org/10.1021/acsaem.4c01493
- Y. Li, W. Song, J. Zhang, X. Zhang, Z. Ge, High-performance and mechanically durable semi-transparent organic solar cells with highly transparent active layers. Sci. China Mater. 66, 1719 (2023). https://doi.org/10.1007/s40843-022-2332-9
- J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue et al., Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 12, 2200453 (2022). https://doi.org/10.1002/aenm.202200453
- M. Bates, C. Malhado, C. Yang, C.K. Herrera, R.R. Lunt, High efficiency transparent and semi-transparent photovoltaics based on a layer-by-layer deposition. Sol. RRL 7, 2200962 (2023). https://doi.org/10.1002/solr.202200962
- S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800 (2002). https://doi.org/10.1038/nature01217
- A.J. Nozik, Quantum dot solar cells. Physica E Low Dimens. Syst. Nanostruct. 14, 115 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0
- G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford et al., Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180 (2006). https://doi.org/10.1038/nature04855
- G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr et al., Colloidal quantum dot solar cells. Chem. Rev. 115, 12732 (2015). https://doi.org/10.1021/acs.chemrev.5b00063
- N. Drolet, presented at 2012 MRS Spring Meeting & Exhibit. Organic photovoltaic: efficiency and lifetime challenges for commercial viability, San Francisco, CA, Moscone West Convention Center, April, 2012.
- S. Liu, K. Xiong, K. Wang, G. Liang, M.-Y. Li et al., Efficiently passivated PbSe quantum dot solids for infrared photovoltaics. ACS Nano 15, 3376 (2021). https://doi.org/10.1021/acsnano.0c10373
- X. Shen, A. Kamath, P. Guyot-Sionnest, Mid-infrared cascade intraband electroluminescence with HgSe–CdSe core–shell colloidal quantum dots. Nat. Photon. 17, 1042 (2023). https://doi.org/10.1038/s41566-023-01270-5
- M. Liu, Y. Chen, C.-S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96 (2019). https://doi.org/10.1038/s41586-019-1239-7
- M. Liu, O. Voznyy, R. Sabatini, F.P. García De Arquer, R. Munir et al., Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258 (2017). https://doi.org/10.1038/nmat4800
- J. Shi, F. Li, Y. Jin, C. Liu, B. Cohen-Kleinstein et al., In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. 132, 22414 (2020). https://doi.org/10.1002/ange.202010440
- D. Chen, T. Wang, P. Kei Ko, J. Shi, M. Liu et al., Sterically controlled synthesis of amine-free CsPbBr3 nanoplatelets for stable, pure-blue light emission. Angew. Chem. Int. Ed. 63, e202317590 (2024). https://doi.org/10.1002/anie.202317590
- M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach et al., Stability of quantum dot solar cells: a matter of (life)time. Adv. Energy Mater. 11, 2003457 (2021). https://doi.org/10.1002/aenm.202003457
- D. Becker-Koch, M. Albaladejo-Siguan, V. Lami, F. Paulus, H. Xiang et al., Ligand dependent oxidation dictates the performance evolution of high efficiency PbS quantum dot solar cells. Sustain. Energy Fuels 4, 108 (2020). https://doi.org/10.1039/C9SE00602H
- K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling et al., High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104 (2020). https://doi.org/10.1039/D0TA02743J
- X. Zhang, G.E. Eperon, J. Liu, E.M.J. Johansson, Semitransparent quantum dot solar cell. Nano Energy 22, 70 (2016). https://doi.org/10.1016/j.nanoen.2016.01.006
- C. Zhang, C. Ji, Y. Park, L.J. Guo, Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Adv. Opt. Mater. 9, 2001298 (2021). https://doi.org/10.1002/adom.202001298
- X. Zhang, C. Hägglund, M.B. Johansson, K. Sveinbjörnsson, E.M.J. Johansson, Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Adv. Funct. Mater. 26, 1921 (2016). https://doi.org/10.1002/adfm.201504038
- H. Tavakoli Dastjerdi, P. Qi, Z. Fan, M.M. Tavakoli, Cost-effective and semi-transparent PbS quantum dot solar cells using copper electrodes. ACS Appl. Mater. Interfaces 12, 818 (2020). https://doi.org/10.1021/acsami.9b18487
- M.M. Tavakoli, M. Nasilowski, J. Zhao, M.G. Bawendi, J. Kong, Efficient semitransparent CsPbI3 quantum dots photovoltaics using a graphene electrode. Small Methods 3, 1900449 (2019). https://doi.org/10.1002/smtd.201900449
- Y. Song, S. Chang, S. Gradecak, J. Kong, visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 6, 1600847 (2016). https://doi.org/10.1002/aenm.201600847
- P. Bhatnagar, J. Hong, M. Patel, J. Kim, Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 91, 106676 (2022). https://doi.org/10.1016/j.nanoen.2021.106676
- C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27, 1606287 (2017). https://doi.org/10.1002/adfm.201606287
- T.T. Nguyen, J. Kim, J. Yi, C.-P. Wong, High-performing UV photodetectors by thermal-coupling transparent photovoltaics. Nano Energy 100, 107504 (2022). https://doi.org/10.1016/j.nanoen.2022.107504
- T.T. Nguyen, M. Patel, S. Kim, R.A. Mir, J. Yi et al., Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. J. Power. Sources 481, 228865 (2021). https://doi.org/10.1016/j.jpowsour.2020.228865
- Y. Liu, J. Wang, F. Wang, Z. Cheng, Y. Fang et al., Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 12, 3360 (2021). https://doi.org/10.1038/s41467-021-23701-z
- D.B. Ritzer, B. Abdollahi Nejand, M.A. Preciado-Ruiz, S. Gharibzadeh, H. Hu et al., Translucent perovskite photovoltaics for building integration. Energy Environ. Sci. (2023). https://doi.org/10.1039/D2EE04137E
- C.S. Allardyce, C. Fankhauser, S.M. Zakeeruddin, M. Grätzel et al., The influence of greenhouse-integrated photovoltaics on crop production. Sol. Energy 155, 517 (2017). https://doi.org/10.1016/j.solener.2017.06.044
- Y. Zhao, Z. Li, C. Deger, M. Wang, M. Peric et al., Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics. Nat. Sustain. 6, 539 (2023). https://doi.org/10.1038/s41893-023-01071-2
- E.J. Stallknecht, C.K. Herrera, C. Yang, I. King, T.D. Sharkey et al., Designing plant–transparent agrivoltaics. Sci. Rep. 13, 1903 (2023). https://doi.org/10.1038/s41598-023-28484-5
- M.E. Loik, S.A. Carter, G. Alers, C.E. Wade, D. Shugar et al., Wavelength-selective solar photovoltaic systems: powering greenhouses for plant growth at the food-energy-water nexus. Earth’s Future 5, 1044 (2017). https://doi.org/10.1002/2016EF000531
- Y. Liu, P. Cheng, T. Li, R. Wang, Y. Li et al., Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis. ACS Nano 13, 1071 (2019). https://doi.org/10.1021/acsnano.8b08577
- X. Meng, D. Zhang, P. Feng, N. Hu, Review on mechanical behavior of solar cells for building integrated photovoltaics. Sustain. Struct. 1, 9 (2021). https://doi.org/10.54113/j.sust.2021.000009
- C. Fankhauser, A. Batschauer, Shadow on the plant: a strategy to exit. Cell 164, 15 (2016). https://doi.org/10.1016/j.cell.2015.12.043
- R. Waller, M. Kacira, E. Magadley, M. Teitel, I. Yehia, Semi-transparent organic photovoltaics applied as greenhouse shade for spring and summer tomato production in arid climate. Agronomy 11, 1152 (2021). https://doi.org/10.3390/agronomy11061152
- W. Song, J. Ge, L. Xie, Z. Chen, Q. Ye et al., Semi-transparent organic photovoltaics for agrivoltaic applications. Nano Energy 116, 108805 (2023). https://doi.org/10.1016/j.nanoen.2023.108805
- S.-Y. Chang, P. Cheng, G. Li, Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2, 1039 (2018). https://doi.org/10.1016/j.joule.2018.04.005
- S. Jinnai, A. Oi, T. Seo, T. Moriyama, M. Terashima et al., Green-light wavelength-selective organic solar cells based on poly(3-hexylthiophene) and naphthobisthiadiazole-containing acceptors toward agrivoltaics. ACS Sustain. Chem. Eng. 11, 1548 (2023). https://doi.org/10.1021/acssuschemeng.2c06426
- M. Patel, J.H. Seo, T.T. Nguyen, J. Kim, Active energy-controlling windows incorporating transparent photovoltaics and an integrated transparent heater. Cell Rep. Phys. Sci. 2, 100591 (2021). https://doi.org/10.1016/j.xcrp.2021.100591
- J.H. Jeong, M. Jahandar, A. Prasetio, J.M. Kim, J.H. Kim et al., Multi-dimensional interfacial engineering for a practical large-area transparent flexible organic photovoltaics. Chem. Eng. J. 419, 129672 (2021). https://doi.org/10.1016/j.cej.2021.129672
- Y. Xia, X. Liang, Y. Jiang, S. Wang, Y. Qi et al., High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells. Adv. Energy Mater. 9, 1900720 (2019). https://doi.org/10.1002/aenm.201900720
- P. Bhatnagar, T.T. Nguyen, S. Kim, J.H. Seo, M. Patel et al., Transparent photovoltaic memory for neuromorphic device. Nanoscale 13, 5243 (2021). https://doi.org/10.1039/D0NR08966D
- M. Kumar, J. Lim, H. Seo, Highly transparent reconfigurable non-volatile multilevel optoelectronic memory for integrated self-powered brain-inspired perception. Nano Energy 89, 106471 (2021). https://doi.org/10.1016/j.nanoen.2021.106471
- X. Wu, S. Shi, B. Liang, Y. Dong, R. Yang et al., Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10, eadn4524 (2024). https://doi.org/10.1126/sciadv.adn4524
- M. Cellura, L.Q. Luu, F. Guarino, S. Longo, A review on life cycle environmental impacts of emerging solar cells. Sci. Total. Environ. 908, 168019 (2024). https://doi.org/10.1016/j.scitotenv.2023.168019
- X. Lu, D. Yan, J. Feng, M. Li, B. Hou et al., Ecotoxicity and sustainability of emerging Pb-based photovoltaics. Sol. RRL 6, 2200699 (2022). https://doi.org/10.1002/solr.202200699
- J. Li, H.-L. Cao, W.-B. Jiao, Q. Wang, M. Wei et al., Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020). https://doi.org/10.1038/s41467-019-13910-y
References
Q. Wang, L. Wang, Renewable energy consumption and economic growth in OECD countries: a nonlinear panel data analysis. Energy 207, 118200 (2020). https://doi.org/10.1016/j.energy.2020.118200
A. Kausar, A. Sattar, C. Xu, S. Zhang, Z. Kang et al., Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 50, 2696 (2021). https://doi.org/10.1039/D0CS01316A
D. Meng, R. Zheng, Y. Zhao, E. Zhang, L. Dou et al., Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, 2107330 (2022). https://doi.org/10.1002/adma.202107330
K. Lee, H.-D. Um, D. Choi, J. Park, N. Kim et al., The development of transparent photovoltaics. Cell Rep. Phys. Sci. 1, 100143 (2020). https://doi.org/10.1016/j.xcrp.2020.100143
J. Bing, L.G. Caro, H.P. Talathi, N.L. Chang, D.R. Mckenzie et al., Perovskite solar cells for building integrated photovoltaics—glazing applications. Joule 6, 1446 (2022). https://doi.org/10.1016/j.joule.2022.06.003
T.M. Koh, H. Wang, Y.F. Ng, A. Bruno, S. Mhaisalkar et al., Halide perovskite solar cells for building integrated photovoltaics: transforming building façades into power generators. Adv. Mater. 34, 2104661 (2022). https://doi.org/10.1002/adma.202104661
Y. Li, X. Huang, H.K.M. Sheriff, S.R. Forrest, Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. (2022). https://doi.org/10.1038/s41578-022-00514-0
T. Salameh, M.E.H. Assad, M. Tawalbeh, C. Ghenai, A. Merabet et al., Analysis of cooling load on commercial building in UAE climate using building integrated photovoltaic façade system. Sol. Energy 199, 617 (2020). https://doi.org/10.1016/j.solener.2020.02.062
A. Anctil, E. Lee, R.R. Lunt, Net energy and cost benefit of transparent organic solar cells in building-integrated applications. Appl. Energy 261, 114429 (2020). https://doi.org/10.1016/j.apenergy.2019.114429
C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2, 849 (2017). https://doi.org/10.1038/s41560-017-0016-9
K. Lee, N. Kim, K. Kim, H.-D. Um, W. Jin et al., Neutral-colored transparent crystalline silicon photovoltaics. Joule 4, 235 (2020). https://doi.org/10.1016/j.joule.2019.11.008
D. Kim, S.S. Shin, S.M. Lee, J. Cho, J.H. Yun et al., Flexible and semi-transparent ultra-thin CIGSe solar cells prepared on ultra-thin glass substrate: a key to flexible bifacial photovoltaic applications. Adv. Funct. Mater. 30, 2001775 (2020). https://doi.org/10.1002/adfm.202001775
S. Xie, D. Yang, J. Zhang, L. Wu, Development of semitransparent CdTe polycrystalline thin-film solar cells modified with a CuCl layer for BIPV. Sol. Energy 267, 112212 (2024). https://doi.org/10.1016/j.solener.2023.112212
S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10, 1902492 (2020). https://doi.org/10.1002/aenm.201902492
M.A. Mahmud, T. Duong, J. Peng, Y. Wu, H. Shen et al., Origin of efficiency and stability enhancement in high-performing mixed dimensional 2D–3D perovskite solar cells: a review. Adv. Funct. Mater. 32, 2009164 (2022). https://doi.org/10.1002/adfm.202009164
H. Bi, J. Liu, Z. Zhang, L. Wang, R. Beresneviciute et al., All-perovskite tandem solar cells approach 26.5% efficiency by employing wide bandgap lead perovskite solar cells with new monomolecular hole transport layer. ACS Energy Lett. 8, 3852 (2023). https://doi.org/10.1021/acsenergylett.3c01275
Y. Kang, R. Li, A. Wang, J. Kang, Z. Wang et al., Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. 15, 3439 (2022). https://doi.org/10.1039/d2ee01326f
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416 (2022). https://doi.org/10.1126/science.abm8566
K. Jeong, J. Byeon, J. Jang, N. Ahn, M. Choi, Pulsatile therapy for perovskite solar cells. Joule 6, 1 (2022). https://doi.org/10.1016/j.joule.2022.04.007
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.-Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352 (2020). https://doi.org/10.1126/science.aba0893
X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya et al., Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 10, 2006435 (2021). https://doi.org/10.1002/adma.202006435
S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang et al., Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404 (2023). https://doi.org/10.1126/science.adg3755
X. Huang, D. Fan, Y. Li, S.R. Forrest, Multilevel peel-off patterning of a prototype semitransparent organic photovoltaic module. Joule 6, 1581 (2022). https://doi.org/10.1016/j.joule.2022.06.015
W. Xu, X. Zhu, X. Ma, H. Zhou, X. Li et al., Achieving 15.81% and 15.29% efficiency of all-polymer solar cells based on layer-by-layer and bulk heterojunction structures. J. Mater. Chem. A 10, 13492 (2022). https://doi.org/10.1039/D2TA02914F
A. Karki, A.J. Gillett, R.H. Friend, T. Nguyen, The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv. Energy Mater. 11, 2003441 (2021). https://doi.org/10.1002/aenm.202003441
X. Wang, H. Lu, Y. Liu, A. Zhang, N. Yu et al., Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 11, 2102591 (2021). https://doi.org/10.1002/aenm.202102591
D. Luo, W. Jang, D.D. Babu, M.S. Kim, D.H. Wang et al., Recent progress in organic solar cells based on non-fullerene acceptors: materials to devices. J. Mater. Chem. A 10, 3255 (2022). https://doi.org/10.1039/D1TA10707K
J. Chen, D. Jia, E.M.J. Johansson, A. Hagfeldt, X. Zhang, Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci. 14, 224 (2021). https://doi.org/10.1039/D0EE02900A
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92 (2016). https://doi.org/10.1126/science.aag2700
S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6, 2229 (2021). https://doi.org/10.1021/acsenergylett.1c00462
X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, 2001906 (2020). https://doi.org/10.1002/adma.202001906
J. Khan, X. Zhang, J. Yuan, Y. Wang, G. Shi et al., Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett. 5, 3322 (2020). https://doi.org/10.1021/acsenergylett.0c01849
B. Hou, Y. Cho, B.S. Kim, J. Hong, J.B. Park et al., Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells. ACS Energy Lett. 1, 834 (2016). https://doi.org/10.1021/acsenergylett.6b00294
B. Hou, F.C. Mocanu, Y. Cho, J. Lim, J. Feng et al., Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting. Nano Lett. 23, 2277 (2023). https://doi.org/10.1021/acs.nanolett.2c04851
Y. Cho, B. Hou, P. Giraud, S. Pak, S. Cha, Ferroelectric field effect induced charge carrier transport modulation at quantum dot solar cell heterojunction interface. ACS Appl. Energy Mater. 4, 12056 (2021). https://doi.org/10.1021/acsaem.1c01525
Y. Cho, B. Hou, J. Lim, S. Lee, S. Pak et al., Balancing charge carrier transport in a quantum dot p–n junction toward hysteresis-free high-performance solar cells. ACS Energy Lett. 3, 1036 (2018). https://doi.org/10.1021/acsenergylett.8b00130
B. Hou, B. Kim, H.K.H. Lee, Y. Cho, P. Giraud et al., Multiphoton absorption stimulated metal chalcogenide quantum dot solar cells under ambient and concentrated irradiance. Adv. Funct. Mater. 30, 2004563 (2020). https://doi.org/10.1002/adfm.202004563
Y. Cho, P. Giraud, B. Hou, Y. Lee, J. Hong et al., Charge transport modulation of a flexible quantum dot solar cell using a piezoelectric effect. Adv. Energy Mater. 8, 1700809 (2018). https://doi.org/10.1002/aenm.201700809
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009). https://doi.org/10.1021/ja809598r
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe et al., Solar cell efficiency tables (Version 64). Prog. Photovolt. 32, 425 (2024). https://doi.org/10.1002/pip.3831
L. Chao, T. Niu, W. Gao, C. Ran, L. Song et al., Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 33, 2005410 (2021). https://doi.org/10.1002/adma.202005410
Y.-W. Zhang, P.-P. Cheng, W.-Y. Tan, Y. Min, Balance the thickness, transparency and stability of semi-transparent perovskite solar cells by solvent engineering and using a bifunctional additive. Appl. Surf. Sci. 537, 147908 (2021). https://doi.org/10.1016/j.apsusc.2020.147908
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014). https://doi.org/10.1038/nmat4014
A. Mahapatra, D. Prochowicz, M.M. Tavakoli, S. Trivedi, P. Kumar et al., A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. A 8, 27 (2020). https://doi.org/10.1039/C9TA07657C
F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1902579 (2020). https://doi.org/10.1002/aenm.201902579
Z. Wang, L. Liu, X. Liu, D. Song, D. Shi et al., Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chem. Eng. J. 432, 134367 (2022). https://doi.org/10.1016/j.cej.2021.134367
J. Sanchez-Diaz, R.S. Sánchez, S. Masi, M. Kreĉmarová, A.O. Alvarez et al., Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule 6, 861 (2022). https://doi.org/10.1016/j.joule.2022.02.014
J.-W. Lee, S. Tan, S.I. Seok, Y. Yang, N.-G. Park, Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022). https://doi.org/10.1126/science.abj1186
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016). https://doi.org/10.1039/C5EE03874J
M. He, J. Liang, Z. Zhang, Y. Qiu, Z. Deng et al., Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 8, 25831 (2020). https://doi.org/10.1039/D0TA09209F
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656 (2016). https://doi.org/10.1039/C5EE03255E
D.J. Kubicki, D. Prochowicz, A. Hofstetter, M. Saski, P. Yadav et al., Formation of stable mixed guanidinium–methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140, 3345 (2018). https://doi.org/10.1021/jacs.7b12860
F. Ali, C. Roldán-Carmona, M. Sohail, M.K. Nazeeruddin, Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 24, 2002989 (2020). https://doi.org/10.1002/aenm.202002989
X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao et al., Highly efficient perovskite solar cells via nickel passivation. Adv. Funct. Mater. 28, 1804286 (2018). https://doi.org/10.1002/adfm.201804286
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444 (2021). https://doi.org/10.1038/s41586-021-03964-8
Z. Dai, S.K. Yadavalli, M. Chen, A. Abbaspourtamijani et al., Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618 (2021). https://doi.org/10.1126/science.abf5602
M. Stolterfoht, C.M. Wolff, J.A. Márquez, S. Zhang, C.J. Hages et al., Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847 (2018). https://doi.org/10.1038/s41560-018-0219-8
E. Aktas, N. Phung, H. Köbler, D.A. González, M. Méndez et al., Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14, 3976 (2021). https://doi.org/10.1039/D0EE03807E
E. Li, C. Liu, H. Lin, X. Xu, S. Liu et al., Bonding strength regulates anchoring-based self-assembly monolayers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 31, 2103847 (2021). https://doi.org/10.1002/adfm.202103847
J.W. Jung, F. Liu, T.P. Russell, W.H. Jo, A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy Environ. Sci. 5, 6857 (2012). https://doi.org/10.1039/c2ee21149a
G. Oklem, X. Song, L. Toppare, D. Baran, G. Gunbas, A new NIR absorbing DPP-based polymer for thick organic solar cells. J. Mater. Chem. C 6, 2957 (2018). https://doi.org/10.1039/C8TC00113H
L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu et al., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635 (2020). https://doi.org/10.1039/C9EE03710A
Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li et al., An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170 (2015). https://doi.org/10.1002/adma.201404317
J. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang et al., Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 10, 570 (2019). https://doi.org/10.1038/s41467-019-08386-9
Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang et al., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019). https://doi.org/10.1038/s41467-019-10351-5
R. Wang, J. Yuan, R. Wang, G. Han, T. Huang et al., Rational tuning of molecular interaction and energy level alignment enables high-performance organic photovoltaics. Adv. Mater. 31, 1904215 (2019). https://doi.org/10.1002/adma.201904215
Y. Kan, Y. Sun, Y. Ren, Y. Xu, X. Jiang et al., Amino-functionalized graphdiyne derivative as a cathode interface layer with high thickness tolerance for highly efficient organic solar cells. Adv. Mater. 36, 2312635 (2024). https://doi.org/10.1002/adma.202312635
R. Ma, K. Zhou, Y. Sun, T. Liu, Y. Kan et al., Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 5, 725 (2022). https://doi.org/10.1016/j.matt.2021.12.002
C. Chen, L. Wang, W. Xia, K. Qiu, C. Guo et al., Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nat. Commun. 15, 6865 (2024). https://doi.org/10.1038/s41467-024-51359-w
Y. Sun, L. Nian, Y. Kan, Y. Ren, Z. Chen et al., Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 6, 2835 (2022). https://doi.org/10.1016/j.joule.2022.10.005
Y. Miao, Y. Sun, W. Zou, X. Zhang, Y. Kan et al., Isomerization engineering of solid additives enables highly efficient organic solar cells via manipulating molecular stacking and aggregation of active layer. Adv. Mater. 36, 2406623 (2024). https://doi.org/10.1002/adma.202406623
H. Guo, F. Hou, X. Ren, X. Ning, Y. Wang et al., Recent progresses on transparent electrodes and active layers toward neutral, color semitransparent perovskite solar cells. Sol. RRL (2023). https://doi.org/10.1002/solr.202300333
Y. Huang, C. Jiang, Y. Zhu, S. Zhang, G. Li et al., A near-infrared acceptor incorporating selenium heterocycles for efficient semi-transparent photovoltaics and sensitive photodetectors. Org. Electron. 110, 106642 (2022). https://doi.org/10.1016/j.orgel.2022.106642
H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang et al., Semi-transparent organic photovoltaics. Chem. Soc. Rev. 52, 4132 (2023). https://doi.org/10.1039/D3CS00233K
G.P. Kini, S.J. Jeon, D.K. Moon, Latest progress on photoabsorbent materials for multifunctional semitransparent organic solar cells. Adv. Funct. Mater. 31, 2007931 (2021). https://doi.org/10.1002/adfm.202007931
I. Burgués-Ceballos, L. Lucera, P. Tiwana, K. Ocytko, L.W. Tan et al., Transparent organic photovoltaics: A strategic niche to advance commercialization. Joule 5, 2261 (2021). https://doi.org/10.1016/j.joule.2021.07.004
E. Pulli, E. Rozzi, F. Bella, Transparent photovoltaic technologies: Current trends towards upscaling. Energy Convers. Manag. 219, 112982 (2020). https://doi.org/10.1016/j.enconman.2020.112982
W. Zou, L. Shan, W. Cao, J. Chen, X. Liu et al., Precrystallized-heterojunction strategy on precursor solution enables high-performance semitransparent perovskite solar cells. Adv. Opt. Mater. 11, 2202982 (2023). https://doi.org/10.1002/adom.202202982
Z. Yang, Y. Niu, X. Zhang, Z. Zhang, L. Hu, Efficiency improvement of semi-transparent perovskite solar cells via crystallinity enhancement. J. Mater. Chem. A 11, 3070 (2023). https://doi.org/10.1039/D2TA08362K
R. Meng, Q. Jiang, D. Liu, Balancing efficiency and transparency in organic transparent photovoltaics. npj Flex. Electron. 6, 39 (2022). https://doi.org/10.1038/s41528-022-00173-9
M.L. Ball, Q. Burlingame, H.L. Smith, T. Liu, S.R. Parkin et al., Design of UV-absorbing donor molecules for nearly imperceptible organic solar cells. ACS Energy Lett. 7, 180 (2022). https://doi.org/10.1021/acsenergylett.1c02244
I. Massiot, A. Cattoni, S. Collin, Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959 (2020). https://doi.org/10.1038/s41560-020-00714-4
Y. Li, C. Ji, Y. Qu, X. Huang, S. Hou et al., Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater. 31, 1903173 (2019). https://doi.org/10.1002/adma.201903173
S. Castelletto, A. Boretti, Luminescence solar concentrators: a technology update. Nano Energy 109, 108269 (2023). https://doi.org/10.1016/j.nanoen.2023.108269
I. Papakonstantinou, M. Portnoi, M.G. Debije, The hidden potential of luminescent solar concentrators. Adv. Energy Mater. 11, 2002883 (2021). https://doi.org/10.1002/aenm.202002883
B. Zhang, G. Lyu, E.A. Kelly, R.C. Evans, Förster resonance energy transfer in luminescent solar concentrators. Adv. Sci. 9, 2201160 (2022). https://doi.org/10.1002/advs.202201160
F. Matteocci, D. Rossi, L.A. Castriotta, D. Ory, S. Mejaouri et al., Wide bandgap halide perovskite absorbers for semi-transparent photovoltaics: from theoretical design to modules. Nano Energy 101, 107560 (2022). https://doi.org/10.1016/j.nanoen.2022.107560
W. Yue, H. Yang, H. Cai, Y. Xiong, T. Zhou et al., Printable high-efficiency and stable FAPbBr3 perovskite solar cells for multifunctional building-integrated photovoltaics. Adv. Mater. (2023). https://doi.org/10.1002/adma.202301548
X. Liu, Z. Zhong, R. Zhu, J. Yu, G. Li, Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 6, 1918 (2022). https://doi.org/10.1016/j.joule.2022.06.009
J. Kim, D. Kim, W. Kim, S. Woo, S.-W. Baek et al., Efficient semi-transparent perovskite quantum dot photovoltaics enabled by asymmetric dielectric/metal/dielectric transparent electrodes. Chem. Eng. J. 469, 143824 (2023). https://doi.org/10.1016/j.cej.2023.143824
Y.-M. Sung, M.-Z. Li, D. Luo, Y.-D. Li, S. Biring et al., A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy 80, 105565 (2021). https://doi.org/10.1016/j.nanoen.2020.105565
X. Li, R. Xia, K. Yan, J. Ren, H.-L. Yip et al., Semitransparent organic solar cells with vivid colors. ACS Energy Lett. 5, 3115 (2020). https://doi.org/10.1021/acsenergylett.0c01554
T. Liu, X. Zhao, P. Wang, Q.C. Burlingame, J. Hu et al., Highly transparent, scalable, and stable perovskite solar cells with minimal aesthetic compromise. Adv. Energy Mater. 13, 2200402 (2022). https://doi.org/10.1002/aenm.202200402
J. Zhang, G. Xu, F. Tao, G. Zeng, M. Zhang et al., Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater. 31, 1807159 (2019). https://doi.org/10.1002/adma.201807159
M. Wang, F. Cao, M. Wang, K. Deng, L. Li, Intermediate-adduct-assisted growth of stable CsPbI2Br inorganic perovskite films for high-efficiency semitransparent solar cells. Adv. Mater. 33, 2006745 (2021). https://doi.org/10.1002/adma.202006745
Q. Wei, Y. Zhang, T. Shan, H. Zhong, A near-infrared polymer enables over 50% transmittance in semi-transparent organic solar cells. J. Mater. Chem. C 10, 5887 (2022). https://doi.org/10.1039/D2TC00025C
J.C. Yu, B. Li, C.J. Dunn, J. Yan, B.T. Diroll et al., High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 9, 2201487 (2022). https://doi.org/10.1002/advs.202201487
Y. Ding, M. Young, Y. Zhao, C. Traverse, A. Benard et al., Influence of photovoltaic angle-dependence on overall power output for fixed building integrated configurations. Sol. Energy Mat. Sol. Cells 132, 523 (2015). https://doi.org/10.1016/j.solmat.2014.09.031
K.-T. Lee, J.-Y. Jang, S.J. Park, S.A. Ok, H.J. Park, Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. Nanoscale 9, 13983 (2017). https://doi.org/10.1039/C7NR04069E
R.R. Lunt, Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 101, 043902 (2012). https://doi.org/10.1063/1.4738896
Y. Jin, H. Feng, Z. Fang, L. Yang, K. Liu et al., Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Res. 17, 1500 (2023). https://doi.org/10.1007/s12274-023-5975-5
W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30, 1800855 (2018). https://doi.org/10.1002/adma.201800855
M. Young, C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Angle dependence of transparent photovoltaics in conventional and optically inverted configurations. Appl. Phys. Lett. 103, 133304 (2013). https://doi.org/10.1063/1.4823462
X. Zhang, Y. Qian, X. Ling, Y. Wang, Y. Zhang et al., α-CsPbBr3 perovskite quantum dots for application in semitransparent photovoltaics. ACS Appl. Mater. Interfaces 12, 27307 (2020). https://doi.org/10.1021/acsami.0c07667
J. Barichello, D. Di Girolamo, E. Nonni, B. Paci, A. Generosi et al., Semi-transparent blade-coated FAPbBr3 paerovskite solar cells: a scalable low-temperature manufacturing process under ambient condition. Sol. RRL 7, 2200739 (2023). https://doi.org/10.1002/solr.202200739
S. Liu, H. Li, X. Wu, D. Chen, L. Zhang et al., Pseudo-planar heterojunction organic photovoltaics with optimized light utilization for printable solar windows. Adv. Mater. 34, 2201604 (2022). https://doi.org/10.1002/adma.202201604
X. Zhang, D. Jia, C. Hägglund, V.A. Öberg, J. Du et al., Highly photostable and efficient semitransparent quantum dot solar cells by using solution-phase ligand exchange. Nano Energy 53, 373 (2018). https://doi.org/10.1016/j.nanoen.2018.08.068
S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews et al., Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221 (2014). https://doi.org/10.1039/C4TA00435C
V. D’Innocenzo, G. Grancini, M.J.P. Alcocer, A.R.S. Kandada, S.D. Stranks et al., Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014). https://doi.org/10.1038/ncomms4586
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013). https://doi.org/10.1126/science.1243982
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724 (2023). https://doi.org/10.1038/s41586-023-05825-y
C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona et al., High efficiency single-junction semitransparent perovskite solar cells. Energy Environ. Sci. 7, 2968 (2014). https://doi.org/10.1039/C4EE01389A
Y. Guo, K. Shoyama, W. Sato, E. Nakamura, Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 6, 1502317 (2016). https://doi.org/10.1002/aenm.201502317
J.H. Heo, H.J. Han, M. Lee, M. Song, D.H. Kim et al., Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ. Sci. 8, 2922 (2015). https://doi.org/10.1039/C5EE01050K
L. Yang, Y. Jin, Z. Fang, J. Zhang, Z. Nan et al., Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 15, 111 (2023). https://doi.org/10.1007/s40820-023-01090-w
S.B. Shivarudraiah, N. Tewari, M. Ng, C.-H.A. Li, D. Chen et al., Optically clear films of formamidinium lead bromide perovskite for wide-band-gap, solution-processed, semitransparent solar cells. ACS Appl. Mater. Interfaces 13, 37223 (2021). https://doi.org/10.1021/acsami.1c10657
M.Z. Tun, P. Pansa-Ngat, P. Ruankham, K.K. Shin Thant, S. Kamnoedmanee et al., Improving morphology and optoelectronic properties of ultra-wide bandgap perovskite via Cs tuning for clear solar cell and UV detection applications. Sci. Rep. 13, 2965 (2023). https://doi.org/10.1038/s41598-023-29409-y
R. Garai, B. Sharma, M.A. Afroz, S. Choudhary, T. Sharma et al., High-efficiency semitransparent perovskite solar cells enabled by controlling the crystallization of ultrathin films. ACS Energy Lett. 9, 2936 (2024). https://doi.org/10.1021/acsenergylett.4c01149
C. Li, R. Tao, Y. Ding, C. Liu, X. Ding et al., Highly visible-transparent and color-neutral perovskite solar cells for self-powered smart windows Sol. RRL 6, 2101009 (2022). https://doi.org/10.1002/solr.202101009
Y. Zhu, L. Shu, Q. Zhang, Y. Zhu, S. Poddar et al., Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 3, e12117 (2021). https://doi.org/10.1002/eom2.12117
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778 (2019). https://doi.org/10.1039/C9EE02020A
S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak et al., Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258 (2020). https://doi.org/10.1039/C9EE02162K
Z. Yuan, M. Zhang, Z. Yen, M. Feng, X. Jin et al., High-performance semi-transparent perovskite solar cells with over 22% visible transparency: pushing the limit through mxene interface engineering. ACS Appl. Mater. Interfaces 15, 37629 (2023). https://doi.org/10.1021/acsami.3c03804
B. Sharma, R. Garai, M.A. Afroz, T. Sharma, S. Choudhary et al., Enhancing light utilization efficiency of semi-transparent perovskite solar cells via tailored interfacial engineering. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202402473
D.D. Girolamo, G. Vidon, J. Barichello, F.D. Giacomo, F. Jafarzadeh et al., Breaking 1.7 V open circuit voltage in large area transparent perovskite solar cells using interfaces passivation. Adv. Energy Mater. 14, 2400663 (2024). https://doi.org/10.1002/aenm.202400663
X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu et al., Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38 (2021). https://doi.org/10.1038/s41560-020-00721-5
S. Sidhik, W. Li, M.H.K. Samani, H. Zhang, Y. Wang et al., Memory seeds enable high structural phase purity in 2D perovskite films for high-efficiency devices. Adv. Mater. 33, 2007176 (2021). https://doi.org/10.1002/adma.202007176
S. Bhandari, S. Valsalakumar, Y. Chanchangi, P. Selvaraj, T.K. Mallick, Effect of novel graphitic carbon/NiO hole transporting electrode on the photovoltaic and optical performance of semi-transparent perovskite solar cells. RSC Adv. 13, 7380 (2023). https://doi.org/10.1039/D2RA08198A
L. Zuo, X. Shi, W. Fu, A.K.-Y. Jen, Highly efficient semitransparent solar cells with selective absorption and tandem architecture. Adv. Mater. 31, 1901683 (2019). https://doi.org/10.1002/adma.201901683
F. Liang, Z. Ying, Y. Lin, B. Tu, Z. Zhang et al., High-performance semitransparent and bifacial perovskite solar cells with MoOx/Ag/WOx as the rear transparent electrode. Adv. Mater. Interfaces 7, 2000591 (2020). https://doi.org/10.1002/admi.202000591
R.F. Bailey-Salzman, B.P. Rand, S.R. Forrest, Semitransparent organic photovoltaic cells. Appl. Phys. Lett. 88, 233502 (2006). https://doi.org/10.1063/1.2209176
Y. Dai, Y. Huang, X. He, D. Hui, Y. Bai, Continuous performance assessment of thin-film flexible photovoltaic cells under mechanical loading for building integration. Sol. Energy 183, 96 (2019). https://doi.org/10.1016/j.solener.2019.03.018
C. Xu, K. Jin, Z. Xiao, Z. Zhao, Y. Yan et al., Efficient semitransparent layer-by-layer organic photovoltaics via optimizing wide bandgap and narrow absorption polymer layer thickness. Sol. RRL 6, 2200308 (2022). https://doi.org/10.1002/solr.202200308
B. Park, H. Bae, J.-W. Ha, C. Lee, J. Lee et al., Synthesis of a halogenated low bandgap polymeric donor for semi-transparent and near-infrared organic solar cells. Org. Electron. 113, 106717 (2023). https://doi.org/10.1016/j.orgel.2022.106717
W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang et al., Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed. 61, e202116111 (2022). https://doi.org/10.1002/anie.202116111
X. Duan, Y. Yang, J. Yu, C. Liu, X. Li et al., Solid additive dual-regulates spectral response enabling high-performance semitransparent organic solar cells. Adv. Mater. 36, 2308750 (2024). https://doi.org/10.1002/adma.202308750
D. Wang, R. Qin, G. Zhou, X. Li, R. Xia et al., High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32, 2001621 (2020). https://doi.org/10.1002/adma.202001621
Z. Hu, J. Wang, Z. Wang, W. Gao, Q. An et al., Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance. Nano Energy 55, 424 (2019). https://doi.org/10.1016/j.nanoen.2018.11.010
H. Shi, R. Xia, G. Zhang, H. Yip, Y. Cao, Spectral engineering of semitransparent polymer solar cells for greenhouse applications. Adv. Energy Mater. 9, 1803438 (2019). https://doi.org/10.1002/aenm.201803438
Y. Xie, L. Huo, B. Fan, H. Fu, Y. Cai et al., High-performance semitransparent ternary organic solar cells. Adv. Funct. Mater. 28, 1800627 (2018). https://doi.org/10.1002/adfm.201800627
M.F. Albab, M. Jahandar, Y.H. Kim, Y.-K. Kim, M. Shin et al., High-performance semi-transparent organic solar cells driven by the dipole-controlled optoelectrical response of bilateral self-assembled monolayer strategy. Nano Energy 121, 109219 (2024). https://doi.org/10.1016/j.nanoen.2023.109219
D. Xie, Y. Zhang, X. Yuan, Y. Li, F. Huang et al., A 2.20 eV bandgap polymer donor for efficient colorful semitransparent organic solar cells. Adv. Funct. Mater. 33, 2212601 (2023). https://doi.org/10.1002/adfm.202212601
X. Xu, Q. Wei, Z. Zhou, H. He, J. Tian et al., Efficient semitransparent organic solar cells with CRI over 90% enabled by an ultralow-bandgap A-DA’D-A small molecule acceptor. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305017
L. Xiao, G. Huang, H. Zhang, X. Zhang, Y. Li et al., Light managements and transparent electrodes for semitransparent organic and perovskite solar cells. Sol. RRL 6, 2100818 (2022). https://doi.org/10.1002/solr.202100818
K. Khandelwal, S. Biswas, G.D. Sharma, Advancing multifunctional semitransparent organic solar cells through strategic optical layer integration. ACS Appl. Energy Mater. 7, 7085 (2024). https://doi.org/10.1021/acsaem.4c01493
Y. Li, W. Song, J. Zhang, X. Zhang, Z. Ge, High-performance and mechanically durable semi-transparent organic solar cells with highly transparent active layers. Sci. China Mater. 66, 1719 (2023). https://doi.org/10.1007/s40843-022-2332-9
J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue et al., Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 12, 2200453 (2022). https://doi.org/10.1002/aenm.202200453
M. Bates, C. Malhado, C. Yang, C.K. Herrera, R.R. Lunt, High efficiency transparent and semi-transparent photovoltaics based on a layer-by-layer deposition. Sol. RRL 7, 2200962 (2023). https://doi.org/10.1002/solr.202200962
S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800 (2002). https://doi.org/10.1038/nature01217
A.J. Nozik, Quantum dot solar cells. Physica E Low Dimens. Syst. Nanostruct. 14, 115 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0
G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford et al., Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180 (2006). https://doi.org/10.1038/nature04855
G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr et al., Colloidal quantum dot solar cells. Chem. Rev. 115, 12732 (2015). https://doi.org/10.1021/acs.chemrev.5b00063
N. Drolet, presented at 2012 MRS Spring Meeting & Exhibit. Organic photovoltaic: efficiency and lifetime challenges for commercial viability, San Francisco, CA, Moscone West Convention Center, April, 2012.
S. Liu, K. Xiong, K. Wang, G. Liang, M.-Y. Li et al., Efficiently passivated PbSe quantum dot solids for infrared photovoltaics. ACS Nano 15, 3376 (2021). https://doi.org/10.1021/acsnano.0c10373
X. Shen, A. Kamath, P. Guyot-Sionnest, Mid-infrared cascade intraband electroluminescence with HgSe–CdSe core–shell colloidal quantum dots. Nat. Photon. 17, 1042 (2023). https://doi.org/10.1038/s41566-023-01270-5
M. Liu, Y. Chen, C.-S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570, 96 (2019). https://doi.org/10.1038/s41586-019-1239-7
M. Liu, O. Voznyy, R. Sabatini, F.P. García De Arquer, R. Munir et al., Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258 (2017). https://doi.org/10.1038/nmat4800
J. Shi, F. Li, Y. Jin, C. Liu, B. Cohen-Kleinstein et al., In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. 132, 22414 (2020). https://doi.org/10.1002/ange.202010440
D. Chen, T. Wang, P. Kei Ko, J. Shi, M. Liu et al., Sterically controlled synthesis of amine-free CsPbBr3 nanoplatelets for stable, pure-blue light emission. Angew. Chem. Int. Ed. 63, e202317590 (2024). https://doi.org/10.1002/anie.202317590
M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach et al., Stability of quantum dot solar cells: a matter of (life)time. Adv. Energy Mater. 11, 2003457 (2021). https://doi.org/10.1002/aenm.202003457
D. Becker-Koch, M. Albaladejo-Siguan, V. Lami, F. Paulus, H. Xiang et al., Ligand dependent oxidation dictates the performance evolution of high efficiency PbS quantum dot solar cells. Sustain. Energy Fuels 4, 108 (2020). https://doi.org/10.1039/C9SE00602H
K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling et al., High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104 (2020). https://doi.org/10.1039/D0TA02743J
X. Zhang, G.E. Eperon, J. Liu, E.M.J. Johansson, Semitransparent quantum dot solar cell. Nano Energy 22, 70 (2016). https://doi.org/10.1016/j.nanoen.2016.01.006
C. Zhang, C. Ji, Y. Park, L.J. Guo, Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Adv. Opt. Mater. 9, 2001298 (2021). https://doi.org/10.1002/adom.202001298
X. Zhang, C. Hägglund, M.B. Johansson, K. Sveinbjörnsson, E.M.J. Johansson, Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Adv. Funct. Mater. 26, 1921 (2016). https://doi.org/10.1002/adfm.201504038
H. Tavakoli Dastjerdi, P. Qi, Z. Fan, M.M. Tavakoli, Cost-effective and semi-transparent PbS quantum dot solar cells using copper electrodes. ACS Appl. Mater. Interfaces 12, 818 (2020). https://doi.org/10.1021/acsami.9b18487
M.M. Tavakoli, M. Nasilowski, J. Zhao, M.G. Bawendi, J. Kong, Efficient semitransparent CsPbI3 quantum dots photovoltaics using a graphene electrode. Small Methods 3, 1900449 (2019). https://doi.org/10.1002/smtd.201900449
Y. Song, S. Chang, S. Gradecak, J. Kong, visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 6, 1600847 (2016). https://doi.org/10.1002/aenm.201600847
P. Bhatnagar, J. Hong, M. Patel, J. Kim, Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 91, 106676 (2022). https://doi.org/10.1016/j.nanoen.2021.106676
C.G. Núñez, W.T. Navaraj, E.O. Polat, R. Dahiya, Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27, 1606287 (2017). https://doi.org/10.1002/adfm.201606287
T.T. Nguyen, J. Kim, J. Yi, C.-P. Wong, High-performing UV photodetectors by thermal-coupling transparent photovoltaics. Nano Energy 100, 107504 (2022). https://doi.org/10.1016/j.nanoen.2022.107504
T.T. Nguyen, M. Patel, S. Kim, R.A. Mir, J. Yi et al., Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. J. Power. Sources 481, 228865 (2021). https://doi.org/10.1016/j.jpowsour.2020.228865
Y. Liu, J. Wang, F. Wang, Z. Cheng, Y. Fang et al., Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 12, 3360 (2021). https://doi.org/10.1038/s41467-021-23701-z
D.B. Ritzer, B. Abdollahi Nejand, M.A. Preciado-Ruiz, S. Gharibzadeh, H. Hu et al., Translucent perovskite photovoltaics for building integration. Energy Environ. Sci. (2023). https://doi.org/10.1039/D2EE04137E
C.S. Allardyce, C. Fankhauser, S.M. Zakeeruddin, M. Grätzel et al., The influence of greenhouse-integrated photovoltaics on crop production. Sol. Energy 155, 517 (2017). https://doi.org/10.1016/j.solener.2017.06.044
Y. Zhao, Z. Li, C. Deger, M. Wang, M. Peric et al., Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics. Nat. Sustain. 6, 539 (2023). https://doi.org/10.1038/s41893-023-01071-2
E.J. Stallknecht, C.K. Herrera, C. Yang, I. King, T.D. Sharkey et al., Designing plant–transparent agrivoltaics. Sci. Rep. 13, 1903 (2023). https://doi.org/10.1038/s41598-023-28484-5
M.E. Loik, S.A. Carter, G. Alers, C.E. Wade, D. Shugar et al., Wavelength-selective solar photovoltaic systems: powering greenhouses for plant growth at the food-energy-water nexus. Earth’s Future 5, 1044 (2017). https://doi.org/10.1002/2016EF000531
Y. Liu, P. Cheng, T. Li, R. Wang, Y. Li et al., Unraveling sunlight by transparent organic semiconductors toward photovoltaic and photosynthesis. ACS Nano 13, 1071 (2019). https://doi.org/10.1021/acsnano.8b08577
X. Meng, D. Zhang, P. Feng, N. Hu, Review on mechanical behavior of solar cells for building integrated photovoltaics. Sustain. Struct. 1, 9 (2021). https://doi.org/10.54113/j.sust.2021.000009
C. Fankhauser, A. Batschauer, Shadow on the plant: a strategy to exit. Cell 164, 15 (2016). https://doi.org/10.1016/j.cell.2015.12.043
R. Waller, M. Kacira, E. Magadley, M. Teitel, I. Yehia, Semi-transparent organic photovoltaics applied as greenhouse shade for spring and summer tomato production in arid climate. Agronomy 11, 1152 (2021). https://doi.org/10.3390/agronomy11061152
W. Song, J. Ge, L. Xie, Z. Chen, Q. Ye et al., Semi-transparent organic photovoltaics for agrivoltaic applications. Nano Energy 116, 108805 (2023). https://doi.org/10.1016/j.nanoen.2023.108805
S.-Y. Chang, P. Cheng, G. Li, Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2, 1039 (2018). https://doi.org/10.1016/j.joule.2018.04.005
S. Jinnai, A. Oi, T. Seo, T. Moriyama, M. Terashima et al., Green-light wavelength-selective organic solar cells based on poly(3-hexylthiophene) and naphthobisthiadiazole-containing acceptors toward agrivoltaics. ACS Sustain. Chem. Eng. 11, 1548 (2023). https://doi.org/10.1021/acssuschemeng.2c06426
M. Patel, J.H. Seo, T.T. Nguyen, J. Kim, Active energy-controlling windows incorporating transparent photovoltaics and an integrated transparent heater. Cell Rep. Phys. Sci. 2, 100591 (2021). https://doi.org/10.1016/j.xcrp.2021.100591
J.H. Jeong, M. Jahandar, A. Prasetio, J.M. Kim, J.H. Kim et al., Multi-dimensional interfacial engineering for a practical large-area transparent flexible organic photovoltaics. Chem. Eng. J. 419, 129672 (2021). https://doi.org/10.1016/j.cej.2021.129672
Y. Xia, X. Liang, Y. Jiang, S. Wang, Y. Qi et al., High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells. Adv. Energy Mater. 9, 1900720 (2019). https://doi.org/10.1002/aenm.201900720
P. Bhatnagar, T.T. Nguyen, S. Kim, J.H. Seo, M. Patel et al., Transparent photovoltaic memory for neuromorphic device. Nanoscale 13, 5243 (2021). https://doi.org/10.1039/D0NR08966D
M. Kumar, J. Lim, H. Seo, Highly transparent reconfigurable non-volatile multilevel optoelectronic memory for integrated self-powered brain-inspired perception. Nano Energy 89, 106471 (2021). https://doi.org/10.1016/j.nanoen.2021.106471
X. Wu, S. Shi, B. Liang, Y. Dong, R. Yang et al., Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10, eadn4524 (2024). https://doi.org/10.1126/sciadv.adn4524
M. Cellura, L.Q. Luu, F. Guarino, S. Longo, A review on life cycle environmental impacts of emerging solar cells. Sci. Total. Environ. 908, 168019 (2024). https://doi.org/10.1016/j.scitotenv.2023.168019
X. Lu, D. Yan, J. Feng, M. Li, B. Hou et al., Ecotoxicity and sustainability of emerging Pb-based photovoltaics. Sol. RRL 6, 2200699 (2022). https://doi.org/10.1002/solr.202200699
J. Li, H.-L. Cao, W.-B. Jiao, Q. Wang, M. Wei et al., Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020). https://doi.org/10.1038/s41467-019-13910-y