Nano-/Micro-confined Water in Graphene Hydrogel as Superadsorbents for Water Purification
Corresponding Author: Jie Ma
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 2
Abstract
Confined water has been proven to be of great importance due to its pervasiveness and contribution to life and many fields of scientific research. However, the control and characterization of confined water are a challenge. Herein, a confined space is constructed by flexibly changing the pH of a graphene oxide dispersion under the self-assembly process of a graphene hydrogel (GH), and the confined space is adjusted with variation from 10.04 to 3.52 nm. Confined water content in GH increases when the pore diameter of the confined space decreases; the corresponding adsorption capacity increases from 243.04 to 442.91 mg g−1. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy and Raman spectroscopy are utilized to analyze the hydrogen bonding structure qualitatively and quantitatively, and correlation analysis reveals that the improvement in the adsorption capacity is caused by incomplete hydrogen bonding in the confined water. Further, confined water is assembled into four typical porous commercial adsorbents, and a remarkable enhancement of the adsorption capacity is achieved. This research demonstrates the application potential for the extraordinary properties of confined water and has implications for the development of highly effective confined water-modified adsorbents.
Highlights
1 Confined space/water in graphene hydrogel was constructed and controlled.
2 Adsorption capacity of porous adsorbents was enhanced by filling confined water.
3 Incomplete hydrogen bonding in confined water contributes to adsorption.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhang, H. Qian, H. Wu, J. Chen, L. Qiao, Multivariate analysis of confined groundwater hydrochemistry of a long-exploited sedimentary basin in northwest china. J. Chem. 1, 3812125 (2016). https://doi.org/10.1155/2016/3812125
- S. Toda, S. Shigeto, Hydrogen bonded structures of confined water molecules and electric field induced shift of their equilibrium revealed by IR electroabsorption spectroscopy. J. Phys. Chem. B 121, 5573–5581 (2017). https://doi.org/10.1021/acs.jpcb.7b02171
- M.F. Chaplin, Structuring and behaviour of water in nanochannels and confined spaces, in Adsorption and Phase Behaviour in Nanochannels and Nanotubes. (Springer, Dordrecht, 2010), pp. 241–255
- Google Scholar
- N. Kastelowitz, V. Molinero, Ice-liquid oscillations in nanoconfined water. ACS Nano 12, 8234–8239 (2018). https://doi.org/10.1021/acsnano.8b03403
- H. Qiu, M. Xue, C. Shen, W. Guo, Anomalous cation diffusion in salt-doped confined bilayer ice. Nanoscale 10, 8962–8968 (2018). https://doi.org/10.1039/C8NR01301B
- S. Chakraborty, H. Kumar, C. Dasgupta, P.K. Maiti, Confined water: structure, dynamics, and thermodynamics. Acc Chem. Res. 50, 2139–2146 (2017). https://doi.org/10.1021/acs.accounts.6b00617
- M. Weik, Low-temperature behavior of water confined by biological macromolecules and its relation to protein dynamics. Eur. Phys. J. E 12, 153–158 (2003). https://doi.org/10.1140/epje/i2003-10043-5
- K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12, 267 (2017). https://doi.org/10.1038/nnano.2016.254
- J. Muscatello, F. Jaeger, O.K. Matar, E.A. Mueller, Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics. ACS Appl. Mater. Interfaces 8, 12330–12336 (2016). https://doi.org/10.1021/acsami.5b12112
- Y.R. Sun, F. Yu, J. Ma, Research progress of nanoconfined water. Acta Phys.-Chim. Sin. 33, 2173–2183 (2017). https://doi.org/10.3866/PKU.WHXB201705312
- G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015). https://doi.org/10.1038/nature14295
- B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan et al., Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016). https://doi.org/10.1038/nature19363
- J. Ma, Y. Ma, F. Yu, in Nanotechnology for Sustainable Water Resources, ed. by A.K. Mishra, C.M. Hussain (Wiley, 2018). https://doi.org/10.1002/9781119323655.ch11
- Google Scholar
- X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 113, 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
- M. Zhao, X. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores. J. Phys. Chem. C 119, 21664–21673 (2015). https://doi.org/10.1021/acs.jpcc.5b03307
- Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas, Dynamics of ice/water confined in nanoporous alumina. J. Phys. Chem. B 119, 14814–14820 (2015). https://doi.org/10.1021/acs.jpcb.5b08751
- N.E. Levinger, Water in confinement. Science 298, 1722–1723 (2002). https://doi.org/10.1126/science.1079322
- F. Mozaffari, A molecular dynamics simulation study of the effect of water-graphene interaction on the properties of confined water. Mol. Simul. 42, 1475–1484 (2016). https://doi.org/10.1080/08927022.2016.1204659
- J. Marti, J. Sala, E. Guardia, M.C. Gordillo, Molecular dynamics simulations of supercritical water confined within a carbon-slit pore. Phys. Rev. E 79, 031606 (2009). https://doi.org/10.1103/PhysRevE.79.031606
- J. Swenson, H. Jansson, R. Bergman, Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett. 96, 247802 (2006). https://doi.org/10.1103/PhysRevLett.96.247802
- X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23, 2833–2838 (2011). https://doi.org/10.1002/adma.201100261
- J. Ma, Y. Sun, M. Zhang, M. Yang, X. Gong, F. Yu, J. Zheng, Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption. Environ. Sci. Technol. 51, 12283–12292 (2017). https://doi.org/10.1021/acs.est.7b02227
- X.-H. Zhu, C.-X. Yang, X.-P. Yan, Metal-organic framework-801 for efficient removal of fluoride from water. Microp. Mesop. Mater. 259, 163–170 (2018). https://doi.org/10.1016/j.micromeso.2017.10.001
- A.W. Marczewski, Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl. Surf. Sci. 256, 5145–5152 (2010). https://doi.org/10.1016/j.apsusc.2009.12.078
- S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 186, 29–34 (2012). https://doi.org/10.1016/j.cattod.2011.08.020
- C.d.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F. Caicedo Chaguezac, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana). Environ. Sci. Pollut. Res. 26, 4690–4702 (2019). https://doi.org/10.1007/s11356-018-3954-2
- N. Genc, E.C. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin. Water Treat. 53, 785–793 (2015). https://doi.org/10.1080/19443994.2013.842504
- L. Huang, M. Wang, C. Shi, J. Huang, B. Zhang, Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalin. Water Treat. 52, 2678–2687 (2014). https://doi.org/10.1080/19443994.2013.833873
- S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 45, 4583–4591 (2011). https://doi.org/10.1016/j.watres.2011.06.008
- D. Wu, C. Nie, J. Xu, C. Zhao, F. Tan et al., Enhancement of ciprofloxacin removal by modifying activated carbon (AC-S) derived from corn stalks with novel silage pre-treatment. Desalin. Water Treat. 87, 268–276 (2017). https://doi.org/10.5004/dwt.2017.21261
- M.C. Gordillo, J. Marti, Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 329, 341–345 (2000). https://doi.org/10.1016/S0009-2614(00)01032-0
- C.-K. Sun, B. You, Y.-R. Huang, K.-H. Liu, S. Sato, A. Irisawa, M. Imamura, C.-Y. Mou, Pore-size dependent THz absorption of nano-confined water. Opt. Lett. 40, 2731–2734 (2015). https://doi.org/10.1364/OL.40.002731
- M.S. Fernandez, F.M. Peeters, M. Neek-Amal, Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 045436 (2016). https://doi.org/10.1103/PhysRevB.94.045436
- J. Ma, C. Li, F. Yu, J. Chen, “Brick-like” N-doped graphene/carbon nanotube structure forming three-dimensional films as high performance metal-free counter electrodes in dye-sensitized solar cells. J. Power Sour. 273, 1048–1055 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.003
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep.-Rev. Sect. Phys. Lett. 473, 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
- S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006). https://doi.org/10.1016/j.carbon.2006.06.004
- L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014). https://doi.org/10.1016/j.elspec.2014.07.003
- G.H. Findenegg, S. Jaehnert, D. Akcakayiran, A. Schreiber, Freezing and melting of water confined in silica nanopores. ChemPhysChem 9, 2651–2659 (2008). https://doi.org/10.1002/cphc.200800616
- D. Kojic, R. Tsenkova, K. Tomobe, K. Yasuoka, M. Yasui, Water confined in the local field of ions. ChemPhysChem 15, 4077–4086 (2014). https://doi.org/10.1002/cphc.201402381
- S.D. Bernardina, E. Paineau, J.-B. Brubach, P. Judeinstein, S. Rouziere, P. Launois, P. Roy, Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy. J. Am. Chem. Soc. 138, 10437–10443 (2016). https://doi.org/10.1021/jacs.6b02635
- N. Goldman, R.J. Saykally, Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces. J. Chem. Phys. 120, 4777–4789 (2004). https://doi.org/10.1063/1.1645777
- P.A. Giguere, The bifurcated hydrogen-bond model of water and amorphous ice. J. Chem. Phys. 87, 4835–4839 (1987). https://doi.org/10.1063/1.452845
- V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, New insight on the hydrogen bonding structures of nanoconfined water: a Raman study. J. Raman Spectrosc. 39, 244–249 (2008). https://doi.org/10.1002/jrs.1857
- V. Crupi, A. Fontana, D. Majolino, A. Mele, L. Melone et al., Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel. J. Incl. Phenom. Macrocycl. Chem. 80, 69–75 (2014). https://doi.org/10.1007/s10847-014-0387-5
- C.M. Santos, M.C.R. Tria, R.A.M.V. Vergara, F. Ahmed, R.C. Advincula, D.F. Rodrigues, Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem. Commun. 47, 8892–8894 (2011). https://doi.org/10.1039/C1CC11877C
- J. Liu, W. Yang, L. Tao, D. Li, C. Boyer, T.P. Davis, Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J. Polym. Sci. A-Polym. Chem. 48, 425–433 (2010). https://doi.org/10.1002/pola.23802
- F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109, 035701 (2012). https://doi.org/10.1103/PhysRevLett.109.035701
- J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep. 5, 13578 (2015). https://doi.org/10.1038/srep13578
- J. Ma, Y. Sun, F. Yu, Self-assembly and controllable synthesis of graphene hydrogel adsorbents with enhanced removal of ciprofloxacin from aqueous solutions. RSC Adv. 6, 83982–83993 (2016). https://doi.org/10.1039/C6RA19474E
References
X. Zhang, H. Qian, H. Wu, J. Chen, L. Qiao, Multivariate analysis of confined groundwater hydrochemistry of a long-exploited sedimentary basin in northwest china. J. Chem. 1, 3812125 (2016). https://doi.org/10.1155/2016/3812125
S. Toda, S. Shigeto, Hydrogen bonded structures of confined water molecules and electric field induced shift of their equilibrium revealed by IR electroabsorption spectroscopy. J. Phys. Chem. B 121, 5573–5581 (2017). https://doi.org/10.1021/acs.jpcb.7b02171
M.F. Chaplin, Structuring and behaviour of water in nanochannels and confined spaces, in Adsorption and Phase Behaviour in Nanochannels and Nanotubes. (Springer, Dordrecht, 2010), pp. 241–255
Google Scholar
N. Kastelowitz, V. Molinero, Ice-liquid oscillations in nanoconfined water. ACS Nano 12, 8234–8239 (2018). https://doi.org/10.1021/acsnano.8b03403
H. Qiu, M. Xue, C. Shen, W. Guo, Anomalous cation diffusion in salt-doped confined bilayer ice. Nanoscale 10, 8962–8968 (2018). https://doi.org/10.1039/C8NR01301B
S. Chakraborty, H. Kumar, C. Dasgupta, P.K. Maiti, Confined water: structure, dynamics, and thermodynamics. Acc Chem. Res. 50, 2139–2146 (2017). https://doi.org/10.1021/acs.accounts.6b00617
M. Weik, Low-temperature behavior of water confined by biological macromolecules and its relation to protein dynamics. Eur. Phys. J. E 12, 153–158 (2003). https://doi.org/10.1140/epje/i2003-10043-5
K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12, 267 (2017). https://doi.org/10.1038/nnano.2016.254
J. Muscatello, F. Jaeger, O.K. Matar, E.A. Mueller, Optimizing water transport through graphene-based membranes: insights from nonequilibrium molecular dynamics. ACS Appl. Mater. Interfaces 8, 12330–12336 (2016). https://doi.org/10.1021/acsami.5b12112
Y.R. Sun, F. Yu, J. Ma, Research progress of nanoconfined water. Acta Phys.-Chim. Sin. 33, 2173–2183 (2017). https://doi.org/10.3866/PKU.WHXB201705312
G. Algara-Siller, O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser, H.A. Wu, A.K. Geim, I.V. Grigorieva, Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015). https://doi.org/10.1038/nature14295
B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan et al., Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016). https://doi.org/10.1038/nature19363
J. Ma, Y. Ma, F. Yu, in Nanotechnology for Sustainable Water Resources, ed. by A.K. Mishra, C.M. Hussain (Wiley, 2018). https://doi.org/10.1002/9781119323655.ch11
Google Scholar
X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 113, 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
M. Zhao, X. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores. J. Phys. Chem. C 119, 21664–21673 (2015). https://doi.org/10.1021/acs.jpcc.5b03307
Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas, Dynamics of ice/water confined in nanoporous alumina. J. Phys. Chem. B 119, 14814–14820 (2015). https://doi.org/10.1021/acs.jpcb.5b08751
N.E. Levinger, Water in confinement. Science 298, 1722–1723 (2002). https://doi.org/10.1126/science.1079322
F. Mozaffari, A molecular dynamics simulation study of the effect of water-graphene interaction on the properties of confined water. Mol. Simul. 42, 1475–1484 (2016). https://doi.org/10.1080/08927022.2016.1204659
J. Marti, J. Sala, E. Guardia, M.C. Gordillo, Molecular dynamics simulations of supercritical water confined within a carbon-slit pore. Phys. Rev. E 79, 031606 (2009). https://doi.org/10.1103/PhysRevE.79.031606
J. Swenson, H. Jansson, R. Bergman, Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett. 96, 247802 (2006). https://doi.org/10.1103/PhysRevLett.96.247802
X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23, 2833–2838 (2011). https://doi.org/10.1002/adma.201100261
J. Ma, Y. Sun, M. Zhang, M. Yang, X. Gong, F. Yu, J. Zheng, Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption. Environ. Sci. Technol. 51, 12283–12292 (2017). https://doi.org/10.1021/acs.est.7b02227
X.-H. Zhu, C.-X. Yang, X.-P. Yan, Metal-organic framework-801 for efficient removal of fluoride from water. Microp. Mesop. Mater. 259, 163–170 (2018). https://doi.org/10.1016/j.micromeso.2017.10.001
A.W. Marczewski, Application of mixed order rate equations to adsorption of methylene blue on mesoporous carbons. Appl. Surf. Sci. 256, 5145–5152 (2010). https://doi.org/10.1016/j.apsusc.2009.12.078
S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, P. Serp, J.L. Figueiredo, Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 186, 29–34 (2012). https://doi.org/10.1016/j.cattod.2011.08.020
C.d.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F. Caicedo Chaguezac, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana). Environ. Sci. Pollut. Res. 26, 4690–4702 (2019). https://doi.org/10.1007/s11356-018-3954-2
N. Genc, E.C. Dogan, Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin. Water Treat. 53, 785–793 (2015). https://doi.org/10.1080/19443994.2013.842504
L. Huang, M. Wang, C. Shi, J. Huang, B. Zhang, Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalin. Water Treat. 52, 2678–2687 (2014). https://doi.org/10.1080/19443994.2013.833873
S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 45, 4583–4591 (2011). https://doi.org/10.1016/j.watres.2011.06.008
D. Wu, C. Nie, J. Xu, C. Zhao, F. Tan et al., Enhancement of ciprofloxacin removal by modifying activated carbon (AC-S) derived from corn stalks with novel silage pre-treatment. Desalin. Water Treat. 87, 268–276 (2017). https://doi.org/10.5004/dwt.2017.21261
M.C. Gordillo, J. Marti, Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 329, 341–345 (2000). https://doi.org/10.1016/S0009-2614(00)01032-0
C.-K. Sun, B. You, Y.-R. Huang, K.-H. Liu, S. Sato, A. Irisawa, M. Imamura, C.-Y. Mou, Pore-size dependent THz absorption of nano-confined water. Opt. Lett. 40, 2731–2734 (2015). https://doi.org/10.1364/OL.40.002731
M.S. Fernandez, F.M. Peeters, M. Neek-Amal, Electric-field-induced structural changes in water confined between two graphene layers. Phys. Rev. B 94, 045436 (2016). https://doi.org/10.1103/PhysRevB.94.045436
J. Ma, C. Li, F. Yu, J. Chen, “Brick-like” N-doped graphene/carbon nanotube structure forming three-dimensional films as high performance metal-free counter electrodes in dye-sensitized solar cells. J. Power Sour. 273, 1048–1055 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.003
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep.-Rev. Sect. Phys. Lett. 473, 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44, 3342–3347 (2006). https://doi.org/10.1016/j.carbon.2006.06.004
L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014). https://doi.org/10.1016/j.elspec.2014.07.003
G.H. Findenegg, S. Jaehnert, D. Akcakayiran, A. Schreiber, Freezing and melting of water confined in silica nanopores. ChemPhysChem 9, 2651–2659 (2008). https://doi.org/10.1002/cphc.200800616
D. Kojic, R. Tsenkova, K. Tomobe, K. Yasuoka, M. Yasui, Water confined in the local field of ions. ChemPhysChem 15, 4077–4086 (2014). https://doi.org/10.1002/cphc.201402381
S.D. Bernardina, E. Paineau, J.-B. Brubach, P. Judeinstein, S. Rouziere, P. Launois, P. Roy, Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy. J. Am. Chem. Soc. 138, 10437–10443 (2016). https://doi.org/10.1021/jacs.6b02635
N. Goldman, R.J. Saykally, Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces. J. Chem. Phys. 120, 4777–4789 (2004). https://doi.org/10.1063/1.1645777
P.A. Giguere, The bifurcated hydrogen-bond model of water and amorphous ice. J. Chem. Phys. 87, 4835–4839 (1987). https://doi.org/10.1063/1.452845
V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo, V. Venuti, New insight on the hydrogen bonding structures of nanoconfined water: a Raman study. J. Raman Spectrosc. 39, 244–249 (2008). https://doi.org/10.1002/jrs.1857
V. Crupi, A. Fontana, D. Majolino, A. Mele, L. Melone et al., Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel. J. Incl. Phenom. Macrocycl. Chem. 80, 69–75 (2014). https://doi.org/10.1007/s10847-014-0387-5
C.M. Santos, M.C.R. Tria, R.A.M.V. Vergara, F. Ahmed, R.C. Advincula, D.F. Rodrigues, Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem. Commun. 47, 8892–8894 (2011). https://doi.org/10.1039/C1CC11877C
J. Liu, W. Yang, L. Tao, D. Li, C. Boyer, T.P. Davis, Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J. Polym. Sci. A-Polym. Chem. 48, 425–433 (2010). https://doi.org/10.1002/pola.23802
F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109, 035701 (2012). https://doi.org/10.1103/PhysRevLett.109.035701
J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Sci. Rep. 5, 13578 (2015). https://doi.org/10.1038/srep13578
J. Ma, Y. Sun, F. Yu, Self-assembly and controllable synthesis of graphene hydrogel adsorbents with enhanced removal of ciprofloxacin from aqueous solutions. RSC Adv. 6, 83982–83993 (2016). https://doi.org/10.1039/C6RA19474E