Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination
Corresponding Author: Fei Yu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 143
Abstract
Despite the promising potential of transition metal oxides (TMOs) as capacitive deionization (CDI) electrodes, the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity, posing a major obstacle. Herein, we prepared the kinetically favorable ZnxNi1 − xO electrode in situ growth on carbon felt (ZnxNi1 − xO@CF) through constraining the rate of OH− generation in the hydrothermal method. ZnxNi1 − xO@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores, benefitting the ion transport/electron transfer. And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites, actual activity of redox-active Ni species, and lower adsorption energy, promoting the adsorption kinetic and thermodynamic of the Zn0.2Ni0.8O@CF. Benefitting from the kinetic-thermodynamic facilitation mechanism, Zn0.2Ni0.8O@CF achieved ultrahigh desalination capacity (128.9 mgNaCl g−1), ultra-low energy consumption (0.164 kW h kgNaCl−1), high salt removal rate (1.21 mgNaCl g−1 min−1), and good cyclability. The thermodynamic facilitation and Na+ intercalation mechanism of Zn0.2Ni0.8O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring, respectively. This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping, which is redox-inert, is essential for enhancing the electrochemical performance of CDI electrodes.
Highlights:
1 Through facial basicity adjustment, kinetically favorable ZnxNi1-xO@CF electrode was formed with a high density hierarchical structure and three dimensional open pores.
2 The optimal Zn-doping ratio in ZnxNi1-xO@CF has excellent sodium storage and desalination performance (128.9 mg g-1).
3 The mechanism of Na+ intercalation process was studied by electrochemical quartz crystal microbalance with dissipation monitoring in situ test and the activation mechanism of redox-inert Zn-doping on electrode materials was reported.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Metzger, M.M. Besli, S. Kuppan, S. Hellstrom, S. Kim et al., Techno-economic analysis of capacitive and intercalative water deionization. Energy Environ. Sci. 13, 1544–1560 (2020). https://doi.org/10.1039/D0EE00725K
- P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020). https://doi.org/10.1038/s41578-020-0193-1
- C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
- X. Zhao, H. Wei, H. Zhao, Y. Wang, N. Tang, Electrode materials for capacitive deionization: a review. J. Electroanal. Chem. 873, 114416 (2020). https://doi.org/10.1016/j.jelechem.2020.114416
- W. Tang, D. He, C. Zhang, P. Kovalsky, T.D. Waite, Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 120, 229–237 (2017). https://doi.org/10.1016/j.watres.2017.05.009
- J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683–3689 (2014). https://doi.org/10.1039/C4EE02378A
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
- Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14, 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
- Z. Liu, H. Li, Exploration of the exceptional capacitive deionization performance of CoMn2O4 microspheres electrode. Energy Environ. Mater. 6, 12255 (2023). https://doi.org/10.1002/eem2.12255
- S. Wang, G. Wang, T. Wu, C. Li, Y. Wang et al., Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal. Environ. Sci. Technol. 53, 6292–6301 (2019). https://doi.org/10.1021/acs.est.9b00662
- J. Ma, Y. Xiong, X. Dai, F. Yu, Zinc spinel ferrite nanops as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability. Environ. Sci. Technol. Lett. 7, 118–125 (2020). https://doi.org/10.1021/acs.estlett.0c00027
- M. Liang, X. Bai, F. Yu, J. Ma, A confinement strategy to in situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 14, 684–691 (2021). https://doi.org/10.1007/s12274-020-3097-x
- F. Yu, H. Yin, X. Bai, J. Pan, X. Zhang et al., Cu@Cu2O/carbon for efficient desalination in capacitive deionization. Chin. Chem. Lett. 34, 108362 (2023). https://doi.org/10.1016/j.cclet.2023.108362
- X. Zhang, E.A. Toledo-Carrillo, D. Yu, J. Dutta, Effect of surface charge on the fabrication of hierarchical Mn-based Prussian blue analogue for capacitive desalination. ACS Appl. Mater. Interfaces 14, 40371–40381 (2022). https://doi.org/10.1021/acsami.2c08192
- W. Shi, X. Liu, T. Deng, S. Huang, M. Ding et al., Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with Prussian blue nanocrystals. Adv. Mater. 32, 1907404 (2020). https://doi.org/10.1002/adma.201907404
- J. Guo, Y. Wang, Y. Cai, H. Zhang, Y. Li et al., Ni-doping Cu-Prussian blue analogue/carbon nanotubes composite (Ni–CuPBA/CNTs) with 3D electronic channel-rich network structure for capacitive deionization. Desalination 528, 115622 (2022). https://doi.org/10.1016/j.desal.2022.115622
- J. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19, 823–828 (2019). https://doi.org/10.1021/acs.nanolett.8b04006
- S. Xing, Y. Cheng, F. Yu, J. Ma, Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity. J. Colloid Interface Sci. 598, 511–518 (2021). https://doi.org/10.1016/j.jcis.2021.04.051
- J. Lei, Y. Xiong, F. Yu, J. Ma, Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization. Chem. Eng. J. 437, 135381 (2022). https://doi.org/10.1016/j.cej.2022.135381
- M. Liang, L. Wang, V. Presser, X. Dai, F. Yu et al., Combining battery-type and pseudocapacitive charge storage in Ag/Ti3 C2 tx MXene electrode for capturing chloride ions with high capacitance and fast ion transport. Adv. Sci. 7, e2000621 (2020). https://doi.org/10.1002/advs.202000621
- X. Shen, Y. Xiong, R. Hai, F. Yu, J. Ma, All-MXene-based integrated membrane electrode constructed using Ti3C2Tx as an intercalating agent for high-performance desalination. Environ. Sci. Technol. 54, 4554–4563 (2020). https://doi.org/10.1021/acs.est.9b05759
- J. Zhang, J. Wang, F. Zhu, P. Mao, Z. Wu et al., Dispersing bentonite by electron beam irradiation and its orption performance of Cr(VI) in the aqueous solution. Water Air Soil Pollut. 233, 503 (2022). https://doi.org/10.1007/s11270-022-05980-4
- Y. Xiong, F. Yu, S. Arnold, L. Wang, V. Presser et al., Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability in capacitive deionization. Research 2021, 9754145 (2021). https://doi.org/10.34133/2021/9754145
- F. Yu, L. Wang, Y. Wang, X. Shen, Y. Cheng et al., Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999–16027 (2019). https://doi.org/10.1039/C9TA01264H
- X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
- Y. Li, J. Jiao, Q. Wu, Q. Song, W. Xie et al., Environmental applications of graphene oxide composite membranes. Chin. Chem. Lett. 33, 5001–5012 (2022). https://doi.org/10.1016/j.cclet.2022.01.034
- S. Chen, Q. Wen, Y. Zhu, Y. Ji, Y. Pu et al., Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. Chin. Chem. Lett. 33, 5101–5105 (2022). https://doi.org/10.1016/j.cclet.2022.04.022
- X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao et al., Constructing a CeO2/ZnxCd1−xIn2S4 S-scheme hollow heterostructure for efficient photocatalytic H2 evolution. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202302017
- Y. Chen, C. Chen, X. Cao, Z. Wang, N. Zhang et al., Recent advances in defect and interface engineering for electroreduction of CO2 and N2. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202212053
- W. Jiang, H. Jiang, W. Liu, X. Guan, Y. Li et al., Pickering emulsion templated proteinaceous microsphere with bio-stimuli responsiveness. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202301041
- X. Wang, Y. Cheng, G. Xue, Z. Zhou, M. Zhao et al., Giant enhancement of optical second harmonic generation in hollow-core fiber integrated with GaSe nanoflakes. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202212028
- Y. Xiong, F. Yu, J. Ma, Research progress in chlorine ion removal electrodes for desalination by capacitive deionization. Acta Phys. Chim. Sin. 38, 2006037 (2020). https://doi.org/10.3866/pku.whxb202006037
- J. Mou, L. Chen, J. Fan, L. Zeng, X. Jiang et al., Construction of a highly active Rh/CeO2-ZrO2-Al2O3 catalyst based on Rh micro-chemical state regulation and its three-way catalytic activity. Acta Phys. Chim. Sin. 39, 2302041 (2023). https://doi.org/10.3866/pku.whxb202302041
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). https://doi.org/10.1039/C1EE01782A
- A. Ali, M. Ammar, A. Mukhtar, T. Ahmed, M. Ali et al., 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 857, 113710 (2020). https://doi.org/10.1016/j.jelechem.2019.113710
- B. Gnana Sundara Raj et al., Pseudocapacitive properties of nickel oxide nanops synthesized via ultrasonication approach. Ionics 26, 953–960 (2020). https://doi.org/10.1007/s11581-019-03236-6
- C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19, 5772–5777 (2009). https://doi.org/10.1039/B902221J
- L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage. Adv. Funct. Mater. 29, 1906680 (2019). https://doi.org/10.1002/adfm.201906680
- L. Fang, Z. Lan, W. Guan, P. Zhou, N. Bahlawane et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 18, 107–113 (2019). https://doi.org/10.1016/j.ensm.2018.10.002
- X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanops electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10, 1757–1763 (2017). https://doi.org/10.1039/C7EE01628J
- M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007). https://doi.org/10.1021/ja0681927
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- S. Wang, Y. Zou, F. Xu, C. Xiang, H. Peng et al., Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors. J. Energy Storage 41, 102862 (2021). https://doi.org/10.1016/j.est.2021.102862
- J.A. Dawson, M.S. Islam, A nanoscale design approach for enhancing the Li-ion conductivity of the Li10GeP2S12 solid electrolyte. ACS Mater. Lett. 4, 424–431 (2022). https://doi.org/10.1021/acsmaterialslett.1c00766
- Z. Jia, R. Ding, W. Yu, Y. Li, A. Wang et al., Unraveling the charge storage and activity-enhancing mechanisms of Zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries. Adv. Funct. Mater. 32, 2107674 (2022). https://doi.org/10.1002/adfm.202107674
- S. Cao, Y. Li, Y. Tang, Y. Sun, W. Li et al., Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv. Mater. 35, e2301011 (2023). https://doi.org/10.1002/adma.202301011
- H. Zhou, G. Zhu, S. Dong, P. Liu, Y. Lu et al., Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 35, e2211523 (2023). https://doi.org/10.1002/adma.202211523
- X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface reorganization on electrochemically-induced Zn–Ni-co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 6492–6499 (2020). https://doi.org/10.1002/anie.202000690
- X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei et al., Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 26, 1889–1895 (2014). https://doi.org/10.1021/cm4040903
- J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019). https://doi.org/10.1016/j.nanoen.2018.12.011
- Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016). https://doi.org/10.1016/j.nanoen.2015.12.030
- S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 5, 1596–1603 (2013). https://doi.org/10.1021/am3021894
- X. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. Archer, Encapsulation and Ostwald ripening of Au and Au–Cl complex nanostructures in silica shells. Adv. Funct. Mater. 16, 1679–1684 (2006). https://doi.org/10.1002/adfm.200500909
- C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011). https://doi.org/10.1039/C0JM03749D
- T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart et al., Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Sci. Adv. 6, 0906 (2020). https://doi.org/10.1126/sciadv.aaz0906
- X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang et al., Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization. ACS Appl. Mater. Interfaces 12, 49586–49595 (2020). https://doi.org/10.1021/acsami.0c13503
- H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014). https://doi.org/10.1002/adfm.201301747
- Q. Pan, F. Zheng, D. Deng, B. Chen, Y. Wang, Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors. ACS Appl. Mater. Interfaces 13, 56692–56703 (2021). https://doi.org/10.1021/acsami.1c19320
- D. Li, S. Wang, G. Wang, C. Li, X. Che et al., Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination. ACS Appl. Mater. Interfaces 11, 31200–31209 (2019). https://doi.org/10.1021/acsami.9b10307
- B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34, e2103210 (2022). https://doi.org/10.1002/adma.202103210
- Q. Yin, D. Rao, G. Zhang, Y. Zhao, J. Han et al., CoFe–Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983 (2019). https://doi.org/10.1002/adfm.201900983
- S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
- J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013). https://doi.org/10.1021/nn4021955
- X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang et al., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011). https://doi.org/10.1039/C1EE01338F
- J. Guo, X. Xu, J.P. Hill, L. Wang, J. Dang et al., Graphene–carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 12, 10334–10340 (2021). https://doi.org/10.1039/D1SC00915J
- B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/D0TC00987C
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon et al., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015). https://doi.org/10.1039/C5EE00519A
- C. Zhang, D. Wang, Z. Wang, G. Zhang, Z. Liu et al., Boosting capacitive deionization performance of commercial carbon fibers cloth via structural regulation based on catalytic-etching effect. Energy Environ. Mater. 6, 12276 (2023). https://doi.org/10.1002/eem2.12276
- W. Lei, J. Liang, P. Tan, S. Yang, L. Fan et al., Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their orption properties. Int. J. Biol. Macromol. 222, 2054–2064 (2022). https://doi.org/10.1016/j.ijbiomac.2022.10.004
- R. Liu, Y. Wang, Y. Wu, X. Ye, W. Cai, Controllable synthesis of nickel–cobalt-doped Prussian blue analogs for capacitive desalination. Electrochim. Acta 442, 141815 (2023). https://doi.org/10.1016/j.electacta.2023.141815
- N. Liu, L. Yu, B. Liu, F. Yu, L. Li et al., Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization. Adv. Sci. 10, 2204041 (2023). https://doi.org/10.1002/advs.202204041
- H.-Y. Huang, Y.-H. Tu, Y.-H. Yang, Y.-T. Lu, C.-C. Hu, Dopant-designed conducting polymers for constructing a high-performance, electrochemical deionization system achieving low energy consumption and long cycle life. Chem. Eng. J. 457, 141373 (2023). https://doi.org/10.1016/j.cej.2023.141373
- J. Liang, J. Yu, W. Xing, W. Tang, N. Tang et al., 3D interconnected network architectures assembled from W18O49 and Ti3C2 MXene with excellent electrochemical properties and CDI performance. Chem. Eng. J. 435, 134922 (2022). https://doi.org/10.1016/j.cej.2022.134922
- Z. Bo, Z. Huang, C. Xu, Y. Chen, E. Wu et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Mater. 50, 395–406 (2022). https://doi.org/10.1016/j.ensm.2022.05.042
- Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered In-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528–26534 (2021). https://doi.org/10.1002/anie.202111823
- A. Amiri, Y. Chen, C. Bee Teng, M. Naraghi, Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 25, 731–739 (2020). https://doi.org/10.1016/j.ensm.2019.09.013
- H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017). https://doi.org/10.1038/nmat4810
- R. Niu, H. Li, Y. Ma, L. He, J. Li An, insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochim. Acta 176, 755–762 (2015). https://doi.org/10.1016/j.electacta.2015.07.012
- S. Wang, F. Li, A.D. Easley, J.L. Lutkenhaus, Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019). https://doi.org/10.1038/s41563-018-0215-1
- N. Shpigel, M.D. Levi, S. Sigalov, O. Girshevitz, D. Aurbach et al., In situ hydrodynamic spectroscopy for structure characterization of porous energy storageelectrodes. Nat. Mater. 15, 570–575 (2016). https://doi.org/10.1038/nmat4577
- P. Roach, D. Farrar, C.C. Perry, Interpretation of protein orption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005). https://doi.org/10.1021/ja042898o
- X. Sun, J. Sun, C. Wu, L. Guo, L. Hou et al., Unveiling composition/crystal structure-dependent electrochemical behaviors via experiments and first-principles calculations: rock-salt NiCoO2 vs. spinel Ni1.5Co1.5O4. Mater. Today Energy 19, 100592 (2021). https://doi.org/10.1016/j.mtener.2020.100592
- J. Yang, C. Yu, X. Fan, S. Liang, S. Li et al., Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016). https://doi.org/10.1039/C5EE03633J
- Z. Wang, Z. Zhao, Y. Zhang, X. Yang, X. Sun et al., Spatially self-confined formation of ultrafine NiCoO2 Nanops@Ultralong amorphous N-doped carbon nanofibers as an anode towards efficient capacitive Li+ storage. Chemistry 25, 863–873 (2019). https://doi.org/10.1002/chem.201804823
References
M. Metzger, M.M. Besli, S. Kuppan, S. Hellstrom, S. Kim et al., Techno-economic analysis of capacitive and intercalative water deionization. Energy Environ. Sci. 13, 1544–1560 (2020). https://doi.org/10.1039/D0EE00725K
P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020). https://doi.org/10.1038/s41578-020-0193-1
C. Chen, C.-S. Lee, Y. Tang, Fundamental understanding and optimization strategies for dual-ion batteries: a review. Nano-Micro Lett. 15, 121 (2023). https://doi.org/10.1007/s40820-023-01086-6
X. Zhao, H. Wei, H. Zhao, Y. Wang, N. Tang, Electrode materials for capacitive deionization: a review. J. Electroanal. Chem. 873, 114416 (2020). https://doi.org/10.1016/j.jelechem.2020.114416
W. Tang, D. He, C. Zhang, P. Kovalsky, T.D. Waite, Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 120, 229–237 (2017). https://doi.org/10.1016/j.watres.2017.05.009
J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7, 3683–3689 (2014). https://doi.org/10.1039/C4EE02378A
S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
Y. Jiang, L. Chai, D. Zhang, F. Ouyang, X. Zhou et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance. Nano-Micro Lett. 14, 176 (2022). https://doi.org/10.1007/s40820-022-00897-3
Z. Liu, H. Li, Exploration of the exceptional capacitive deionization performance of CoMn2O4 microspheres electrode. Energy Environ. Mater. 6, 12255 (2023). https://doi.org/10.1002/eem2.12255
S. Wang, G. Wang, T. Wu, C. Li, Y. Wang et al., Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal. Environ. Sci. Technol. 53, 6292–6301 (2019). https://doi.org/10.1021/acs.est.9b00662
J. Ma, Y. Xiong, X. Dai, F. Yu, Zinc spinel ferrite nanops as a pseudocapacitive electrode with ultrahigh desalination capacity and long-term stability. Environ. Sci. Technol. Lett. 7, 118–125 (2020). https://doi.org/10.1021/acs.estlett.0c00027
M. Liang, X. Bai, F. Yu, J. Ma, A confinement strategy to in situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 14, 684–691 (2021). https://doi.org/10.1007/s12274-020-3097-x
F. Yu, H. Yin, X. Bai, J. Pan, X. Zhang et al., Cu@Cu2O/carbon for efficient desalination in capacitive deionization. Chin. Chem. Lett. 34, 108362 (2023). https://doi.org/10.1016/j.cclet.2023.108362
X. Zhang, E.A. Toledo-Carrillo, D. Yu, J. Dutta, Effect of surface charge on the fabrication of hierarchical Mn-based Prussian blue analogue for capacitive desalination. ACS Appl. Mater. Interfaces 14, 40371–40381 (2022). https://doi.org/10.1021/acsami.2c08192
W. Shi, X. Liu, T. Deng, S. Huang, M. Ding et al., Enabling superior sodium capture for efficient water desalination by a tubular polyaniline decorated with Prussian blue nanocrystals. Adv. Mater. 32, 1907404 (2020). https://doi.org/10.1002/adma.201907404
J. Guo, Y. Wang, Y. Cai, H. Zhang, Y. Li et al., Ni-doping Cu-Prussian blue analogue/carbon nanotubes composite (Ni–CuPBA/CNTs) with 3D electronic channel-rich network structure for capacitive deionization. Desalination 528, 115622 (2022). https://doi.org/10.1016/j.desal.2022.115622
J. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19, 823–828 (2019). https://doi.org/10.1021/acs.nanolett.8b04006
S. Xing, Y. Cheng, F. Yu, J. Ma, Na3(VO)2(PO4)2F nanocuboids/graphene hybrid materials as faradic electrode for extra-high desalination capacity. J. Colloid Interface Sci. 598, 511–518 (2021). https://doi.org/10.1016/j.jcis.2021.04.051
J. Lei, Y. Xiong, F. Yu, J. Ma, Flexible self-supporting CoFe-LDH/MXene film as a chloride ions storage electrode in capacitive deionization. Chem. Eng. J. 437, 135381 (2022). https://doi.org/10.1016/j.cej.2022.135381
M. Liang, L. Wang, V. Presser, X. Dai, F. Yu et al., Combining battery-type and pseudocapacitive charge storage in Ag/Ti3 C2 tx MXene electrode for capturing chloride ions with high capacitance and fast ion transport. Adv. Sci. 7, e2000621 (2020). https://doi.org/10.1002/advs.202000621
X. Shen, Y. Xiong, R. Hai, F. Yu, J. Ma, All-MXene-based integrated membrane electrode constructed using Ti3C2Tx as an intercalating agent for high-performance desalination. Environ. Sci. Technol. 54, 4554–4563 (2020). https://doi.org/10.1021/acs.est.9b05759
J. Zhang, J. Wang, F. Zhu, P. Mao, Z. Wu et al., Dispersing bentonite by electron beam irradiation and its orption performance of Cr(VI) in the aqueous solution. Water Air Soil Pollut. 233, 503 (2022). https://doi.org/10.1007/s11270-022-05980-4
Y. Xiong, F. Yu, S. Arnold, L. Wang, V. Presser et al., Three-dimensional cobalt hydroxide hollow cube/vertical nanosheets with high desalination capacity and long-term performance stability in capacitive deionization. Research 2021, 9754145 (2021). https://doi.org/10.34133/2021/9754145
F. Yu, L. Wang, Y. Wang, X. Shen, Y. Cheng et al., Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 7, 15999–16027 (2019). https://doi.org/10.1039/C9TA01264H
X. He, Fundamental perspectives on the electrochemical water applications of metal–organic frameworks. Nano-Micro Lett. 15, 148 (2023). https://doi.org/10.1007/s40820-023-01124-3
Y. Li, J. Jiao, Q. Wu, Q. Song, W. Xie et al., Environmental applications of graphene oxide composite membranes. Chin. Chem. Lett. 33, 5001–5012 (2022). https://doi.org/10.1016/j.cclet.2022.01.034
S. Chen, Q. Wen, Y. Zhu, Y. Ji, Y. Pu et al., Boron-promoted reductive deoxygenation coupling reaction of sulfonyl chlorides for the C(sp3)-S bond construction. Chin. Chem. Lett. 33, 5101–5105 (2022). https://doi.org/10.1016/j.cclet.2022.04.022
X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao et al., Constructing a CeO2/ZnxCd1−xIn2S4 S-scheme hollow heterostructure for efficient photocatalytic H2 evolution. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202302017
Y. Chen, C. Chen, X. Cao, Z. Wang, N. Zhang et al., Recent advances in defect and interface engineering for electroreduction of CO2 and N2. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202212053
W. Jiang, H. Jiang, W. Liu, X. Guan, Y. Li et al., Pickering emulsion templated proteinaceous microsphere with bio-stimuli responsiveness. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202301041
X. Wang, Y. Cheng, G. Xue, Z. Zhou, M. Zhao et al., Giant enhancement of optical second harmonic generation in hollow-core fiber integrated with GaSe nanoflakes. Acta Phys. Chim. Sin. (2023). https://doi.org/10.3866/pku.whxb202212028
Y. Xiong, F. Yu, J. Ma, Research progress in chlorine ion removal electrodes for desalination by capacitive deionization. Acta Phys. Chim. Sin. 38, 2006037 (2020). https://doi.org/10.3866/pku.whxb202006037
J. Mou, L. Chen, J. Fan, L. Zeng, X. Jiang et al., Construction of a highly active Rh/CeO2-ZrO2-Al2O3 catalyst based on Rh micro-chemical state regulation and its three-way catalytic activity. Acta Phys. Chim. Sin. 39, 2302041 (2023). https://doi.org/10.3866/pku.whxb202302041
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore et al., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011). https://doi.org/10.1039/C1EE01782A
A. Ali, M. Ammar, A. Mukhtar, T. Ahmed, M. Ali et al., 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 857, 113710 (2020). https://doi.org/10.1016/j.jelechem.2019.113710
B. Gnana Sundara Raj et al., Pseudocapacitive properties of nickel oxide nanops synthesized via ultrasonication approach. Ionics 26, 953–960 (2020). https://doi.org/10.1007/s11581-019-03236-6
C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 19, 5772–5777 (2009). https://doi.org/10.1039/B902221J
L. Fang, C. Wang, L. Huangfu, N. Bahlawane, H. Tian et al., Enabling full conversion reaction with high reversibility to approach theoretical capacity for sodium storage. Adv. Funct. Mater. 29, 1906680 (2019). https://doi.org/10.1002/adfm.201906680
L. Fang, Z. Lan, W. Guan, P. Zhou, N. Bahlawane et al., Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 18, 107–113 (2019). https://doi.org/10.1016/j.ensm.2018.10.002
X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanops electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10, 1757–1763 (2017). https://doi.org/10.1039/C7EE01628J
M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima et al., Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007). https://doi.org/10.1021/ja0681927
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625
S. Wang, Y. Zou, F. Xu, C. Xiang, H. Peng et al., Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors. J. Energy Storage 41, 102862 (2021). https://doi.org/10.1016/j.est.2021.102862
J.A. Dawson, M.S. Islam, A nanoscale design approach for enhancing the Li-ion conductivity of the Li10GeP2S12 solid electrolyte. ACS Mater. Lett. 4, 424–431 (2022). https://doi.org/10.1021/acsmaterialslett.1c00766
Z. Jia, R. Ding, W. Yu, Y. Li, A. Wang et al., Unraveling the charge storage and activity-enhancing mechanisms of Zn-doping perovskite fluorides and engineering the electrodes and electrolytes for wide-temperature aqueous supercabatteries. Adv. Funct. Mater. 32, 2107674 (2022). https://doi.org/10.1002/adfm.202107674
S. Cao, Y. Li, Y. Tang, Y. Sun, W. Li et al., Space-confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv. Mater. 35, e2301011 (2023). https://doi.org/10.1002/adma.202301011
H. Zhou, G. Zhu, S. Dong, P. Liu, Y. Lu et al., Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 35, e2211523 (2023). https://doi.org/10.1002/adma.202211523
X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface reorganization on electrochemically-induced Zn–Ni-co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. Int. Ed. 59, 6492–6499 (2020). https://doi.org/10.1002/anie.202000690
X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei et al., Hierarchical ZnxCo3–xO4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 26, 1889–1895 (2014). https://doi.org/10.1021/cm4040903
J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019). https://doi.org/10.1016/j.nanoen.2018.12.011
Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang et al., A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core–shell nanoarrays. Nano Energy 20, 294–304 (2016). https://doi.org/10.1016/j.nanoen.2015.12.030
S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces 5, 1596–1603 (2013). https://doi.org/10.1021/am3021894
X. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. Archer, Encapsulation and Ostwald ripening of Au and Au–Cl complex nanostructures in silica shells. Adv. Funct. Mater. 16, 1679–1684 (2006). https://doi.org/10.1002/adfm.200500909
C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011). https://doi.org/10.1039/C0JM03749D
T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart et al., Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Sci. Adv. 6, 0906 (2020). https://doi.org/10.1126/sciadv.aaz0906
X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang et al., Enabling a large accessible surface area of a pore-designed hydrophilic carbon nanofiber fabric for ultrahigh capacitive deionization. ACS Appl. Mater. Interfaces 12, 49586–49595 (2020). https://doi.org/10.1021/acsami.0c13503
H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014). https://doi.org/10.1002/adfm.201301747
Q. Pan, F. Zheng, D. Deng, B. Chen, Y. Wang, Interlayer spacing regulation of NiCo-LDH nanosheets with ultrahigh specific capacity for battery-type supercapacitors. ACS Appl. Mater. Interfaces 13, 56692–56703 (2021). https://doi.org/10.1021/acsami.1c19320
D. Li, S. Wang, G. Wang, C. Li, X. Che et al., Facile fabrication of NiCoAl-layered metal oxide/graphene nanosheets for efficient capacitive deionization defluorination. ACS Appl. Mater. Interfaces 11, 31200–31209 (2019). https://doi.org/10.1021/acsami.9b10307
B. Peng, Y. Chen, F. Wang, Z. Sun, L. Zhao et al., Unusual site-selective doping in layered cathode strengthens electrostatic cohesion of alkali-metal layer for practicable sodium-ion full cell. Adv. Mater. 34, e2103210 (2022). https://doi.org/10.1002/adma.202103210
Q. Yin, D. Rao, G. Zhang, Y. Zhao, J. Han et al., CoFe–Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983 (2019). https://doi.org/10.1002/adfm.201900983
S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang et al., Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao et al., Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7, 6237–6243 (2013). https://doi.org/10.1021/nn4021955
X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang et al., Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011). https://doi.org/10.1039/C1EE01338F
J. Guo, X. Xu, J.P. Hill, L. Wang, J. Dang et al., Graphene–carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 12, 10334–10340 (2021). https://doi.org/10.1039/D1SC00915J
B. Zhao, R. Wang, Y. Li, Y. Ren, X. Li et al., Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J. Mater. Chem. C 8, 7401–7410 (2020). https://doi.org/10.1039/D0TC00987C
M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon et al., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015). https://doi.org/10.1039/C5EE00519A
C. Zhang, D. Wang, Z. Wang, G. Zhang, Z. Liu et al., Boosting capacitive deionization performance of commercial carbon fibers cloth via structural regulation based on catalytic-etching effect. Energy Environ. Mater. 6, 12276 (2023). https://doi.org/10.1002/eem2.12276
W. Lei, J. Liang, P. Tan, S. Yang, L. Fan et al., Preparation of edible starch nanomaterials for the separation of polyphenols from fruit pomace extract and determination of their orption properties. Int. J. Biol. Macromol. 222, 2054–2064 (2022). https://doi.org/10.1016/j.ijbiomac.2022.10.004
R. Liu, Y. Wang, Y. Wu, X. Ye, W. Cai, Controllable synthesis of nickel–cobalt-doped Prussian blue analogs for capacitive desalination. Electrochim. Acta 442, 141815 (2023). https://doi.org/10.1016/j.electacta.2023.141815
N. Liu, L. Yu, B. Liu, F. Yu, L. Li et al., Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization. Adv. Sci. 10, 2204041 (2023). https://doi.org/10.1002/advs.202204041
H.-Y. Huang, Y.-H. Tu, Y.-H. Yang, Y.-T. Lu, C.-C. Hu, Dopant-designed conducting polymers for constructing a high-performance, electrochemical deionization system achieving low energy consumption and long cycle life. Chem. Eng. J. 457, 141373 (2023). https://doi.org/10.1016/j.cej.2023.141373
J. Liang, J. Yu, W. Xing, W. Tang, N. Tang et al., 3D interconnected network architectures assembled from W18O49 and Ti3C2 MXene with excellent electrochemical properties and CDI performance. Chem. Eng. J. 435, 134922 (2022). https://doi.org/10.1016/j.cej.2022.134922
Z. Bo, Z. Huang, C. Xu, Y. Chen, E. Wu et al., Anion-kinetics-selective graphene anode and cation-energy-selective MXene cathode for high-performance capacitive deionization. Energy Storage Mater. 50, 395–406 (2022). https://doi.org/10.1016/j.ensm.2022.05.042
Q. Li, X. Xu, J. Guo, J.P. Hill, H. Xu et al., Two-dimensional MXene-polymer heterostructure with ordered In-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528–26534 (2021). https://doi.org/10.1002/anie.202111823
A. Amiri, Y. Chen, C. Bee Teng, M. Naraghi, Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 25, 731–739 (2020). https://doi.org/10.1016/j.ensm.2019.09.013
H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2017). https://doi.org/10.1038/nmat4810
R. Niu, H. Li, Y. Ma, L. He, J. Li An, insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochim. Acta 176, 755–762 (2015). https://doi.org/10.1016/j.electacta.2015.07.012
S. Wang, F. Li, A.D. Easley, J.L. Lutkenhaus, Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019). https://doi.org/10.1038/s41563-018-0215-1
N. Shpigel, M.D. Levi, S. Sigalov, O. Girshevitz, D. Aurbach et al., In situ hydrodynamic spectroscopy for structure characterization of porous energy storageelectrodes. Nat. Mater. 15, 570–575 (2016). https://doi.org/10.1038/nmat4577
P. Roach, D. Farrar, C.C. Perry, Interpretation of protein orption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168–8173 (2005). https://doi.org/10.1021/ja042898o
X. Sun, J. Sun, C. Wu, L. Guo, L. Hou et al., Unveiling composition/crystal structure-dependent electrochemical behaviors via experiments and first-principles calculations: rock-salt NiCoO2 vs. spinel Ni1.5Co1.5O4. Mater. Today Energy 19, 100592 (2021). https://doi.org/10.1016/j.mtener.2020.100592
J. Yang, C. Yu, X. Fan, S. Liang, S. Li et al., Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 9, 1299–1307 (2016). https://doi.org/10.1039/C5EE03633J
Z. Wang, Z. Zhao, Y. Zhang, X. Yang, X. Sun et al., Spatially self-confined formation of ultrafine NiCoO2 Nanops@Ultralong amorphous N-doped carbon nanofibers as an anode towards efficient capacitive Li+ storage. Chemistry 25, 863–873 (2019). https://doi.org/10.1002/chem.201804823