Armoring Black Phosphorus Anode with Stable Metal–Organic-Framework Layer for Hybrid K-Ion Capacitors
Corresponding Author: Jinhu Yang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 42
Abstract
Potassium-ion capacitors (KICs) are promising for sustainable and eco-friendly energy storage technologies, yet their slow reaction kinetics and poor cyclability induced by large K-ion size are a major obstacle toward practical applications. Herein, by employing black phosphorus nanosheets (BPNSs) as a typical high-capacity anode material, we report that BPNS anodes armored with an ultrathin oriented-grown metal–organic-framework (MOF) interphase layer (BPNS@MOF) exhibit regulated potassium storage behavior for high-performance KICs. The MOF interphase layers as protective layer with ordered pores and high chemical/mechanical stability facilitate K ion diffusion and accommodate the volume change of electrode, beneficial for improved reaction kinetics and enhanced cyclability, as evidenced by substantial characterizations, kinetics analysis and DFT calculations. Consequently, the BPNS@MOF electrode as KIC anodes exhibits outstanding cycle performance outperforming most of the reported state-of-art KICs so far.
Highlights:
1 The ultrathin metal–organic-framework (MOF) interphase layer with high mechanical/chemical stability was in situ grown on black phosphorus nanosheets (BPNSs).
2 MOF interphase layers as an ordered porous and robust protective layer can facilitate K ion diffusion and accommodate the volume change of the electrode.
3 Benefiting from the improved reaction kinetics and enhanced electrode stability, the BPNS@MOF anode for potassium-ion capacitors exhibits outstanding cycle performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
- J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017). https://doi.org/10.1002/aenm.201602911
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/ange.201801389
- D. Bin, X. Lin, Y. Sun, Y. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140, 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178
- L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018). https://doi.org/10.1002/adma.201800804
- J. Chen, B. Yang, H. Hou, H. Li, L. Liu et al., Disordered large interlayer spacing and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9, 1803894 (2019). https://doi.org/10.1002/aenm201803894
- M. Shao, C. Li, T. Li, H. Zhao, W. Yu et al., Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal–organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202006561
- F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei et al., Porous MXenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
- Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28, 1802684 (2018). https://doi.org/10.1002/adfm.201802684
- S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffold. ACS Appl. Mater. Interfaces 10, 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
- Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu et al., A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10, 2048–2052 (2019). https://doi.org/10.1039/C8SC04489A
- Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui et al., Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 4, 1394–1401 (2019). https://doi.org/10.1039/C9NH00211A
- Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30, 1903878 (2020). https://doi.org/10.1002/adfm.201903878
- J. Gao, G. Wang, Y. Liu, J. Li, B. Peng et al., Ternary molybdenum sulfoselenide based hybrid nanotubes boost potassium-ion diffusion kinetics for high energy/power hybrid capacitors. J. Mater. Chem. A 8, 13946–13954 (2020). https://doi.org/10.1039/d0ta01786h
- H. Jin, H. Wang, Z. Qi, D.S. Bin, T. Zhang et al., A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries. Angew. Chem. Int. Ed. 132, 2338–2342 (2020). https://doi.org/10.1002/ange.201913129
- J.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chem. Commun. 56, 802 (2020). https://doi.org/10.1039/c9cc09279j
- Z.L. Xu, S. Lin, N. Onofrio, L. Zhou et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
- Z. Huang, A. Chen, F. Mo, G. Liang et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202001024
- L. Li, Y. Yu, J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/NNANO.2014.35
- J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
- Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng et al., Boosting potassium-ion battery performance by encapsulating red phosphorus in Free-Standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 19, 1351–1358 (2019). https://doi.org/10.1021/acs.nanolett.8b04957
- R. Jain, P. Hundekar, T. Deng, X. Fan, Y. Singh et al., Reversible alloying of phosphorene with potassium and its stabilization using reduced graphene oxide buffer layers. ACS Nano 13, 14094–14106 (2019). https://doi.org/10.1021/acsnano.9b06680
- Q. Zhang, J. Mao, W. Pang, T. Zheng, V. Sencadas et al., Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8, 1703288 (2018). https://doi.org/10.1002/aenm.201703288
- Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng et al., Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 12, 12932–12940 (2018). https://doi.org/10.1021/acsnano.8b08740
- I. Sultana, M.M. Rahman, Y. Chen, T. Ramireddy, A.M. Glushenkov, Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 28, 1703857 (2018). https://doi.org/10.1002/adfm.201703857
- J. Huang, S.T. Myung, Y. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28, 1802938 (2018). https://doi.org/10.1002/adfm.201802938
- N. Cheng, L. Ren, Y. Xu, Y. Du, S. Dou, Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 8, 1801257 (2018). https://doi.org/10.1002/aenm.201801257
- J. Liu, D. Zhu, C. Guo, A. Casileff, S. Qiao, Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 7, 1700518 (2017). https://doi.org/10.1002/aenm.201700518
- L. Fan, Z. Guo, Y. Zhang, X. Wu, C. Zhao et al., Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol. J. Mater. Chem. A 8, 251–258 (2020). https://doi.org/10.1039/C9TA10405D
- B. Li, G. Li, D. Zhang, J. Fan, D. Chen et al., Zeolitic imidazolate framework-8 modified LiNi1/3Co1/3Mn1/3O2: A durable cathode showing excellent electrochemical performances in Li-ion batteries. Electrochim. Acta 336, 135724 (2020). https://doi.org/10.1016/j.electacta.2020.135724
- X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite-Free Zn Anodes Modulation Layers to Enable Dendrite-Free Zn Anodes (Sci, Adv, 2020). https://doi.org/10.1002/advs.202002173
- M. Zhao, H. Qian, X. Niu, W. Wang, L. Guan et al., Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst. Growth Des. 16, 1096–1103 (2016). https://doi.org/10.1021/acs.cgd.5b01709
- Z. Huang, H. Hou, Y. Zhang, C. Wang, X. Qiu et al., Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29, 1702372 (2017). https://doi.org/10.1002/adma.201702372
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
- B. Xi, Y. Tan, H. Zeng, A general synthetic approach for integrated nanocatalysts of metal-silica@ZIFs. Chem. Mater. 28, 326–336 (2016). https://doi.org/10.1021/acs.chemmater5b04147
- R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
- S. Gadipelli, W. Travis, W. Zhou, Z. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7, 2232 (2014). https://doi.org/10.1039/c4ee01009d
- H. Sobotta, H. Neumann, V. Riede, N.N. Syrbu, Infrared lattice vibration spectra of tetragonal ZnP2. Solid State Commun. 48, 297 (1983). https://doi.org/10.1016/0038-1098(83)90291-0
- S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010). https://doi.org/10.1021/ja109268m
- L. Shao, H. Sun, L. Miao, X. Chen, M. Han et al., Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6, 2494–2499 (2018). https://doi.org/10.1039/C7TA10884B
- H. Chen, L. Wang, J. Yang, R.T. Yang, Investigation on hydrogenation of metal-organic frameworks HKUST-1, MIL-53 and ZIF-8 by hydrogen spillover. J. Phys. Chem. C 117, 7565–7576 (2013). https://doi.org/10.1021/jp401367k
- N. Liedana, A. Galve, C. Rubio, C. Tellez, J. Coronas, CAF@ZIF-8: One-Step encapsulation of caffeine in MOF. ACS Appl. Mater. Interfaces 4, 5016–5021 (2012). https://doi.org/10.1021/am301365h
- T. He, J. Feng, J. Ru, Y. Feng, R. Lian et al., Constructing heterointerface of metal atomic layer and amorphous anode material for high-capacity and fast lithium storage. ACS Nano 13, 830–838 (2019). https://doi.org/10.1021/acsnano.8b08344
- A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 4, 1–26 (2018). https://doi.org/10.1038/s41524-018-0064-0
- C. He, J. Zhang, W. Zhang, T. Li, GeSe/BP van der waals heterostructures as promising anode materials for potassium-ion batteries. J. Phys. Chem. C 123, 5157–5163 (2019). https://doi.org/10.1021/acs.jpcc.8b08909
- Q. Yao, C. Huang, Y. Yuan, Y. Liu, S. Liu et al., Theoretical prediction of phosphorene and nanoribbons as fast-charging Li ion battery anode materials. J. Phys. Chem. C 119, 6923–6928 (2015). https://doi.org/10.1021/acs.jpcc.5b02130
- V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, C. Persson, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015). https://doi.org/10.1039/C5CP01502B
References
D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015). https://doi.org/10.1038/nchem.2085
J.C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 7, 1602911 (2017). https://doi.org/10.1002/aenm.201602911
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137, 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu et al., A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. Int. Ed. 57, 4687–4691 (2018). https://doi.org/10.1002/ange.201801389
D. Bin, X. Lin, Y. Sun, Y. Xu, K. Zhang et al., Engineering hollow carbon architecture for high-performance K-ion battery anode. J. Am. Chem. Soc. 140, 7127–7134 (2018). https://doi.org/10.1021/jacs.8b02178
L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 30, 1800804 (2018). https://doi.org/10.1002/adma.201800804
J. Chen, B. Yang, H. Hou, H. Li, L. Liu et al., Disordered large interlayer spacing and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 9, 1803894 (2019). https://doi.org/10.1002/aenm201803894
M. Shao, C. Li, T. Li, H. Zhao, W. Yu et al., Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal–organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202006561
F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei et al., Porous MXenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang et al., Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 28, 1802684 (2018). https://doi.org/10.1002/adfm.201802684
S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji et al., Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffold. ACS Appl. Mater. Interfaces 10, 15542–15547 (2018). https://doi.org/10.1021/acsami.7b15314
Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu et al., A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10, 2048–2052 (2019). https://doi.org/10.1039/C8SC04489A
Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui et al., Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 4, 1394–1401 (2019). https://doi.org/10.1039/C9NH00211A
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu et al., Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 30, 1903878 (2020). https://doi.org/10.1002/adfm.201903878
J. Gao, G. Wang, Y. Liu, J. Li, B. Peng et al., Ternary molybdenum sulfoselenide based hybrid nanotubes boost potassium-ion diffusion kinetics for high energy/power hybrid capacitors. J. Mater. Chem. A 8, 13946–13954 (2020). https://doi.org/10.1039/d0ta01786h
H. Jin, H. Wang, Z. Qi, D.S. Bin, T. Zhang et al., A black phosphorus-graphite composite anode for Li-/Na-/K-ion batteries. Angew. Chem. Int. Ed. 132, 2338–2342 (2020). https://doi.org/10.1002/ange.201913129
J.E.S. Fonsaca, S.H. Domingues, E.S. Orth, A.J.G. Zarbin, A black phosphorus-based cathode for aqueous Na-ion batteries operating under ambient conditions. Chem. Commun. 56, 802 (2020). https://doi.org/10.1039/c9cc09279j
Z.L. Xu, S. Lin, N. Onofrio, L. Zhou et al., Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 9, 4164 (2018). https://doi.org/10.1038/s41467-018-06629-9
Z. Huang, A. Chen, F. Mo, G. Liang et al., Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202001024
L. Li, Y. Yu, J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/NNANO.2014.35
J. Cheng, L. Gao, T. Li, S. Mei, C. Wang et al., Two-dimensional black phosphorus nanomaterials: emerging advances in electrochemical energy storage science. Nano-Micro Lett. 12, 179 (2020). https://doi.org/10.1007/s40820-020-00510-5
Y. Wu, S. Hu, R. Xu, J. Wang, Z. Peng et al., Boosting potassium-ion battery performance by encapsulating red phosphorus in Free-Standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 19, 1351–1358 (2019). https://doi.org/10.1021/acs.nanolett.8b04957
R. Jain, P. Hundekar, T. Deng, X. Fan, Y. Singh et al., Reversible alloying of phosphorene with potassium and its stabilization using reduced graphene oxide buffer layers. ACS Nano 13, 14094–14106 (2019). https://doi.org/10.1021/acsnano.9b06680
Q. Zhang, J. Mao, W. Pang, T. Zheng, V. Sencadas et al., Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 8, 1703288 (2018). https://doi.org/10.1002/aenm.201703288
Y. An, Y. Tian, L. Ci, S. Xiong, J. Feng et al., Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 12, 12932–12940 (2018). https://doi.org/10.1021/acsnano.8b08740
I. Sultana, M.M. Rahman, Y. Chen, T. Ramireddy, A.M. Glushenkov, Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 28, 1703857 (2018). https://doi.org/10.1002/adfm.201703857
J. Huang, S.T. Myung, Y. Sun, Recent progress in rechargeable potassium batteries. Adv. Funct. Mater. 28, 1802938 (2018). https://doi.org/10.1002/adfm.201802938
N. Cheng, L. Ren, Y. Xu, Y. Du, S. Dou, Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 8, 1801257 (2018). https://doi.org/10.1002/aenm.201801257
J. Liu, D. Zhu, C. Guo, A. Casileff, S. Qiao, Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 7, 1700518 (2017). https://doi.org/10.1002/aenm.201700518
L. Fan, Z. Guo, Y. Zhang, X. Wu, C. Zhao et al., Stable artificial solid electrolyte interphase films for lithium metal anode via metal-organic frameworks cemented by polyvinyl alcohol. J. Mater. Chem. A 8, 251–258 (2020). https://doi.org/10.1039/C9TA10405D
B. Li, G. Li, D. Zhang, J. Fan, D. Chen et al., Zeolitic imidazolate framework-8 modified LiNi1/3Co1/3Mn1/3O2: A durable cathode showing excellent electrochemical performances in Li-ion batteries. Electrochim. Acta 336, 135724 (2020). https://doi.org/10.1016/j.electacta.2020.135724
X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic Imidazolate Frameworks as Zn2+ Modulation Layers to Enable Dendrite-Free Zn Anodes Modulation Layers to Enable Dendrite-Free Zn Anodes (Sci, Adv, 2020). https://doi.org/10.1002/advs.202002173
M. Zhao, H. Qian, X. Niu, W. Wang, L. Guan et al., Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst. Growth Des. 16, 1096–1103 (2016). https://doi.org/10.1021/acs.cgd.5b01709
Z. Huang, H. Hou, Y. Zhang, C. Wang, X. Qiu et al., Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29, 1702372 (2017). https://doi.org/10.1002/adma.201702372
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
B. Xi, Y. Tan, H. Zeng, A general synthetic approach for integrated nanocatalysts of metal-silica@ZIFs. Chem. Mater. 28, 326–336 (2016). https://doi.org/10.1021/acs.chemmater5b04147
R. Meng, J. Huang, Y. Feng, L. Zu, C. Peng et al., Black phosphorus quantum dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv. Energy Mater. 8, 1801514 (2018). https://doi.org/10.1002/aenm.201801514
S. Gadipelli, W. Travis, W. Zhou, Z. Guo, A thermally derived and optimized structure from ZIF-8 with giant enhancement in CO2 uptake. Energy Environ. Sci. 7, 2232 (2014). https://doi.org/10.1039/c4ee01009d
H. Sobotta, H. Neumann, V. Riede, N.N. Syrbu, Infrared lattice vibration spectra of tetragonal ZnP2. Solid State Commun. 48, 297 (1983). https://doi.org/10.1016/0038-1098(83)90291-0
S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010). https://doi.org/10.1021/ja109268m
L. Shao, H. Sun, L. Miao, X. Chen, M. Han et al., Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6, 2494–2499 (2018). https://doi.org/10.1039/C7TA10884B
H. Chen, L. Wang, J. Yang, R.T. Yang, Investigation on hydrogenation of metal-organic frameworks HKUST-1, MIL-53 and ZIF-8 by hydrogen spillover. J. Phys. Chem. C 117, 7565–7576 (2013). https://doi.org/10.1021/jp401367k
N. Liedana, A. Galve, C. Rubio, C. Tellez, J. Coronas, CAF@ZIF-8: One-Step encapsulation of caffeine in MOF. ACS Appl. Mater. Interfaces 4, 5016–5021 (2012). https://doi.org/10.1021/am301365h
T. He, J. Feng, J. Ru, Y. Feng, R. Lian et al., Constructing heterointerface of metal atomic layer and amorphous anode material for high-capacity and fast lithium storage. ACS Nano 13, 830–838 (2019). https://doi.org/10.1021/acsnano.8b08344
A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 4, 1–26 (2018). https://doi.org/10.1038/s41524-018-0064-0
C. He, J. Zhang, W. Zhang, T. Li, GeSe/BP van der waals heterostructures as promising anode materials for potassium-ion batteries. J. Phys. Chem. C 123, 5157–5163 (2019). https://doi.org/10.1021/acs.jpcc.8b08909
Q. Yao, C. Huang, Y. Yuan, Y. Liu, S. Liu et al., Theoretical prediction of phosphorene and nanoribbons as fast-charging Li ion battery anode materials. J. Phys. Chem. C 119, 6923–6928 (2015). https://doi.org/10.1021/acs.jpcc.5b02130
V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, C. Persson, Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015). https://doi.org/10.1039/C5CP01502B