Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets
Corresponding Author: Xiao Liang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 112
Abstract
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm−2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm−2) and high areal capacity (6.4 mAh cm−2) at relatively lean electrolyte is achieved.
Highlights:
1 The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite.
2 The KB/S@Ti3C2Tx architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained.
3 The KB@Ti3C2Tx interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm−2 in density and 3 μm in thickness—the effect on energy density is minimal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
- Z.W. Seh, Y.M. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
- M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei, J.Q. Huang, Challenges and opportunities towards practical lithium–sulfur batteries under lean electrolyte conditions. Angew. Chem. Int. Ed. 132, 2–20 (2020). https://doi.org/10.1002/ange.201909339
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- X. Wu, N. Liu, M. Wang, Y. Qiu, B. Guan, D. Tian, N. Zhang, A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 13(11), 13109–13115 (2019). https://doi.org/10.1021/acsnano.9b05908
- S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). https://doi.org/10.1021/ja308170k
- L. Wang, J. Liu, S. Yuan, Y. Wang, Y. Xia, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Energy Environ. Sci. 9(1), 224–231 (2016). https://doi.org/10.1039/C5EE02837J
- Z. Xu, J. Wang, J. Yang, X. Miao, R. Chen, J. Qian, R. Miao, Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte. Angew. Chem. Int. Ed. 55(35), 10372–10375 (2016). https://doi.org/10.1002/anie.201605931
- H. Tang, W. Li, L. Pan, K. Tu, F. Du, T. Qiu, C. Zhang, A robust, freestanding mxene-sulfur conductive paper for long-lifetime Li–S batteries. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201901907
- L. Qie, A. Manthiram, A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 27(10), 1694–1700 (2015). https://doi.org/10.1002/adma.201405689
- Y.L. Ding, P. Kopold, K. Hahn, P.A. van Aken, J. Maier, Y. Yu, Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries. Adv. Funct. Mater. 26(7), 1112–1119 (2016). https://doi.org/10.1002/adfm.201504294
- H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1(9), 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
- W. Sun, C. Liu, Y. Li, S. Luo, S. Liu, X. Hong, C. Zheng, Rational construction of Fe2N@ C yolk–shell nanoboxes as multifunctional hosts for ultralong lithium–sulfur batteries. ACS Nano 13(10), 12137–12147 (2019). https://doi.org/10.1021/acsnano.9b06629
- M. Yu, S. Zhou, Z. Wang, W. Pei, X. Liu, C. Liu, J. Qiu, A molecular-cage strategy enabling efficient chemisorption–electrocatalytic interface in nanostructured Li2S cathode for Li metal-free rechargeable cells with high energy. Adv. Funct. Mater. 29, 1905986 (2019). https://doi.org/10.1002/adfm.201905986
- X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li, X. Ding, Y. Qian, Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from Prussian blue analogue as electrode material for K-ion batteries and Li–S batteries. ACS Energy Lett. 4, 1496–1504 (2019). https://doi.org/10.1021/acsenergylett.9b00573
- X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv. Mater. 29(3), 1603040 (2017). https://doi.org/10.1002/adma.201603040
- X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. (2019). https://doi.org/10.1002/adma.201906739
- X. Tang, D. Zhou, P. Li, X. Guo, C.Y. Wang, F.Y. Kang, B.H. Li, G.X. Wang, High-performance quasi-solid-state MXene-based Li–I batteries. ACS Cent. Sci. 5(2), 365–373 (2019). https://doi.org/10.1021/acscentsci.8b00921
- X.J. Hong, C.L. Song, Y. Yang, H.C. Tan, G.H. Li, Y.P. Cai, H. Wang, Cerium based Metal-Organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13(2), 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155
- D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu, B. Guan, K. Sun, MoN supported on graphene as a bifunctional interlayer for advanced Li–S batteries. Adv. Energy Mater. 6, 1901940 (2019). https://doi.org/10.1002/aenm.201901940
- M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58(12), 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
- D. Guo, F. Ming, H. Su, Y. Wu, W. Wahyudi, M. Li, Y. Li, Z.P. Lai, MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011
- C. Lin, W. Zhang, L. Wang, Z. Wang, W. Zhao, W. Duan, J. Jin, A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. J. Mater. Chem. A 4(16), 5993–5998 (2016). https://doi.org/10.1039/C5TA10307J
- S.H. Chung, A. Manthiram, Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30(6), 1705951 (2018). https://doi.org/10.1002/adma.201705951
- J. Ma, Z. Fang, Y. Yan, Z. Yang, L. Gu, Y.S. Hu, X. Huang, Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li–S batteries. Adv. Energy Mater. 5(16), 1500046 (2015). https://doi.org/10.1002/aenm.201500046
- G. Ai, Y. Dai, W. Mao, H. Zhao, Y. Fu, X. Song, G. Liu, Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries. Nano Lett. 16(9), 5365–5372 (2016). https://doi.org/10.1021/acs.nanolett.6b01434
- H.J. Peng, W.T. Xu, L. Zhu, D.W. Wang, J.Q. Huang, X.B. Cheng, Q. Zhang, 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv. Funct. Mater. 26(35), 6351–6358 (2016). https://doi.org/10.1002/adfm.201602071
- G. Hu, C. Xu, Z. Sun, S. Wang, H.M. Cheng, F. Li, W. Ren, 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 28(8), 1603–1609 (2016). https://doi.org/10.1002/adma.201504765
- Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7(6), 1601630 (2017). https://doi.org/10.1002/aenm.201601630
- L. Wang, Z. Dong, D. Wang, F. Zhang, J. Jin, Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li–S batteries. Nano Lett. 13(12), 6244–6250 (2013). https://doi.org/10.1021/nl403715h
- M. Ghidiu, Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
- L. Zhong, K. Yang, R. Guan, L. Wang, S. Wang, D. Han, Y. Meng, Toward theoretically cycling-stable lithium–sulfur battery using a foldable and compositionally heterogeneous cathode. ACS Appl. Mater. Interfaces 9(50), 43640–43647 (2017). https://doi.org/10.1021/acsami.7b13247
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, Y. Gogotsi, Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
- D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2009). https://doi.org/10.1021/jz9003137
- J.M. Zheng, D.P. Lva, M. Gu, C.M. Wang, J.G. Zhang, J. Liu, J. Xiao, How to obtain reproducible results for lithium sulfur batteries? J. Electrochem. Soc. 160(11), A2288–A2292 (2013). https://doi.org/10.1149/2.106311jes
- W.Z. Bao, D.W. Su, W.X. Zhang, X. Guo, G.X. Wang, 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 26, 8746–8756 (2016). https://doi.org/10.1002/adfm.201603704
- A. Fu, C.Z. Wang, F. Pei, J.Q. Cui, X. Fang, N.F. Zheng, Recent advances in hollow porous carbon materials for lithium–sulfur batteries. Small 1804786 (2019). https://doi.org/10.1002/smll.201804786
- Y.K. Son, J.S. Lee, Y. Son, J.H. Jang, J. Cho, Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5(16), 1500110 (2015). https://doi.org/10.1002/aenm.201500110
- J. Zhang, J.Y. Li, W.P. Wang, X.H. Zhang, X.H. Tan, W.G. Chu, Y.G. Guo, Microemulsion assisted assembly of 3D porous S/Graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8, 1702839 (2018). https://doi.org/10.1002/aenm.201702839
- H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268 (2016). https://doi.org/10.1002/advs.201500268
- J. Song, D. Su, X. Xie, X. Guo, W. Bao, G. Shao, G. Wang, Immobilizing polysulfides with mxene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(43), 29427–29433 (2016). https://doi.org/10.1021/acsami.6b09027
- H.Q. Wang, W.C. Zhang, H.K. Liu, Z.P. Guo, A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 55(12), 3992–3996 (2016). https://doi.org/10.1002/anie.201511673
- J.X. Song, T. Xu, M.L. Gordin, P.Y. Zhu, D.P. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24(9), 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631
- H.B. Yao, K. Yan, W.Y. Li, G.Y. Zheng, D.S. Kong et al., Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive s-related species at the cathode–separator interface. Energy Environ. Sci. 7(10), 3381–3390 (2014). https://doi.org/10.1039/C4EE01377H
- J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries. Adv. Funct. Mater. 25(33), 5285–5291 (2015). https://doi.org/10.1002/adfm.201502251
- A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium–sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li, W. Lv, W. Ling, Capture and catalytic conversion of polysulfides by in situ built TiO2-mxene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219
References
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
Z.W. Seh, Y.M. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei, J.Q. Huang, Challenges and opportunities towards practical lithium–sulfur batteries under lean electrolyte conditions. Angew. Chem. Int. Ed. 132, 2–20 (2020). https://doi.org/10.1002/ange.201909339
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
X. Wu, N. Liu, M. Wang, Y. Qiu, B. Guan, D. Tian, N. Zhang, A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries. ACS Nano 13(11), 13109–13115 (2019). https://doi.org/10.1021/acsnano.9b05908
S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou, Y.G. Guo, L.J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134(45), 18510–18513 (2012). https://doi.org/10.1021/ja308170k
L. Wang, J. Liu, S. Yuan, Y. Wang, Y. Xia, To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Energy Environ. Sci. 9(1), 224–231 (2016). https://doi.org/10.1039/C5EE02837J
Z. Xu, J. Wang, J. Yang, X. Miao, R. Chen, J. Qian, R. Miao, Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte. Angew. Chem. Int. Ed. 55(35), 10372–10375 (2016). https://doi.org/10.1002/anie.201605931
H. Tang, W. Li, L. Pan, K. Tu, F. Du, T. Qiu, C. Zhang, A robust, freestanding mxene-sulfur conductive paper for long-lifetime Li–S batteries. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201901907
L. Qie, A. Manthiram, A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 27(10), 1694–1700 (2015). https://doi.org/10.1002/adma.201405689
Y.L. Ding, P. Kopold, K. Hahn, P.A. van Aken, J. Maier, Y. Yu, Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries. Adv. Funct. Mater. 26(7), 1112–1119 (2016). https://doi.org/10.1002/adfm.201504294
H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7(24), 1700260 (2017). https://doi.org/10.1002/aenm.201700260
Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1(9), 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
W. Sun, C. Liu, Y. Li, S. Luo, S. Liu, X. Hong, C. Zheng, Rational construction of Fe2N@ C yolk–shell nanoboxes as multifunctional hosts for ultralong lithium–sulfur batteries. ACS Nano 13(10), 12137–12147 (2019). https://doi.org/10.1021/acsnano.9b06629
M. Yu, S. Zhou, Z. Wang, W. Pei, X. Liu, C. Liu, J. Qiu, A molecular-cage strategy enabling efficient chemisorption–electrocatalytic interface in nanostructured Li2S cathode for Li metal-free rechargeable cells with high energy. Adv. Funct. Mater. 29, 1905986 (2019). https://doi.org/10.1002/adfm.201905986
X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li, X. Ding, Y. Qian, Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from Prussian blue analogue as electrode material for K-ion batteries and Li–S batteries. ACS Energy Lett. 4, 1496–1504 (2019). https://doi.org/10.1021/acsenergylett.9b00573
X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts. Adv. Mater. 29(3), 1603040 (2017). https://doi.org/10.1002/adma.201603040
X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015). https://doi.org/10.1038/ncomms6682
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. (2019). https://doi.org/10.1002/adma.201906739
X. Tang, D. Zhou, P. Li, X. Guo, C.Y. Wang, F.Y. Kang, B.H. Li, G.X. Wang, High-performance quasi-solid-state MXene-based Li–I batteries. ACS Cent. Sci. 5(2), 365–373 (2019). https://doi.org/10.1021/acscentsci.8b00921
X.J. Hong, C.L. Song, Y. Yang, H.C. Tan, G.H. Li, Y.P. Cai, H. Wang, Cerium based Metal-Organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries. ACS Nano 13(2), 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155
D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu, B. Guan, K. Sun, MoN supported on graphene as a bifunctional interlayer for advanced Li–S batteries. Adv. Energy Mater. 6, 1901940 (2019). https://doi.org/10.1002/aenm.201901940
M. Zhao, H.J. Peng, Z.W. Zhang, B.Q. Li, X. Chen et al., Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal. Angew. Chem. Int. Ed. 58(12), 3779–3783 (2019). https://doi.org/10.1002/anie.201812062
D. Guo, F. Ming, H. Su, Y. Wu, W. Wahyudi, M. Li, Y. Li, Z.P. Lai, MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy 61, 478–485 (2019). https://doi.org/10.1016/j.nanoen.2019.05.011
C. Lin, W. Zhang, L. Wang, Z. Wang, W. Zhao, W. Duan, J. Jin, A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries. J. Mater. Chem. A 4(16), 5993–5998 (2016). https://doi.org/10.1039/C5TA10307J
S.H. Chung, A. Manthiram, Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30(6), 1705951 (2018). https://doi.org/10.1002/adma.201705951
J. Ma, Z. Fang, Y. Yan, Z. Yang, L. Gu, Y.S. Hu, X. Huang, Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li–S batteries. Adv. Energy Mater. 5(16), 1500046 (2015). https://doi.org/10.1002/aenm.201500046
G. Ai, Y. Dai, W. Mao, H. Zhao, Y. Fu, X. Song, G. Liu, Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries. Nano Lett. 16(9), 5365–5372 (2016). https://doi.org/10.1021/acs.nanolett.6b01434
H.J. Peng, W.T. Xu, L. Zhu, D.W. Wang, J.Q. Huang, X.B. Cheng, Q. Zhang, 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries. Adv. Funct. Mater. 26(35), 6351–6358 (2016). https://doi.org/10.1002/adfm.201602071
G. Hu, C. Xu, Z. Sun, S. Wang, H.M. Cheng, F. Li, W. Ren, 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 28(8), 1603–1609 (2016). https://doi.org/10.1002/adma.201504765
Q. Pang, X. Liang, C.Y. Kwok, J. Kulisch, L.F. Nazar, A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7(6), 1601630 (2017). https://doi.org/10.1002/aenm.201601630
L. Wang, Z. Dong, D. Wang, F. Zhang, J. Jin, Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li–S batteries. Nano Lett. 13(12), 6244–6250 (2013). https://doi.org/10.1021/nl403715h
M. Ghidiu, Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014). https://doi.org/10.1038/nature13970
L. Zhong, K. Yang, R. Guan, L. Wang, S. Wang, D. Han, Y. Meng, Toward theoretically cycling-stable lithium–sulfur battery using a foldable and compositionally heterogeneous cathode. ACS Appl. Mater. Interfaces 9(50), 43640–43647 (2017). https://doi.org/10.1021/acsami.7b13247
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29(18), 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, Y. Gogotsi, Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016). https://doi.org/10.1016/j.nanoen.2016.06.005
D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2009). https://doi.org/10.1021/jz9003137
J.M. Zheng, D.P. Lva, M. Gu, C.M. Wang, J.G. Zhang, J. Liu, J. Xiao, How to obtain reproducible results for lithium sulfur batteries? J. Electrochem. Soc. 160(11), A2288–A2292 (2013). https://doi.org/10.1149/2.106311jes
W.Z. Bao, D.W. Su, W.X. Zhang, X. Guo, G.X. Wang, 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 26, 8746–8756 (2016). https://doi.org/10.1002/adfm.201603704
A. Fu, C.Z. Wang, F. Pei, J.Q. Cui, X. Fang, N.F. Zheng, Recent advances in hollow porous carbon materials for lithium–sulfur batteries. Small 1804786 (2019). https://doi.org/10.1002/smll.201804786
Y.K. Son, J.S. Lee, Y. Son, J.H. Jang, J. Cho, Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5(16), 1500110 (2015). https://doi.org/10.1002/aenm.201500110
J. Zhang, J.Y. Li, W.P. Wang, X.H. Zhang, X.H. Tan, W.G. Chu, Y.G. Guo, Microemulsion assisted assembly of 3D porous S/Graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8, 1702839 (2018). https://doi.org/10.1002/aenm.201702839
H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268 (2016). https://doi.org/10.1002/advs.201500268
J. Song, D. Su, X. Xie, X. Guo, W. Bao, G. Shao, G. Wang, Immobilizing polysulfides with mxene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8(43), 29427–29433 (2016). https://doi.org/10.1021/acsami.6b09027
H.Q. Wang, W.C. Zhang, H.K. Liu, Z.P. Guo, A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 55(12), 3992–3996 (2016). https://doi.org/10.1002/anie.201511673
J.X. Song, T. Xu, M.L. Gordin, P.Y. Zhu, D.P. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries. Adv. Funct. Mater. 24(9), 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631
H.B. Yao, K. Yan, W.Y. Li, G.Y. Zheng, D.S. Kong et al., Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive s-related species at the cathode–separator interface. Energy Environ. Sci. 7(10), 3381–3390 (2014). https://doi.org/10.1039/C4EE01377H
J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries. Adv. Funct. Mater. 25(33), 5285–5291 (2015). https://doi.org/10.1002/adfm.201502251
A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium–sulfur batteries: attaining the critical metrics. Joule 4(2), 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li, W. Lv, W. Ling, Capture and catalytic conversion of polysulfides by in situ built TiO2-mxene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9(19), 1900219 (2019). https://doi.org/10.1002/aenm.201900219