A Flexible Tribotronic Artificial Synapse with Bioinspired Neurosensory Behavior
Corresponding Author: Chi Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 18
Abstract
As key components of artificial afferent nervous systems, synaptic devices can mimic the physiological synaptic behaviors, which have attracted extensive attentions. Here, a flexible tribotronic artificial synapse (TAS) with bioinspired neurosensory behavior is developed. The triboelectric potential generated by the external contact electrification is used as the ion-gel-gate voltage of the organic thin film transistor, which can tune the carriers transport through the migration/accumulation of ions. The TAS successfully demonstrates a series of synaptic behaviors by external stimuli, such as excitatory postsynaptic current, paired-pulse facilitation, and the hierarchical memory process from sensory memory to short-term memory and long-term memory. Moreover, the synaptic behaviors remained stable under the strain condition with a bending radius of 20 mm, and the TAS still exhibits excellent durability after 1000 bending cycles. Finally, Pavlovian conditioning has been successfully mimicked by applying force and vibration as food and bell, respectively. This work demonstrates a bioinspired flexible artificial synapse that will help to facilitate the development of artificial afferent nervous systems, which is great significance to the practical application of artificial limbs, robotics, and bionics in future.
Highlights:
1 A flexible tribotronic artificial synapse with bioinspired neurosensory behaviour was demonstrated, which establishes an active interaction mechanism with the environment.
2 The device can well exhibit tuneable synaptic behaviours by changing the mechanical input modes, including excitatory postsynaptic current, paired-pulse facilitation, and the hierarchical memorial process.
3 The device has excellent mechanical flexibility that can exhibit stable synaptic functions even under strain conditions with a bending radius of 20 mm after 1000 bending cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.E. Abraira, D.D. Ginty, The sensory neurons of touch. Neuron 79(4), 618–639 (2013). https://doi.org/10.1016/j.neuron.2013.07.051
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32(15), 1902434 (2020). https://doi.org/10.1002/adma.201902434
- M. Karbalaei Akbari, J. Hu, F. Verpoort, H. Lu, S. Zhuiykov, Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 12(1), 83 (2020). https://doi.org/10.1007/s40820-020-00419-z
- Y.R. Lee, T.Q. Trung, B. Hwang, N. Lee, A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11(1), 2753 (2020). https://doi.org/10.1038/s41467-020-16606-w
- H. Wei, R. Shi, L. Sun, H. Yu, J. Gong et al., Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 12(1), 1068 (2021). https://doi.org/10.1038/s41467-021-21319-9
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2022). https://doi.org/10.1007/s40820-021-00740-1
- S.W. Cho, C. Jo, Y. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
- V.M. Ho, J. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011). https://doi.org/10.1126/science.1209236
- J.Q. Yang, R. Wang, Y. Ren, J.Y. Mao, Z.P. Wang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32(52), 2003610 (2020). https://doi.org/10.1002/adma.202003610
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13(1), 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14(1), 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- Y.H. Jung, B. Park, J.U. Kim, T.I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31(34), 1803637 (2019). https://doi.org/10.1002/adma.201803637
- H.L. Park, Y. Lee, N. Kim, D.G. Seo, G.T. Go et al., Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32(15), 1903558 (2020). https://doi.org/10.1002/adma.201903558
- M. Zhu, T. He, C. Lee, Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 31305 (2020). https://doi.org/10.1063/5.0016485
- M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021). https://doi.org/10.3389/fnins.2021.690950
- S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
- D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. Npj. Flex Electron. 5(1), 1–16 (2021). https://doi.org/10.1038/s41528-021-00110-2
- J. Ren, H. Shen, Z. Liu, M. Xu, D. Li, Artificial synapses based on WSe2 homojunction via vacancy migration. ACS Appl. Mater. Inter. 14(18), 21141–21149 (2022). https://doi.org/10.1021/acsami.2c01162
- M. Jin, H. Lee, C. Im, H.J. Na, J.H. Lee et al., Interfacial ion-trapping electrolyte-gated transistors for high-fidelity neuromorphic computing. Adv. Funct. Mater. 32(24), 2201048 (2022). https://doi.org/10.1002/adfm.202201048
- W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 14(1), 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
- F. Fan, Z. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- Z.L. Wang, Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv. Energy Mater. 10(17), 2000137 (2020). https://doi.org/10.1002/aenm.202000137
- Z.L. Wang, From contact-electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 96502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
- Y. Qi, G. Liu, Y. Kuang, L. Wang, J. Zeng et al., Frequency band broadening and charge density enhancement of a vibrational triboelectric nanogenerator with two stoppers. Nano Energy 99, 107427 (2022). https://doi.org/10.1016/j.nanoen.2022.107427
- Y. Qi, G. Liu, T. Bu, J. Zeng, Z. Zhang et al., Ferromagnetic-based charge-accumulation triboelectric nanogenerator with ultrahigh surface charge density. Small 18(31), 2201754 (2022). https://doi.org/10.1002/smll.202201754
- S. Kim, S. Lee, J. Park, A skin-inspired, self-powered tactile sensor. Nano Energy 101, 107608 (2022). https://doi.org/10.1016/j.nanoen.2022.107608
- J. Cao, X. Fu, H. Zhu, Z. Qu, Y. Qi et al., Self-powered non-contact motion vector sensor for multifunctional human-machine interface. Small Methods 6, 22005888 (2022). https://doi.org/10.1002/smtd.202200588
- Y. Wang, X. Liu, Y. Wang, H. Wang, H. Wang et al., Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15(10), 15700–15709 (2021). https://doi.org/10.1021/acsnano.1c05127
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- J. Cheng, W. Ding, Y. Zi, Y. Lu, L. Ji et al., Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9(1), 3733 (2018). https://doi.org/10.1038/s41467-018-06198-x
- J. Sun, L. Zhang, Z. Li, Q. Tang, J. Chen et al., A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 33(34), 2102765 (2021). https://doi.org/10.1002/adma.202102765
- C. Zhang, W. Tang, L. Zhang, C. Han, Z.L. Wang, Contact electrification field-effect transistor. ACS Nano 8(8), 8702–8709 (2014). https://doi.org/10.1021/nn5039806
- C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016). https://doi.org/10.1016/j.nantod.2016.07.004
- C. Zhang, T. Bu, J. Zhao, G. Liu, H. Yang et al., Tribotronics for active mechanosensation and self-powered microsystems. Adv. Funct. Mater. 29(41), 1808114 (2019). https://doi.org/10.1002/adfm.201808114
- C. Zhang, L.M. Zhang, W. Tang, C.B. Han, Z.L. Wang, Tribotronic logic circuits and basic operations. Adv. Mater. 27(23), 3533–3540 (2015). https://doi.org/10.1002/adma.201501511
- F. Xue, L. Chen, L. Wang, Y. Pang, J. Chen et al., MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 26(13), 2104–2109 (2016). https://doi.org/10.1002/adfm.201504485
- Y. Pang, L. Chen, G. Hu, J. Luo, Z. Yang et al., Tribotronic transistor sensor for enhanced hydrogen detection. Nano Res. 10(11), 3857–3864 (2017). https://doi.org/10.1007/s12274-017-1599-y
- J. Zhao, H. Guo, Y.K. Pang, F. Xi, Z.W. Yang et al., Flexible organic tribotronic transistor for pressure and magnetic sensing. ACS Nano 11(11), 11566–11573 (2017). https://doi.org/10.1021/acsnano.7b06480
- J. Zeng, J. Zhao, C. Li, Y. Qi, G. Liu et al., Triboelectric nanogenerators as active tactile stimulators for multifunctional sensing and artificial synapses. Sensors 22(3), 975 (2022). https://doi.org/10.3390/s22030975
- A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014). https://doi.org/10.1038/nrn3708
- J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He et al., Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7(11), 900–906 (2008). https://doi.org/10.1038/nmat2291
- H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999). https://doi.org/10.1038/44359
- M. Park, J. Park, I.K. Han, J.Y. Oh, High-performance flexible and air-stable perovskite solar cells with a large active area based on poly(3-hexylthiophene) nanofibrils. J. Mater. Chem. A 4(29), 11307–11316 (2016). https://doi.org/10.1039/c6ta03164a
- R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
- C. Wan, K. Xiao, A. Angelin, M. Antonietti, X. Chen, The rise of bioinspired ionotronics. Adv. Intell. Syst. 1(7), 1900073 (2019). https://doi.org/10.1002/aisy.201900073
- F. Yu, L.Q. Zhu, Ionotronic neuromorphic devices for bionic neural network applications. Phys. Status. Solidi-R 13(6), 1800674 (2019). https://doi.org/10.1002/pssr.201800674
- Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin et al., Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
- X. Yang, J. Han, J. Yu, Y. Chen, H. Zhang et al., Versatile triboiontronic transistorvia proton conductor. ACS Nano 14(7), 8668–8677 (2020). https://doi.org/10.1021/acsnano.0c03030
- K.H. Lee, S. Zhang, T.P. Lodge, C.D. Frisbie, Electrical impedance of spin-coatable ion gel films. J. Phys. Chem. B 115(13), 3315–3321 (2011). https://doi.org/10.1021/jp110166u
- J. Zhao, T. Bu, X. Zhang, Y. Pang, W. Li et al., Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research 20, 1–10 (2020). https://doi.org/10.34133/2020/1398903
- C. Qian, J. Sun, L. Zhang, H. Xie, H. Huang et al., Air-stable and high-performance organic field-effect transistors based on ordered, large-domain phthalocyanine copper thin film. Synthetic Metals 210, 336–341 (2015). https://doi.org/10.1016/j.synthmet.2015.10.023
- L. Kong, J. Sun, C. Qian, G. Gou, Y. He et al., Ion-gel gated field-effect transistors with solution-processed oxide semiconductors for bioinspired artificial synapses. Org. Electron. 39, 64–70 (2016). https://doi.org/10.1016/j.orgel.2016.09.029
- R.A. John, N. Tiwari, C. Yaoyi, N. Tiwari. Ankit et al., Ultralow power dual-gated subthreshold oxide neuristors: an enabler for higher order neuronal temporal correlations. ACS Nano 12(11), 11263–11273 (2018). https://doi.org/10.1021/acsnano.8b05903
- L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5(1), 3158 (2014). https://doi.org/10.1038/ncomms4158
- R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Ann. Rev. Physiol. 64(1), 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
- S.L. Jackman, J. Turecek, J.E. Belinsky, W.G. Regehr, The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529(7584), 88–91 (2016). https://doi.org/10.1038/nature16507
- T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011). https://doi.org/10.1038/nmat3054
- Z. Shi, S. Zhang, J. Yuan, B. Zhu, Y. Jiang et al., Spatiotemporal summation and correlation mimicked in a four-emitter light-induced artificial synapse. SCI Rep-Uk 8(1), 2159 (2018). https://doi.org/10.1038/s41598-018-20595-8
- M.S. Fanselow, A.M. Poulos, The neuroscience of mammalian associative learning. Ann. Rev. Psychol. 56, 207–234 (2005)
- F. Yu, L.Q. Zhu, H. Xiao, W.T. Gao, Y.B. Guo, Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv. Funct. Mater. 28(44), 1804025 (2018). https://doi.org/10.1002/adfm.201804025
References
V.E. Abraira, D.D. Ginty, The sensory neurons of touch. Neuron 79(4), 618–639 (2013). https://doi.org/10.1016/j.neuron.2013.07.051
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang et al., Artificial sensory memory. Adv. Mater. 32(15), 1902434 (2020). https://doi.org/10.1002/adma.201902434
M. Karbalaei Akbari, J. Hu, F. Verpoort, H. Lu, S. Zhuiykov, Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 12(1), 83 (2020). https://doi.org/10.1007/s40820-020-00419-z
Y.R. Lee, T.Q. Trung, B. Hwang, N. Lee, A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 11(1), 2753 (2020). https://doi.org/10.1038/s41467-020-16606-w
H. Wei, R. Shi, L. Sun, H. Yu, J. Gong et al., Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 12(1), 1068 (2021). https://doi.org/10.1038/s41467-021-21319-9
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14(1), 8 (2022). https://doi.org/10.1007/s40820-021-00740-1
S.W. Cho, C. Jo, Y. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14(1), 203 (2022). https://doi.org/10.1007/s40820-022-00945-y
V.M. Ho, J. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011). https://doi.org/10.1126/science.1209236
J.Q. Yang, R. Wang, Y. Ren, J.Y. Mao, Z.P. Wang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32(52), 2003610 (2020). https://doi.org/10.1002/adma.202003610
W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13(1), 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14(1), 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
Y.H. Jung, B. Park, J.U. Kim, T.I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31(34), 1803637 (2019). https://doi.org/10.1002/adma.201803637
H.L. Park, Y. Lee, N. Kim, D.G. Seo, G.T. Go et al., Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32(15), 1903558 (2020). https://doi.org/10.1002/adma.201903558
M. Zhu, T. He, C. Lee, Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 31305 (2020). https://doi.org/10.1063/5.0016485
M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021). https://doi.org/10.3389/fnins.2021.690950
S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. Npj. Flex Electron. 5(1), 1–16 (2021). https://doi.org/10.1038/s41528-021-00110-2
J. Ren, H. Shen, Z. Liu, M. Xu, D. Li, Artificial synapses based on WSe2 homojunction via vacancy migration. ACS Appl. Mater. Inter. 14(18), 21141–21149 (2022). https://doi.org/10.1021/acsami.2c01162
M. Jin, H. Lee, C. Im, H.J. Na, J.H. Lee et al., Interfacial ion-trapping electrolyte-gated transistors for high-fidelity neuromorphic computing. Adv. Funct. Mater. 32(24), 2201048 (2022). https://doi.org/10.1002/adfm.202201048
W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 14(1), 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
F. Fan, Z. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
Z.L. Wang, Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv. Energy Mater. 10(17), 2000137 (2020). https://doi.org/10.1002/aenm.202000137
Z.L. Wang, From contact-electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 96502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
Y. Qi, G. Liu, Y. Kuang, L. Wang, J. Zeng et al., Frequency band broadening and charge density enhancement of a vibrational triboelectric nanogenerator with two stoppers. Nano Energy 99, 107427 (2022). https://doi.org/10.1016/j.nanoen.2022.107427
Y. Qi, G. Liu, T. Bu, J. Zeng, Z. Zhang et al., Ferromagnetic-based charge-accumulation triboelectric nanogenerator with ultrahigh surface charge density. Small 18(31), 2201754 (2022). https://doi.org/10.1002/smll.202201754
S. Kim, S. Lee, J. Park, A skin-inspired, self-powered tactile sensor. Nano Energy 101, 107608 (2022). https://doi.org/10.1016/j.nanoen.2022.107608
J. Cao, X. Fu, H. Zhu, Z. Qu, Y. Qi et al., Self-powered non-contact motion vector sensor for multifunctional human-machine interface. Small Methods 6, 22005888 (2022). https://doi.org/10.1002/smtd.202200588
Y. Wang, X. Liu, Y. Wang, H. Wang, H. Wang et al., Flexible seaweed-like triboelectric nanogenerator as a wave energy harvester powering marine internet of things. ACS Nano 15(10), 15700–15709 (2021). https://doi.org/10.1021/acsnano.1c05127
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14(1), 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
J. Cheng, W. Ding, Y. Zi, Y. Lu, L. Ji et al., Triboelectric microplasma powered by mechanical stimuli. Nat. Commun. 9(1), 3733 (2018). https://doi.org/10.1038/s41467-018-06198-x
J. Sun, L. Zhang, Z. Li, Q. Tang, J. Chen et al., A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 33(34), 2102765 (2021). https://doi.org/10.1002/adma.202102765
C. Zhang, W. Tang, L. Zhang, C. Han, Z.L. Wang, Contact electrification field-effect transistor. ACS Nano 8(8), 8702–8709 (2014). https://doi.org/10.1021/nn5039806
C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016). https://doi.org/10.1016/j.nantod.2016.07.004
C. Zhang, T. Bu, J. Zhao, G. Liu, H. Yang et al., Tribotronics for active mechanosensation and self-powered microsystems. Adv. Funct. Mater. 29(41), 1808114 (2019). https://doi.org/10.1002/adfm.201808114
C. Zhang, L.M. Zhang, W. Tang, C.B. Han, Z.L. Wang, Tribotronic logic circuits and basic operations. Adv. Mater. 27(23), 3533–3540 (2015). https://doi.org/10.1002/adma.201501511
F. Xue, L. Chen, L. Wang, Y. Pang, J. Chen et al., MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 26(13), 2104–2109 (2016). https://doi.org/10.1002/adfm.201504485
Y. Pang, L. Chen, G. Hu, J. Luo, Z. Yang et al., Tribotronic transistor sensor for enhanced hydrogen detection. Nano Res. 10(11), 3857–3864 (2017). https://doi.org/10.1007/s12274-017-1599-y
J. Zhao, H. Guo, Y.K. Pang, F. Xi, Z.W. Yang et al., Flexible organic tribotronic transistor for pressure and magnetic sensing. ACS Nano 11(11), 11566–11573 (2017). https://doi.org/10.1021/acsnano.7b06480
J. Zeng, J. Zhao, C. Li, Y. Qi, G. Liu et al., Triboelectric nanogenerators as active tactile stimulators for multifunctional sensing and artificial synapses. Sensors 22(3), 975 (2022). https://doi.org/10.3390/s22030975
A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014). https://doi.org/10.1038/nrn3708
J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He et al., Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7(11), 900–906 (2008). https://doi.org/10.1038/nmat2291
H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685–688 (1999). https://doi.org/10.1038/44359
M. Park, J. Park, I.K. Han, J.Y. Oh, High-performance flexible and air-stable perovskite solar cells with a large active area based on poly(3-hexylthiophene) nanofibrils. J. Mater. Chem. A 4(29), 11307–11316 (2016). https://doi.org/10.1039/c6ta03164a
R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
C. Wan, K. Xiao, A. Angelin, M. Antonietti, X. Chen, The rise of bioinspired ionotronics. Adv. Intell. Syst. 1(7), 1900073 (2019). https://doi.org/10.1002/aisy.201900073
F. Yu, L.Q. Zhu, Ionotronic neuromorphic devices for bionic neural network applications. Phys. Status. Solidi-R 13(6), 1800674 (2019). https://doi.org/10.1002/pssr.201800674
Y. Meng, J. Zhao, X. Yang, C. Zhao, S. Qin et al., Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12(9), 9381–9389 (2018). https://doi.org/10.1021/acsnano.8b04490
X. Yang, J. Han, J. Yu, Y. Chen, H. Zhang et al., Versatile triboiontronic transistorvia proton conductor. ACS Nano 14(7), 8668–8677 (2020). https://doi.org/10.1021/acsnano.0c03030
K.H. Lee, S. Zhang, T.P. Lodge, C.D. Frisbie, Electrical impedance of spin-coatable ion gel films. J. Phys. Chem. B 115(13), 3315–3321 (2011). https://doi.org/10.1021/jp110166u
J. Zhao, T. Bu, X. Zhang, Y. Pang, W. Li et al., Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research 20, 1–10 (2020). https://doi.org/10.34133/2020/1398903
C. Qian, J. Sun, L. Zhang, H. Xie, H. Huang et al., Air-stable and high-performance organic field-effect transistors based on ordered, large-domain phthalocyanine copper thin film. Synthetic Metals 210, 336–341 (2015). https://doi.org/10.1016/j.synthmet.2015.10.023
L. Kong, J. Sun, C. Qian, G. Gou, Y. He et al., Ion-gel gated field-effect transistors with solution-processed oxide semiconductors for bioinspired artificial synapses. Org. Electron. 39, 64–70 (2016). https://doi.org/10.1016/j.orgel.2016.09.029
R.A. John, N. Tiwari, C. Yaoyi, N. Tiwari. Ankit et al., Ultralow power dual-gated subthreshold oxide neuristors: an enabler for higher order neuronal temporal correlations. ACS Nano 12(11), 11263–11273 (2018). https://doi.org/10.1021/acsnano.8b05903
L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5(1), 3158 (2014). https://doi.org/10.1038/ncomms4158
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Ann. Rev. Physiol. 64(1), 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
S.L. Jackman, J. Turecek, J.E. Belinsky, W.G. Regehr, The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529(7584), 88–91 (2016). https://doi.org/10.1038/nature16507
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski et al., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011). https://doi.org/10.1038/nmat3054
Z. Shi, S. Zhang, J. Yuan, B. Zhu, Y. Jiang et al., Spatiotemporal summation and correlation mimicked in a four-emitter light-induced artificial synapse. SCI Rep-Uk 8(1), 2159 (2018). https://doi.org/10.1038/s41598-018-20595-8
M.S. Fanselow, A.M. Poulos, The neuroscience of mammalian associative learning. Ann. Rev. Psychol. 56, 207–234 (2005)
F. Yu, L.Q. Zhu, H. Xiao, W.T. Gao, Y.B. Guo, Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv. Funct. Mater. 28(44), 1804025 (2018). https://doi.org/10.1002/adfm.201804025