Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications
Corresponding Author: Jian Zhen Ou
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 66
Abstract
Large-area and high-quality two-dimensional crystals are the basis for the development of the next-generation electronic and optical devices. The synthesis of two-dimensional materials in wafer scales is the first critical step for future technology uptake by the industries; however, currently presented as a significant challenge. Substantial efforts have been devoted to producing atomically thin two-dimensional materials with large lateral dimensions, controllable and uniform thicknesses, large crystal domains and minimum defects. In this review, recent advances in synthetic routes to obtain high-quality two-dimensional crystals with lateral sizes exceeding a hundred micrometres are outlined. Applications of the achieved large-area two-dimensional crystals in electronics and optoelectronics are summarised, and advantages and disadvantages of each approach considering ease of the synthesis, defects, grain sizes and uniformity are discussed.
Highlights:
1 Two-dimensional materials including TMDCs, hBN, graphene, non-layered compounds, black phosphorous, Xenes and other emerging materials with large lateral dimensions exceeding a hundred micrometres are summarised detailing their synthetic strategies.
2 Crystal quality optimisations and defect engineering are discussed for large-area two-dimensional materials synthesis.
3 Electronics and optoelectronics applications enabled by large-area two-dimensional materials are explored.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
- H. Lin, Q. Zhu, D. Shu, D. Lin, J. Xu et al., Growth of environmentally stable transition metal selenide films. Nat. Mater. 18(6), 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8
- L. Zhou, K. Xu, A. Zubair, A.D. Liao, W. Fang et al., Large-area synthesis of high-quality uniform few-layer Mote2. J. Am. Chem. Soc. 137(37), 11892–11895 (2015). https://doi.org/10.1021/jacs.5b07452
- Z. Guo, A. Wei, Y. Zhao, L. Tao, Y. Yang, Z. Zheng, D. Luo, J. Liu, J. Li, Controllable growth of large-area atomically thin res2 films and their thickness-dependent optoelectronic properties. Appl. Phys. Lett. 114(15), 153102 (2019). https://doi.org/10.1063/1.5087456
- J. Li, S. Cheng, Z. Liu, W. Zhang, H. Chang, Centimeter-scale, large-area, few-layer 1t′-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J. Phys. Chem. C 122(12), 7005–7012 (2018). https://doi.org/10.1021/acs.jpcc.8b00679
- Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin et al., Synthesis of large-area Mos2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). https://doi.org/10.1002/adma.201104798
- L. Jiao, W. Jie, Z. Yang, Y. Wang, Z. Chen et al., Layer-dependent photoresponse of 2D MoS2 films prepared by pulsed laser deposition. J. Mater. Chem. C 7(9), 2522–2529 (2019). https://doi.org/10.1039/C8TC04612C
- H. Schmalzried, F.A. Kröger, The chemistry of imperfect crystals. Ber. Bunsenges. Phys. Chem. 68(6), 608 (1964). https://doi.org/10.1002/bbpc.19640680615
- F. Kroger, F. Stieltjes, H. Vink, Thermodynamics and formulation of reactions involving imperfections in solids. Philips Res. Rep. 14, 557–601 (1959)
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- X. Xu, Z. Zhang, J. Dong, D. Yi, J. Niu et al., Ultrafast Epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62(15), 1074–1080 (2017). https://doi.org/10.1016/j.scib.2017.07.005
- C. Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
- B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti et al., Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 8, 14482 (2017). https://doi.org/10.1038/ncomms14482
- A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358(6361), 332–335 (2017). https://doi.org/10.1126/science.aao4249
- K.A. Messalea, B.J. Carey, A. Jannat, N. Syed, M. Mohiuddin et al., Bi2O3 monolayers from elemental liquid bismuth. Nanoscale 10(33), 15615–15623 (2018). https://doi.org/10.1039/C8NR03788D
- M.M. Alsaif, S. Kuriakose, S. Walia, N. Syed, A. Jannat et al., 2D SnO/In2O3 van der waals heterostructure photodetector based on printed oxide skin of liquid metals. Adv. Mater. Interfaces 6(7), 1900007 (2019). https://doi.org/10.1002/admi.201900007
- L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu et al., Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570(7759), 91–95 (2019). https://doi.org/10.1038/s41586-019-1226-z
- H. Cun, A. Hemmi, E. Miniussi, C. Bernard, B. Probst et al., Centimeter-sized single-orientation monolayer hexagonal boron nitride with or without nanovoids. Nano Lett. 18(2), 1205–1212 (2018). https://doi.org/10.1021/acs.nanolett.7b04752
- Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, L.-J. Li, Wafer-scale Mos2 thin layers prepared by MoO3 sulfurization. Nanoscale 4(20), 6637–6641 (2012). https://doi.org/10.1039/C2NR31833D
- Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang et al., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11), 10612–10620 (2015). https://doi.org/10.1021/acsnano.5b04258
- L. Guan, B. Xing, X. Niu, D. Wang, Y. Yu et al., Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chem. Commun. 54(6), 595–598 (2018). https://doi.org/10.1039/C7CC08488A
- E.P. Young, J. Park, T. Bai, C. Choi, R.H. DeBlock et al., Wafer-scale black arsenic–phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl. Nano Mater. 1(9), 4737–4745 (2018). https://doi.org/10.1021/acsanm.8b00951
- J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao et al., Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362(6415), 665–670 (2018). https://doi.org/10.1126/science.aat8126
- S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick et al., Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28(21), 4053–4058 (2016). https://doi.org/10.1002/adma.201506171
- J. Lee, S. Pak, P. Giraud, Y.-W. Lee, Y. Cho et al., Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n–n heterojunction devices. Adv. Mater. 29(33), 1702206 (2017). https://doi.org/10.1002/adma.201702206
- C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu et al., Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 11(6), 3371–3384 (2018). https://doi.org/10.1007/s12274-017-1941-4
- J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang et al., Large-area synthesis of highly crystalline Wse2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014). https://doi.org/10.1021/nn405719x
- L.-H. Zeng, D. Wu, S.-H. Lin, C. Xie, H.-Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
- C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Synthesis and optical properties of large-Area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2(2), 131–136 (2014). https://doi.org/10.1002/adom.201300428
- S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
- H. Wang, Y. Chen, M. Duchamp, Q. Zeng, X. Wang et al., Large-area atomic layers of the charge-density-wave conductor TiSe2. Adv. Mater. 30(8), 1704382 (2018). https://doi.org/10.1002/adma.201704382
- J. Shi, X. Chen, L. Zhao, Y. Gong, M. Hong et al., Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater. 30(44), 1804616 (2018). https://doi.org/10.1002/adma.201804616
- S. Seo, H. Choi, S.-Y. Kim, J. Lee, K. Kim, S. Yoon, B.H. Lee, S. Lee, Growth of centimeter-scale monolayer and few-layer WSe2 thin films on SiO2/Si substrate via pulsed laser deposition. Adv. Mater. Interfaces 5(20), 1800524 (2018). https://doi.org/10.1002/admi.201800524
- B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 29(5), 2024–2032 (2017). https://doi.org/10.1021/acs.chemmater.6b03951
- J.S. Lee, S.H. Choi, S.J. Yun, Y.I. Kim, S. Boandoh et al., Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362(6416), 817–821 (2018). https://doi.org/10.1126/science.aau2132
- L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139
- H. Jeong, D.Y. Kim, J. Kim, S. Moon, N. Han et al., Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Sci. Rep. 9(1), 5736 (2019). https://doi.org/10.1038/s41598-019-42236-4
- C. Li, Y. Wu, B. Deng, Y. Xie, Q. Guo et al., Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30(6), 1703748 (2018). https://doi.org/10.1002/adma.201703748
- L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227 (2015). https://doi.org/10.1038/nnano.2014.325
- Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
- R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14(1), 44–49 (2019). https://doi.org/10.1038/s41565-018-0317-6
- R. Wu, A. Gozar, I. Božović, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. NPJ Quantum. Mater. 4(1), 40 (2019). https://doi.org/10.1038/s41535-019-0181-0
- N. Bansal, N. Koirala, M. Brahlek, M.-G. Han, Y. Zhu et al., Robust topological surface states of Bi2Se3 thin films on amorphous SiO2/Si substrate and a large ambipolar gating effect. Appl. Phys. Lett. 104(24), 241606 (2014). https://doi.org/10.1063/1.4884348
- C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang et al., Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013). https://doi.org/10.1126/science.1234414
- J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun et al., High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530 (2017). https://doi.org/10.1038/nnano.2017.43
- W. Zeng, J. Li, L. Feng, H. Pan, X. Zhang, H. Sun, Z. Liu, Synthesis of large-area atomically thin bioi crystals with highly sensitive and controllable photodetection. Adv. Funct. Mater. 29(16), 1900129 (2019). https://doi.org/10.1002/adfm.201900129
- S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, X. Li, Y. Wu, Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18(10), 1091–1097 (2019). https://doi.org/10.1038/s41563-019-0455-8
- F. Wang, Y. Yu, X. Yin, P. Tian, X. Wang, Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties. J. Mater. Chem. A 5(19), 9060–9066 (2017). https://doi.org/10.1039/C7TA01857F
- F. Wang, J.-H. Seo, G. Luo, M.B. Starr, Z. Li, D. Morgan et al., Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 7, 10444 (2016). https://doi.org/10.1038/ncomms10444
- N. Syed, A. Zavabeti, J.Z. Ou, M. Mohiuddin, N. Pillai et al., Printing two-dimensional gallium phosphate out of liquid metal. Nat. Commun. 9(1), 3618 (2018). https://doi.org/10.1038/s41467-018-06124-1
- N. Syed, A. Zavabeti, K.A. Messalea, E. Della Gaspera, A. Elbourne et al., Wafer-sized ultrathin gallium and indium nitride nanosheets through the ammonolysis of liquid metal derived oxides. J. Am. Chem. Soc. 141(1), 104–108 (2019). https://doi.org/10.1021/jacs.8b11483
- M.M.Y.A. Alsaif, N. Pillai, S. Kuriakose, S. Walia et al., Atomically thin Ga2S3 from skin of liquid metals for electrical, optical and sensing applications. ACS Appl. Nano Mater. 2(7), 4665–4672 (2019). https://doi.org/10.1021/acsanm.9b01133
- T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu et al., Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43 (2015). https://doi.org/10.1038/nmat4477
- T. Chen, Y. Zhou, Y. Sheng, X. Wang, S. Zhou, J.H. Warner, Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene. ACS Appl. Mater. Interfaces. 10(8), 7304–7314 (2018). https://doi.org/10.1021/acsami.7b14860
- S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754 (2013). https://doi.org/10.1038/nmat3673
- W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). https://doi.org/10.1021/jacs.5b10519
- Z. Zhang, X. Xu, J. Song, Q. Gao, S. Li, Q. Hu, X. Li, Y. Wu, High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett. 113(20), 202103 (2018). https://doi.org/10.1063/1.5051781
- J. Chu, Y. Zhang, Y. Wen, R. Qiao, C. Wu et al., Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 19(3), 2154–2161 (2019). https://doi.org/10.1021/acs.nanolett.9b00386
- W. Yu, J. Li, T.S. Herng, Z. Wang, X. Zhao et al., Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31(40), 1903779 (2019). https://doi.org/10.1002/adma.201903779
- K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
- K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). https://doi.org/10.1021/nl2043612
- L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, J.-B. Xu, Centimeter-scale cvd growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries. ACS Appl. Mater. Interfaces 9(13), 12073–12081 (2017). https://doi.org/10.1021/acsami.7b00420
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719
- X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245
- Y. Zhao, H. Lee, W. Choi, W. Fei, C.J. Lee, Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Adv. 7(45), 27969–27973 (2017). https://doi.org/10.1039/C7RA03642F
- H. Tian, Y. He, P. Das, Z. Cui, W. Shi, A. Khanaki, R.K. Lake, J. Liu, Growth dynamics of millimeter-sized single-crystal hexagonal boron nitride monolayers on secondary recrystallized Ni (100) substrates. Adv. Mater. Interfaces 6(22), 1901198 (2019). https://doi.org/10.1002/admi.201901198
- Z. Xu, H. Tian, A. Khanaki, R. Zheng, M. Sujam, J. Liu, Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy. Sci. Rep. 7, 43100 (2017). https://doi.org/10.1038/srep43100
- M. Marx, S. Nordmann, J. Knoch, C. Franzen, C. Stampfer et al., Large-area MoS2 deposition via MOVPE. J. Cryst. Growth 464, 100–104 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.020
- D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kümmell, G. Bacher, Scalable large-area p–i–n light-emitting diodes based on WS2 monolayers grown via MOCVD. ACS Photonics 6(8), 1832–1839 (2019). https://doi.org/10.1021/acsphotonics.9b00311
- H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao, T. LaGrange, A. Kis, A. Radenovic, Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12(10), 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9
- A. Jannat, Q. Yao, A. Zavabeti, N. Syed, B.Y. Zhang et al., Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Mater. Horiz. (2019). https://doi.org/10.1039/C9MH01365B
- R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. 48(1), 136–143 (2015). https://doi.org/10.1021/ar500311w
- H. Tao, Y. Zhang, Y. Gao, Z. Sun, C. Yan, J. Texter, Scalable exfoliation and dispersion of two-dimensional materials—an update. Phys. Chem. Chem. Phys. 19(2), 921–960 (2017). https://doi.org/10.1039/C6CP06813H
- X. Cai, Y. Luo, B. Liu, H.-M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/C8CS00254A
- Z. Shi, Q. Li, R. Jiang, C. Zhang, W. Yin, T. Wu, X. Xie, Influence of oxygen on the synthesis of large area hexagonal boron nitride on Fe2B substrate. Mater. Lett. 247, 52–55 (2019). https://doi.org/10.1016/j.matlet.2019.03.095
- D. Geng, X. Zhao, K. Zhou, W. Fu, Z. Xu, S.J. Pennycook, L.K. Ang, H.Y. Yang, From self-assembly hierarchical H-Bn patterns to centimeter-scale uniform monolayer H-bn film. Adv. Mater. Interfaces 6(1), 1801493 (2019). https://doi.org/10.1002/admi.201801493
- F. Hui, M.A. Villena, W. Fang, A.-Y. Lu, J. Kong et al., Synthesis of large-area multilayer hexagonal boron nitride sheets on iron substrates and its use in resistive switching devices. 2D Mater. 5(3), 031011 (2018). https://doi.org/10.1088/20531583/aac615
- J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/C8CS00024G
- P. Masih Das, J.P. Thiruraman, Y.-C. Chou, G. Danda, M. Drndić, Centimeter-scale nanoporous 2D membranes and Ion transport: porous Mos2 monolayers in a few-layer matrix. Nano Lett. 19(1), 392–399 (2019). https://doi.org/10.1021/acs.nanolett.8b04155
- P. Liu, T. Luo, J. Xing, H. Xu, H. Hao, H. Liu, J. Dong, Large-area Ws2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett. 12(1), 558 (2017). https://doi.org/10.1186/s11671-017-2329-9
- S.J. Yun, S.H. Chae, H. Kim, J.C. Park, J.-H. Park et al., Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9(5), 5510–5519 (2015). https://doi.org/10.1021/acsnano.5b01529
- C. Lan, C. Li, Y. Yin, Y. Liu, Large-area synthesis of monolayer Ws2 and its ambient-sensitive photo-detecting performance. Nanoscale 7(14), 5974–5980 (2015). https://doi.org/10.1039/C5NR01205H
- S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas et al., Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 18(6), 3738–3745 (2018). https://doi.org/10.1021/acs.nanolett.8b00928
- M. Velický, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12(10), 10463–10472 (2018). https://doi.org/10.1021/acsnano.8b06101
- H.M. Gramling, C.M. Towle, S.B. Desai, H. Sun, E.C. Lewis et al., Spatially precise transfer of patterned monolayer WS2 and MoS2 with features larger than 104 μm2 directly from multilayer sources. ACS Appl. Electron. Mater. 1(3), 407–416 (2019). https://doi.org/10.1021/acsaelm.8b00128
- J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu et al., Very Large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139(26), 9019–9025 (2017). https://doi.org/10.1021/jacs.7b04332
- Q. Zhang, J. Lu, Z. Wang, Z. Dai, Y. Zhang et al., Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation. Adv. Opt. Mater. 6(12), 1701347 (2018). https://doi.org/10.1002/adom.201701347
- Z. Zhao, D. Wu, J. Guo, E. Wu, C. Jia et al., Synthesis of large-area 2D WS2 films and fabrication of a heterostructure for self-powered ultraviolet photodetection and imaging applications. J. Mater. Chem. C 7(39), 12121–12126 (2019). https://doi.org/10.1039/C9TC03866C
- A.B. Maghirang, Z.-Q. Huang, R.A.B. Villaos, C.-H. Hsu, L.-Y. Feng et al., Predicting two-dimensional topological phases in janus materials by substitutional doping in transition metal dichalcogenide monolayers. NPJ 2D Mater. Appl. 3(1), 35 (2019). https://doi.org/10.1038/s41699-019-0118-2
- K.K. Kim, H.S. Lee, Y.H. Lee, Synthesis of hexagonal boron nitride heterostructures for 2D van der waals electronics. Chem. Soc. Rev. 47(16), 6342–6369 (2018). https://doi.org/10.1039/C8CS00450A
- X.B. Ren, J.C. Dong, P. Yang, J.D. Li, G.Y. Lu et al., Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride. Phys. Rev. Mater. 3(1), 014004 (2019). https://doi.org/10.1103/PhysRevMaterials.3.014004
- G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, M. Jiang, Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015). https://doi.org/10.1038/ncomms7160
- B.C. Bayer, S. Caneva, T.J. Pennycook, J. Kotakoski, C. Mangler, S. Hofmann, J.C. Meyer, Introducing overlapping grain boundaries in chemical vapor deposited hexagonal boron nitride monolayer films. ACS Nano 11(5), 4521–4527 (2017). https://doi.org/10.1021/acsnano.6b08315
- X. Tong, K. Liu, M. Zeng, L. Fu, Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 1(4), 460–478 (2019). https://doi.org/10.1002/inf2.12038
- S.M. Kim, A. Hsu, M.H. Park, S.H. Chae, S.J. Yun et al., Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015). https://doi.org/10.1038/ncomms9662
- J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi et al., Stitching H-Bn by atomic layer deposition of lif as a stable interface for lithium metal anode. Sci. Adv. 3(11), eaa3170 (2017). https://doi.org/10.1126/sciadv.aao3170
- H. Park, T.K. Kim, S.W. Cho, H.S. Jang, S.I. Lee, S.-Y. Choi, Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition. Sci. Rep. 7, 40091 (2017). https://doi.org/10.1038/srep40091
- A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16(2), 163–169 (2017). https://doi.org/10.1038/nmat4802
- F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Bismuthene on a sic substrate: a candidate for a high-temperature quantum spin hall material. Science 357(6348), 287–290 (2017). https://doi.org/10.1126/science.aai8142
- H.-S. Tsai, Y.-Z. Chen, H. Medina, T.-Y. Su, T.-S. Chou et al., Direct formation of large-scale multi-layered germanene on Si substrate. Phys. Chem. Chem. Phys. 17(33), 21389–21393 (2015). https://doi.org/10.1039/C5CP02469B
- J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, G. Le Lay, Large area planar stanene epitaxially grown on Ag(1 1 1). 2D Mater. 5(2), 025002 (2018). https://doi.org/10.1088/2053-1583/aa9ea0
- J. Yuhara, B. He, N. Matsunami, M. Nakatake, G. Le Lay, Graphene’s latest cousin: plumbene epitaxial growth on a “Nano Watercube”. Adv. Mater. 31(27), 1901017 (2019). https://doi.org/10.1002/adma.201901017
- E.S. Walker, S.R. Na, D. Jung, S.D. March, J.-S. Kim et al., Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 16(11), 6931–6938 (2016). https://doi.org/10.1021/acs.nanolett.6b02931
- J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou et al., Rise of silicene: a competitive 2D material. Prog. Mater Sci. 83, 24–151 (2016). https://doi.org/10.1016/j.pmatsci.2016.04.001
- A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080
- B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563 (2016). https://doi.org/10.1038/nchem.2491
- Z. Yang, Z. Wu, Y. Lyu, J. Hao, Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. InfoMat 1(1), 98–107 (2019). https://doi.org/10.1002/inf2.12001
- S.K. Pradhan, R. Barik, Observation of the magneto-transport property in a millimeter-long topological insulator Bi2Te3 thin-film hall bar device. Appl. Mater. Today 7, 55–59 (2017). https://doi.org/10.1016/j.apmt.2017.02.002
- J. Krumrain, G. Mussler, S. Borisova, T. Stoica, L. Plucinski, C.M. Schneider, D. Grützmacher, MBe growth optimization of topological insulator Bi2Te3 films. J. Cryst. Growth 324(1), 115–118 (2011). https://doi.org/10.1016/j.jcrysgro.2011.03.008
- J.E. Brom, Growth and Characterization of Bismuth Selenide Thin Films by Chemical Vapor Deposition. Ph.D. Thesis (2014)
- C.-M. Hyun, J.-H. Choi, S.W. Lee, S.-Y. Seo, M.-J. Lee, S.-H. Kwon, J.-H. Ahn, Synthesis of Bi2Te3 single crystals with lateral size up to tens of micrometers by vapor transport and its potential for thermoelectric applications. Cryst. Growth Des. 19(4), 2024–2029 (2019). https://doi.org/10.1021/acs.cgd.8b01931
- X. Li, F. Cui, Q. Feng, G. Wang, X. Xu et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8(45), 18956–18962 (2016). https://doi.org/10.1039/C6NR07233J
- F. Massoth, D. Scarpiello, Kinetics of bismuth oxide reduction with propylene. J. Catal. 21(2), 225–238 (1971). https://doi.org/10.1016/0021-9517(71)90141-2
- B. Trawiński, B. Bochentyn, B. Kusz, A Study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere. Thermochim. Acta 669, 99–108 (2018). https://doi.org/10.1016/j.tca.2018.09.010
- Y. Dou, L. Zhang, X. Xu, Z. Sun, T. Liao, S.X. Dou, Atomically thin non-layered nanomaterials for energy storage and conversion. Chem. Soc. Rev. 46(23), 7338–7373 (2017). https://doi.org/10.1039/C7CS00418D
- C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 7873 (2015). https://doi.org/10.1038/ncomms8873
- W. Yang, X. Zhang, Y. Xie, Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today 11(6), 793–816 (2016). https://doi.org/10.1016/j.nantod.2016.10.004
- T. Maluangnont, K. Matsuba, F. Geng, R. Ma, Y. Yamauchi, T. Sasaki, Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate. Chem. Mater. 25(15), 3137–3146 (2013). https://doi.org/10.1021/cm401409s
- X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou et al., Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011). https://doi.org/10.1038/ncomms1291
- S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice, Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mater. 12(19), 1430–1432 (2000). https://doi.org/10.1002/1521-4095(200010)12:19%3c1430:AID-ADMA1430%3e3.0.CO;2-8
- T. Li, H. Jin, Z. Liang, L. Huang, Y. Lu et al., Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 10(15), 6844–6849 (2018). https://doi.org/10.1039/C8NR01556B
- C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 Nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9(2), 1730–1739 (2015). https://doi.org/10.1021/nn506548d
- K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012
- L. Qin, B. Kattel, T.R. Kafle, M. Alamri, M. Gong et al., Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Adv. Mater. Interfaces 6(1), 1801419 (2019). https://doi.org/10.1002/admi.201801419
- L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin et al., Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14(6), 3055–3063 (2014). https://doi.org/10.1021/nl404795z
- I.V. Vlassiouk, Y. Stehle, P.R. Pudasaini, R.R. Unocic, P.D. Rack et al., Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17(4), 318–322 (2018). https://doi.org/10.1038/s41563-018-0019-3
- A. Van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22(3), 267 (1967)
- X. Xue, Q. Xu, H. Wang, S. Liu, Q. Jiang et al., Gas-flow-driven aligned growth of graphene on liquid copper. Chem. Mater. 31(4), 1231–1236 (2019). https://doi.org/10.1021/acs.chemmater.8b03998
- X. Sun, L. Lin, L. Sun, J. Zhang, D. Rui et al., Low-temperature and rapid growth of large single-crystalline graphene with ethane. Small 14(3), 1702916 (2018). https://doi.org/10.1002/smll.201702916
- A. Koh, Y. Foong, D.H. Chua, Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl. Phys. Lett. 97(11), 114102 (2010). https://doi.org/10.1063/1.3489993
- A. Shivayogimath, P.R. Whelan, D.M.A. Mackenzie, B. Luo, D. Huang et al., Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 31(7), 2328–2336 (2019). https://doi.org/10.1021/acs.chemmater.8b04196
- J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Wetting-induced climbing for transferring interfacially assembled large-area ultrathin pristine graphene film. Adv. Mater. 31(10), 1806742 (2019). https://doi.org/10.1002/adma.201806742
- A. Karmakar, F. Vandrevala, F. Gollier, M.A. Philip, S. Shahi, E. Einarsson, Approaching completely continuous centimeter-scale graphene by copolymer-assisted transfer. RSC Adv. 8(4), 1725–1729 (2018). https://doi.org/10.1039/C7RA12328K
- T. Choi, S.J. Kim, S. Park, T. Hwang, Y. Jeon, B.H. Hong, 2015 IEEE Int. Electron Dev. Meet. (IEDM). 27. 21-27.24 (2015). https://doi.org/10.1109/iedm.2015.7409784
- Z. Huang, A. Zhou, J. Wu, Y. Chen, X. Lan, H. Bai, L. Li, Bottom-up preparation of ultrathin 2D aluminum oxide nanosheets by duplicating graphene oxide. Adv. Mater. 28(8), 1703–1708 (2016). https://doi.org/10.1002/adma.201504484
- Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M.A. Pimenta, M. Terrones, Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3(2), 022002 (2016). https://doi.org/10.1088/2053-1583/3/2/022002
- J. Li, W. Su, F. Chen, L. Fu, S. Ding, K. Song, X. Huang, L. Zhang, Atypical defect-mediated photoluminescence and resonance raman spectroscopy of monolayer Ws2. J. Phys. Chem. C 123(6), 3900–3907 (2019). https://doi.org/10.1021/acs.jpcc.8b11647
- P. Vancsó, G.Z. Magda, J. Pető, J.-Y. Noh, Y.-S. Kim, C. Hwang, L.P. Biró, L. Tapasztó, The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016). https://doi.org/10.1038/srep29726
- F. Cheng, Z. Ding, H. Xu, S.J.R. Tan, I. Abdelwahab, J. Su, P. Zhou, J. Martin, K.P. Loh, Epitaxial growth of single-layer niobium selenides with controlled stoichiometric phases. Adv. Mater. Interfaces 5(15), 1800429 (2018). https://doi.org/10.1002/admi.201800429
- W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
- P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9(3), 3023–3031 (2015). https://doi.org/10.1021/nn5072073
- A.L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv et al., Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7(6), 5235–5242 (2013). https://doi.org/10.1021/nn400971k
- N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E.K.L. Yeow, T. Yu, Nonblinking, Intense two-dimensional light emitter: monolayer WS2 triangles. ACS Nano 7(12), 10985–10994 (2013). https://doi.org/10.1021/nn4046002
- I.S. Kim, V.K. Sangwan, D. Jariwala, J.D. Wood, S. Park et al., Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 8(10), 10551–10558 (2014). https://doi.org/10.1021/nn503988x
- A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554 (2013). https://doi.org/10.1038/nmat3633
- R.G. Mendes, J. Pang, A. Bachmatiuk, H.Q. Ta, L. Zhao, T. Gemming, L. Fu, Z. Liu, M.H. Rümmeli, Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13(2), 978–995 (2019). https://doi.org/10.1021/acsnano.8b08079
- Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu et al., Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138(25), 7965–7972 (2016). https://doi.org/10.1021/jacs.6b03714
- X. Ding, F. Peng, J. Zhou, W. Gong, G. Slaven, K.P. Loh, C.T. Lim, D.T. Leong, Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10(1), 41 (2019). https://doi.org/10.1038/s41467-018-07835-1
- J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
- H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109(3), 035503 (2012). https://doi.org/10.1103/PhysRevLett.109.035503
- Z. Liu, K. Suenaga, Z. Wang, Z. Shi, E. Okunishi, S. Iijima, Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon. Nat. Commun. 2, 213 (2011). https://doi.org/10.1038/ncomms1224
- M.R. Islam, N. Kang, U. Bhanu, H.P. Paudel, M. Erementchouk, L. Tetard, M.N. Leuenberger, S.I. Khondaker, Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6(17), 10033–10039 (2014). https://doi.org/10.1039/C4NR02142H
- M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai, K. Wakabayashi, M.S. Fuhrer, K. Ueno, K. Tsukagoshi, Self-limiting layer-by-layer oxidation of atomically thin WSe2. Nano Lett. 15(3), 2067–2073 (2015). https://doi.org/10.1021/nl5049753
- M. Chen, H. Nam, S. Wi, G. Priessnitz, I.M. Gunawan, X. Liang, Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8(4), 4023–4032 (2014). https://doi.org/10.1021/nn501181t
- T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, T. Lee, Irradiation effects of high-energy proton beams on MoS2 field effect transistors. ACS Nano 8(3), 2774–2781 (2014). https://doi.org/10.1021/nn4064924
- S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013). https://doi.org/10.1038/srep02657
- J. Feng, K. Liu, M. Graf, M. Lihter, R.D. Bulushev et al., Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15(5), 3431–3438 (2015). https://doi.org/10.1021/acs.nanolett.5b00768
- B. Groven, A. Nalin Mehta, H. Bender, J. Meersschaut, T. Nuytten et al., Two-dimensional crystal grain size tuning in WS2 atomic layer deposition: an insight in the nucleation mechanism. Chem. Mater. 30(21), 7648–7663 (2018). https://doi.org/10.1021/acs.chemmater.8b02924
- S. Feldmann, S. Macpherson, S.P. Senanayak, M. Abdi-Jalebi, J.P.H. Rivett et al., Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nat. Photonics 10, 15–20 (2019). https://doi.org/10.1038/s41566-019-0546-8
- C.-P. Lu, G. Li, J. Mao, L.-M. Wang, E.Y. Andrei, Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 14(8), 4628–4633 (2014). https://doi.org/10.1021/nl501659n
- H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
- W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, P. Avouris, Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014). https://doi.org/10.1038/ncomms4087
- A. McCreary, A. Berkdemir, J. Wang, M.A. Nguyen, A.L. Elías et al., Distinct Photoluminescence and raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods. J. Mater. Res. Technol. 31(7), 931–944 (2016). https://doi.org/10.1557/jmr.2016.47
- N. Kang, H.P. Paudel, M.N. Leuenberger, L. Tetard, S.I. Khondaker, Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118(36), 21258–21263 (2014). https://doi.org/10.1021/jp506964m
- W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, P.-H. Tan, Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2and WSe2. 2D Mater. 3(2), 025016 (2016). https://doi.org/10.1088/2053-1583/3/2/025016
- S. Yuan, R. Roldán, M.I. Katsnelson, F. Guinea, Effect of point defects on the optical and transport properties of MoS2 and WS2. Phys. Rev. B 90(4), 041402 (2014). https://doi.org/10.1103/PhysRevB.90.041402
- Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8(5), 4672–4677 (2014). https://doi.org/10.1021/nn5004327
- C. Sun, P. Wang, H. Wang, C. Xu, J. Zhu et al., Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 12(7), 1613–1618 (2019). https://doi.org/10.1007/s12274-019-2400-1
- Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5), 4202–4209 (2013). https://doi.org/10.1021/nn400644t
- S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Effect of disorder on raman scattering of single-layer MoS2. Phys. Rev. B 91(19), 195411 (2015). https://doi.org/10.1103/PhysRevB.91.195411
- T.S. Sreeprasad, P. Nguyen, N. Kim, V. Berry, Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett. 13(9), 4434–4441 (2013). https://doi.org/10.1021/nl402278y
- X. Zhang, T.H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala et al., Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 18(2), 1049–1056 (2018). https://doi.org/10.1021/acs.nanolett.7b04521
- H. Lin, Q. Zhu, D. Shu, D. Lin, J. Xu, X. Huang, W. Shi, X. Xi, J. Wang, L. Gao, Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8
- T. Daeneke, P. Atkin, R. Orrell-Trigg, A. Zavabeti, T. Ahmed et al., Wafer-scale synthesis of semiconducting SnO monolayers from interfacial oxide layers of metallic liquid tin. ACS Nano 11(11), 10974–10983 (2017). https://doi.org/10.1021/acsnano.7b04856
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- L. Tang, C. Teng, Y. Luo, U. Khan, H. Pan et al., Confined van der waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research 2019, 10 (2019). https://doi.org/10.1155/2019/2763704
- J.L.M. Östling, Scalable fabrication of 2D Semiconducting crystals for future electronics. Electronics 4(4), 1033–1061 (2015). https://doi.org/10.3390/electronics4041033
- H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong et al., Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9(11), 1974–1981 (2013). https://doi.org/10.1002/smll.201202919
- A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012). https://doi.org/10.1021/nl301164v
- R. Yue, Y. Nie, L.A. Walsh, R. Addou, C. Liang et al., Nucleation and growth of Wse2: enabling large grain transition metal dichalcogenides. 2D Mater. 4(4), 045019 (2017). https://doi.org/10.1088/2053-1583/aa8ab5
- K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart et al., Emergence of liquid metals in nanotechnology. ACS Nano 13(7), 7388–7395 (2019). https://doi.org/10.1021/acsnano.9b04843
- A. Arash, T. Ahmed, A. Govind Rajan, S. Walia, F. Rahman et al., Large-area synthesis of 2D MoO3−X for enhanced optoelectronic applications. 2D Mater. 6(3), 035031 (2019). https://doi.org/10.1088/2053-1583/ab1114
- F. Rahman, A. Zavabeti, M.A. Rahman, A. Arash, A. Mazumder et al., Dual selective gas sensing characteristics of 2D Α-MoO3–X via a facile transfer process. ACS Appl. Mater. Interfaces 11(43), 40189–40195 (2019). https://doi.org/10.1021/acsami.9b11311
References
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). https://doi.org/10.1038/nature14417
H. Lin, Q. Zhu, D. Shu, D. Lin, J. Xu et al., Growth of environmentally stable transition metal selenide films. Nat. Mater. 18(6), 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8
L. Zhou, K. Xu, A. Zubair, A.D. Liao, W. Fang et al., Large-area synthesis of high-quality uniform few-layer Mote2. J. Am. Chem. Soc. 137(37), 11892–11895 (2015). https://doi.org/10.1021/jacs.5b07452
Z. Guo, A. Wei, Y. Zhao, L. Tao, Y. Yang, Z. Zheng, D. Luo, J. Liu, J. Li, Controllable growth of large-area atomically thin res2 films and their thickness-dependent optoelectronic properties. Appl. Phys. Lett. 114(15), 153102 (2019). https://doi.org/10.1063/1.5087456
J. Li, S. Cheng, Z. Liu, W. Zhang, H. Chang, Centimeter-scale, large-area, few-layer 1t′-WTe2 films by chemical vapor deposition and its long-term stability in ambient condition. J. Phys. Chem. C 122(12), 7005–7012 (2018). https://doi.org/10.1021/acs.jpcc.8b00679
Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin et al., Synthesis of large-area Mos2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012). https://doi.org/10.1002/adma.201104798
L. Jiao, W. Jie, Z. Yang, Y. Wang, Z. Chen et al., Layer-dependent photoresponse of 2D MoS2 films prepared by pulsed laser deposition. J. Mater. Chem. C 7(9), 2522–2529 (2019). https://doi.org/10.1039/C8TC04612C
H. Schmalzried, F.A. Kröger, The chemistry of imperfect crystals. Ber. Bunsenges. Phys. Chem. 68(6), 608 (1964). https://doi.org/10.1002/bbpc.19640680615
F. Kroger, F. Stieltjes, H. Vink, Thermodynamics and formulation of reactions involving imperfections in solids. Philips Res. Rep. 14, 557–601 (1959)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
X. Xu, Z. Zhang, J. Dong, D. Yi, J. Niu et al., Ultrafast Epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62(15), 1074–1080 (2017). https://doi.org/10.1016/j.scib.2017.07.005
C. Zhang, B. Anasori, A. Seral-Ascaso, S.-H. Park, N. McEvoy et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29(36), 1702678 (2017). https://doi.org/10.1002/adma.201702678
B.J. Carey, J.Z. Ou, R.M. Clark, K.J. Berean, A. Zavabeti et al., Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 8, 14482 (2017). https://doi.org/10.1038/ncomms14482
A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358(6361), 332–335 (2017). https://doi.org/10.1126/science.aao4249
K.A. Messalea, B.J. Carey, A. Jannat, N. Syed, M. Mohiuddin et al., Bi2O3 monolayers from elemental liquid bismuth. Nanoscale 10(33), 15615–15623 (2018). https://doi.org/10.1039/C8NR03788D
M.M. Alsaif, S. Kuriakose, S. Walia, N. Syed, A. Jannat et al., 2D SnO/In2O3 van der waals heterostructure photodetector based on printed oxide skin of liquid metals. Adv. Mater. Interfaces 6(7), 1900007 (2019). https://doi.org/10.1002/admi.201900007
L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu et al., Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570(7759), 91–95 (2019). https://doi.org/10.1038/s41586-019-1226-z
H. Cun, A. Hemmi, E. Miniussi, C. Bernard, B. Probst et al., Centimeter-sized single-orientation monolayer hexagonal boron nitride with or without nanovoids. Nano Lett. 18(2), 1205–1212 (2018). https://doi.org/10.1021/acs.nanolett.7b04752
Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, L.-J. Li, Wafer-scale Mos2 thin layers prepared by MoO3 sulfurization. Nanoscale 4(20), 6637–6641 (2012). https://doi.org/10.1039/C2NR31833D
Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang et al., Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11), 10612–10620 (2015). https://doi.org/10.1021/acsnano.5b04258
L. Guan, B. Xing, X. Niu, D. Wang, Y. Yu et al., Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chem. Commun. 54(6), 595–598 (2018). https://doi.org/10.1039/C7CC08488A
E.P. Young, J. Park, T. Bai, C. Choi, R.H. DeBlock et al., Wafer-scale black arsenic–phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl. Nano Mater. 1(9), 4737–4745 (2018). https://doi.org/10.1021/acsanm.8b00951
J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao et al., Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362(6415), 665–670 (2018). https://doi.org/10.1126/science.aat8126
S.B. Desai, S.R. Madhvapathy, M. Amani, D. Kiriya, M. Hettick et al., Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28(21), 4053–4058 (2016). https://doi.org/10.1002/adma.201506171
J. Lee, S. Pak, P. Giraud, Y.-W. Lee, Y. Cho et al., Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n–n heterojunction devices. Adv. Mater. 29(33), 1702206 (2017). https://doi.org/10.1002/adma.201702206
C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu et al., Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res. 11(6), 3371–3384 (2018). https://doi.org/10.1007/s12274-017-1941-4
J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang et al., Large-area synthesis of highly crystalline Wse2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014). https://doi.org/10.1021/nn405719x
L.-H. Zeng, D. Wu, S.-H. Lin, C. Xie, H.-Y. Yuan et al., Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29(1), 1806878 (2019). https://doi.org/10.1002/adfm.201806878
C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Synthesis and optical properties of large-Area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2(2), 131–136 (2014). https://doi.org/10.1002/adom.201300428
S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu et al., Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1(1), 60–66 (2015). https://doi.org/10.1016/j.apmt.2015.09.001
H. Wang, Y. Chen, M. Duchamp, Q. Zeng, X. Wang et al., Large-area atomic layers of the charge-density-wave conductor TiSe2. Adv. Mater. 30(8), 1704382 (2018). https://doi.org/10.1002/adma.201704382
J. Shi, X. Chen, L. Zhao, Y. Gong, M. Hong et al., Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater. 30(44), 1804616 (2018). https://doi.org/10.1002/adma.201804616
S. Seo, H. Choi, S.-Y. Kim, J. Lee, K. Kim, S. Yoon, B.H. Lee, S. Lee, Growth of centimeter-scale monolayer and few-layer WSe2 thin films on SiO2/Si substrate via pulsed laser deposition. Adv. Mater. Interfaces 5(20), 1800524 (2018). https://doi.org/10.1002/admi.201800524
B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 29(5), 2024–2032 (2017). https://doi.org/10.1021/acs.chemmater.6b03951
J.S. Lee, S.H. Choi, S.J. Yun, Y.I. Kim, S. Boandoh et al., Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362(6416), 817–821 (2018). https://doi.org/10.1126/science.aau2132
L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139
H. Jeong, D.Y. Kim, J. Kim, S. Moon, N. Han et al., Wafer-scale and selective-area growth of high-quality hexagonal boron nitride on Ni(111) by metal-organic chemical vapor deposition. Sci. Rep. 9(1), 5736 (2019). https://doi.org/10.1038/s41598-019-42236-4
C. Li, Y. Wu, B. Deng, Y. Xie, Q. Guo et al., Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30(6), 1703748 (2018). https://doi.org/10.1002/adma.201703748
L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227 (2015). https://doi.org/10.1038/nnano.2014.325
Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14(1), 44–49 (2019). https://doi.org/10.1038/s41565-018-0317-6
R. Wu, A. Gozar, I. Božović, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron. NPJ Quantum. Mater. 4(1), 40 (2019). https://doi.org/10.1038/s41535-019-0181-0
N. Bansal, N. Koirala, M. Brahlek, M.-G. Han, Y. Zhu et al., Robust topological surface states of Bi2Se3 thin films on amorphous SiO2/Si substrate and a large ambipolar gating effect. Appl. Phys. Lett. 104(24), 241606 (2014). https://doi.org/10.1063/1.4884348
C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang et al., Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013). https://doi.org/10.1126/science.1234414
J. Wu, H. Yuan, M. Meng, C. Chen, Y. Sun et al., High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530 (2017). https://doi.org/10.1038/nnano.2017.43
W. Zeng, J. Li, L. Feng, H. Pan, X. Zhang, H. Sun, Z. Liu, Synthesis of large-area atomically thin bioi crystals with highly sensitive and controllable photodetection. Adv. Funct. Mater. 29(16), 1900129 (2019). https://doi.org/10.1002/adfm.201900129
S. Li, M. Tian, Q. Gao, M. Wang, T. Li, Q. Hu, X. Li, Y. Wu, Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18(10), 1091–1097 (2019). https://doi.org/10.1038/s41563-019-0455-8
F. Wang, Y. Yu, X. Yin, P. Tian, X. Wang, Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties. J. Mater. Chem. A 5(19), 9060–9066 (2017). https://doi.org/10.1039/C7TA01857F
F. Wang, J.-H. Seo, G. Luo, M.B. Starr, Z. Li, D. Morgan et al., Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nat. Commun. 7, 10444 (2016). https://doi.org/10.1038/ncomms10444
N. Syed, A. Zavabeti, J.Z. Ou, M. Mohiuddin, N. Pillai et al., Printing two-dimensional gallium phosphate out of liquid metal. Nat. Commun. 9(1), 3618 (2018). https://doi.org/10.1038/s41467-018-06124-1
N. Syed, A. Zavabeti, K.A. Messalea, E. Della Gaspera, A. Elbourne et al., Wafer-sized ultrathin gallium and indium nitride nanosheets through the ammonolysis of liquid metal derived oxides. J. Am. Chem. Soc. 141(1), 104–108 (2019). https://doi.org/10.1021/jacs.8b11483
M.M.Y.A. Alsaif, N. Pillai, S. Kuriakose, S. Walia et al., Atomically thin Ga2S3 from skin of liquid metals for electrical, optical and sensing applications. ACS Appl. Nano Mater. 2(7), 4665–4672 (2019). https://doi.org/10.1021/acsanm.9b01133
T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu et al., Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43 (2015). https://doi.org/10.1038/nmat4477
T. Chen, Y. Zhou, Y. Sheng, X. Wang, S. Zhou, J.H. Warner, Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene. ACS Appl. Mater. Interfaces. 10(8), 7304–7314 (2018). https://doi.org/10.1021/acsami.7b14860
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi et al., Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754 (2013). https://doi.org/10.1038/nmat3673
W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015). https://doi.org/10.1021/jacs.5b10519
Z. Zhang, X. Xu, J. Song, Q. Gao, S. Li, Q. Hu, X. Li, Y. Wu, High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett. 113(20), 202103 (2018). https://doi.org/10.1063/1.5051781
J. Chu, Y. Zhang, Y. Wen, R. Qiao, C. Wu et al., Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 19(3), 2154–2161 (2019). https://doi.org/10.1021/acs.nanolett.9b00386
W. Yu, J. Li, T.S. Herng, Z. Wang, X. Zhao et al., Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31(40), 1903779 (2019). https://doi.org/10.1002/adma.201903779
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102
K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12(3), 1538–1544 (2012). https://doi.org/10.1021/nl2043612
L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui, H. Chen, X. Li, J.-B. Xu, Centimeter-scale cvd growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries. ACS Appl. Mater. Interfaces 9(13), 12073–12081 (2017). https://doi.org/10.1021/acsami.7b00420
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719
X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). https://doi.org/10.1126/science.1171245
Y. Zhao, H. Lee, W. Choi, W. Fei, C.J. Lee, Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Adv. 7(45), 27969–27973 (2017). https://doi.org/10.1039/C7RA03642F
H. Tian, Y. He, P. Das, Z. Cui, W. Shi, A. Khanaki, R.K. Lake, J. Liu, Growth dynamics of millimeter-sized single-crystal hexagonal boron nitride monolayers on secondary recrystallized Ni (100) substrates. Adv. Mater. Interfaces 6(22), 1901198 (2019). https://doi.org/10.1002/admi.201901198
Z. Xu, H. Tian, A. Khanaki, R. Zheng, M. Sujam, J. Liu, Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy. Sci. Rep. 7, 43100 (2017). https://doi.org/10.1038/srep43100
M. Marx, S. Nordmann, J. Knoch, C. Franzen, C. Stampfer et al., Large-area MoS2 deposition via MOVPE. J. Cryst. Growth 464, 100–104 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.020
D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kümmell, G. Bacher, Scalable large-area p–i–n light-emitting diodes based on WS2 monolayers grown via MOCVD. ACS Photonics 6(8), 1832–1839 (2019). https://doi.org/10.1021/acsphotonics.9b00311
H. Cun, M. Macha, H. Kim, K. Liu, Y. Zhao, T. LaGrange, A. Kis, A. Radenovic, Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 12(10), 2646–2652 (2019). https://doi.org/10.1007/s12274-019-2502-9
A. Jannat, Q. Yao, A. Zavabeti, N. Syed, B.Y. Zhang et al., Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Mater. Horiz. (2019). https://doi.org/10.1039/C9MH01365B
R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. 48(1), 136–143 (2015). https://doi.org/10.1021/ar500311w
H. Tao, Y. Zhang, Y. Gao, Z. Sun, C. Yan, J. Texter, Scalable exfoliation and dispersion of two-dimensional materials—an update. Phys. Chem. Chem. Phys. 19(2), 921–960 (2017). https://doi.org/10.1039/C6CP06813H
X. Cai, Y. Luo, B. Liu, H.-M. Cheng, Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47(16), 6224–6266 (2018). https://doi.org/10.1039/C8CS00254A
Z. Shi, Q. Li, R. Jiang, C. Zhang, W. Yin, T. Wu, X. Xie, Influence of oxygen on the synthesis of large area hexagonal boron nitride on Fe2B substrate. Mater. Lett. 247, 52–55 (2019). https://doi.org/10.1016/j.matlet.2019.03.095
D. Geng, X. Zhao, K. Zhou, W. Fu, Z. Xu, S.J. Pennycook, L.K. Ang, H.Y. Yang, From self-assembly hierarchical H-Bn patterns to centimeter-scale uniform monolayer H-bn film. Adv. Mater. Interfaces 6(1), 1801493 (2019). https://doi.org/10.1002/admi.201801493
F. Hui, M.A. Villena, W. Fang, A.-Y. Lu, J. Kong et al., Synthesis of large-area multilayer hexagonal boron nitride sheets on iron substrates and its use in resistive switching devices. 2D Mater. 5(3), 031011 (2018). https://doi.org/10.1088/20531583/aac615
J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen et al., A library of atomically thin metal chalcogenides. Nature 556(7701), 355–359 (2018). https://doi.org/10.1038/s41586-018-0008-3
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/C8CS00024G
P. Masih Das, J.P. Thiruraman, Y.-C. Chou, G. Danda, M. Drndić, Centimeter-scale nanoporous 2D membranes and Ion transport: porous Mos2 monolayers in a few-layer matrix. Nano Lett. 19(1), 392–399 (2019). https://doi.org/10.1021/acs.nanolett.8b04155
P. Liu, T. Luo, J. Xing, H. Xu, H. Hao, H. Liu, J. Dong, Large-area Ws2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett. 12(1), 558 (2017). https://doi.org/10.1186/s11671-017-2329-9
S.J. Yun, S.H. Chae, H. Kim, J.C. Park, J.-H. Park et al., Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 9(5), 5510–5519 (2015). https://doi.org/10.1021/acsnano.5b01529
C. Lan, C. Li, Y. Yin, Y. Liu, Large-area synthesis of monolayer Ws2 and its ambient-sensitive photo-detecting performance. Nanoscale 7(14), 5974–5980 (2015). https://doi.org/10.1039/C5NR01205H
S. Wagner, C. Yim, N. McEvoy, S. Kataria, V. Yokaribas et al., Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 18(6), 3738–3745 (2018). https://doi.org/10.1021/acs.nanolett.8b00928
M. Velický, G.E. Donnelly, W.R. Hendren, S. McFarland, D. Scullion et al., Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12(10), 10463–10472 (2018). https://doi.org/10.1021/acsnano.8b06101
H.M. Gramling, C.M. Towle, S.B. Desai, H. Sun, E.C. Lewis et al., Spatially precise transfer of patterned monolayer WS2 and MoS2 with features larger than 104 μm2 directly from multilayer sources. ACS Appl. Electron. Mater. 1(3), 407–416 (2019). https://doi.org/10.1021/acsaelm.8b00128
J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu et al., Very Large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139(26), 9019–9025 (2017). https://doi.org/10.1021/jacs.7b04332
Q. Zhang, J. Lu, Z. Wang, Z. Dai, Y. Zhang et al., Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation. Adv. Opt. Mater. 6(12), 1701347 (2018). https://doi.org/10.1002/adom.201701347
Z. Zhao, D. Wu, J. Guo, E. Wu, C. Jia et al., Synthesis of large-area 2D WS2 films and fabrication of a heterostructure for self-powered ultraviolet photodetection and imaging applications. J. Mater. Chem. C 7(39), 12121–12126 (2019). https://doi.org/10.1039/C9TC03866C
A.B. Maghirang, Z.-Q. Huang, R.A.B. Villaos, C.-H. Hsu, L.-Y. Feng et al., Predicting two-dimensional topological phases in janus materials by substitutional doping in transition metal dichalcogenide monolayers. NPJ 2D Mater. Appl. 3(1), 35 (2019). https://doi.org/10.1038/s41699-019-0118-2
K.K. Kim, H.S. Lee, Y.H. Lee, Synthesis of hexagonal boron nitride heterostructures for 2D van der waals electronics. Chem. Soc. Rev. 47(16), 6342–6369 (2018). https://doi.org/10.1039/C8CS00450A
X.B. Ren, J.C. Dong, P. Yang, J.D. Li, G.Y. Lu et al., Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride. Phys. Rev. Mater. 3(1), 014004 (2019). https://doi.org/10.1103/PhysRevMaterials.3.014004
G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, M. Jiang, Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015). https://doi.org/10.1038/ncomms7160
B.C. Bayer, S. Caneva, T.J. Pennycook, J. Kotakoski, C. Mangler, S. Hofmann, J.C. Meyer, Introducing overlapping grain boundaries in chemical vapor deposited hexagonal boron nitride monolayer films. ACS Nano 11(5), 4521–4527 (2017). https://doi.org/10.1021/acsnano.6b08315
X. Tong, K. Liu, M. Zeng, L. Fu, Vapor-phase growth of high-quality wafer-scale two-dimensional materials. InfoMat 1(4), 460–478 (2019). https://doi.org/10.1002/inf2.12038
S.M. Kim, A. Hsu, M.H. Park, S.H. Chae, S.J. Yun et al., Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015). https://doi.org/10.1038/ncomms9662
J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi et al., Stitching H-Bn by atomic layer deposition of lif as a stable interface for lithium metal anode. Sci. Adv. 3(11), eaa3170 (2017). https://doi.org/10.1126/sciadv.aao3170
H. Park, T.K. Kim, S.W. Cho, H.S. Jang, S.I. Lee, S.-Y. Choi, Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition. Sci. Rep. 7, 40091 (2017). https://doi.org/10.1038/srep40091
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.-C. Zhang, D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16(2), 163–169 (2017). https://doi.org/10.1038/nmat4802
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Bismuthene on a sic substrate: a candidate for a high-temperature quantum spin hall material. Science 357(6348), 287–290 (2017). https://doi.org/10.1126/science.aai8142
H.-S. Tsai, Y.-Z. Chen, H. Medina, T.-Y. Su, T.-S. Chou et al., Direct formation of large-scale multi-layered germanene on Si substrate. Phys. Chem. Chem. Phys. 17(33), 21389–21393 (2015). https://doi.org/10.1039/C5CP02469B
J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, G. Le Lay, Large area planar stanene epitaxially grown on Ag(1 1 1). 2D Mater. 5(2), 025002 (2018). https://doi.org/10.1088/2053-1583/aa9ea0
J. Yuhara, B. He, N. Matsunami, M. Nakatake, G. Le Lay, Graphene’s latest cousin: plumbene epitaxial growth on a “Nano Watercube”. Adv. Mater. 31(27), 1901017 (2019). https://doi.org/10.1002/adma.201901017
E.S. Walker, S.R. Na, D. Jung, S.D. March, J.-S. Kim et al., Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 16(11), 6931–6938 (2016). https://doi.org/10.1021/acs.nanolett.6b02931
J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou et al., Rise of silicene: a competitive 2D material. Prog. Mater Sci. 83, 24–151 (2016). https://doi.org/10.1016/j.pmatsci.2016.04.001
A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin et al., Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350(6267), 1513–1516 (2015). https://doi.org/10.1126/science.aad1080
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563 (2016). https://doi.org/10.1038/nchem.2491
Z. Yang, Z. Wu, Y. Lyu, J. Hao, Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. InfoMat 1(1), 98–107 (2019). https://doi.org/10.1002/inf2.12001
S.K. Pradhan, R. Barik, Observation of the magneto-transport property in a millimeter-long topological insulator Bi2Te3 thin-film hall bar device. Appl. Mater. Today 7, 55–59 (2017). https://doi.org/10.1016/j.apmt.2017.02.002
J. Krumrain, G. Mussler, S. Borisova, T. Stoica, L. Plucinski, C.M. Schneider, D. Grützmacher, MBe growth optimization of topological insulator Bi2Te3 films. J. Cryst. Growth 324(1), 115–118 (2011). https://doi.org/10.1016/j.jcrysgro.2011.03.008
J.E. Brom, Growth and Characterization of Bismuth Selenide Thin Films by Chemical Vapor Deposition. Ph.D. Thesis (2014)
C.-M. Hyun, J.-H. Choi, S.W. Lee, S.-Y. Seo, M.-J. Lee, S.-H. Kwon, J.-H. Ahn, Synthesis of Bi2Te3 single crystals with lateral size up to tens of micrometers by vapor transport and its potential for thermoelectric applications. Cryst. Growth Des. 19(4), 2024–2029 (2019). https://doi.org/10.1021/acs.cgd.8b01931
X. Li, F. Cui, Q. Feng, G. Wang, X. Xu et al., Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8(45), 18956–18962 (2016). https://doi.org/10.1039/C6NR07233J
F. Massoth, D. Scarpiello, Kinetics of bismuth oxide reduction with propylene. J. Catal. 21(2), 225–238 (1971). https://doi.org/10.1016/0021-9517(71)90141-2
B. Trawiński, B. Bochentyn, B. Kusz, A Study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere. Thermochim. Acta 669, 99–108 (2018). https://doi.org/10.1016/j.tca.2018.09.010
Y. Dou, L. Zhang, X. Xu, Z. Sun, T. Liao, S.X. Dou, Atomically thin non-layered nanomaterials for energy storage and conversion. Chem. Soc. Rev. 46(23), 7338–7373 (2017). https://doi.org/10.1039/C7CS00418D
C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 7873 (2015). https://doi.org/10.1038/ncomms8873
W. Yang, X. Zhang, Y. Xie, Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today 11(6), 793–816 (2016). https://doi.org/10.1016/j.nantod.2016.10.004
T. Maluangnont, K. Matsuba, F. Geng, R. Ma, Y. Yamauchi, T. Sasaki, Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate. Chem. Mater. 25(15), 3137–3146 (2013). https://doi.org/10.1021/cm401409s
X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou et al., Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011). https://doi.org/10.1038/ncomms1291
S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice, Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mater. 12(19), 1430–1432 (2000). https://doi.org/10.1002/1521-4095(200010)12:19%3c1430:AID-ADMA1430%3e3.0.CO;2-8
T. Li, H. Jin, Z. Liang, L. Huang, Y. Lu et al., Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 10(15), 6844–6849 (2018). https://doi.org/10.1039/C8NR01556B
C. Feng, J. Zhang, Y. He, C. Zhong, W. Hu, L. Liu, Y. Deng, Sub-3 Nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 9(2), 1730–1739 (2015). https://doi.org/10.1021/nn506548d
K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012
L. Qin, B. Kattel, T.R. Kafle, M. Alamri, M. Gong et al., Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer. Adv. Mater. Interfaces 6(1), 1801419 (2019). https://doi.org/10.1002/admi.201801419
L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin et al., Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14(6), 3055–3063 (2014). https://doi.org/10.1021/nl404795z
I.V. Vlassiouk, Y. Stehle, P.R. Pudasaini, R.R. Unocic, P.D. Rack et al., Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17(4), 318–322 (2018). https://doi.org/10.1038/s41563-018-0019-3
A. Van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22(3), 267 (1967)
X. Xue, Q. Xu, H. Wang, S. Liu, Q. Jiang et al., Gas-flow-driven aligned growth of graphene on liquid copper. Chem. Mater. 31(4), 1231–1236 (2019). https://doi.org/10.1021/acs.chemmater.8b03998
X. Sun, L. Lin, L. Sun, J. Zhang, D. Rui et al., Low-temperature and rapid growth of large single-crystalline graphene with ethane. Small 14(3), 1702916 (2018). https://doi.org/10.1002/smll.201702916
A. Koh, Y. Foong, D.H. Chua, Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Appl. Phys. Lett. 97(11), 114102 (2010). https://doi.org/10.1063/1.3489993
A. Shivayogimath, P.R. Whelan, D.M.A. Mackenzie, B. Luo, D. Huang et al., Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 31(7), 2328–2336 (2019). https://doi.org/10.1021/acs.chemmater.8b04196
J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Wetting-induced climbing for transferring interfacially assembled large-area ultrathin pristine graphene film. Adv. Mater. 31(10), 1806742 (2019). https://doi.org/10.1002/adma.201806742
A. Karmakar, F. Vandrevala, F. Gollier, M.A. Philip, S. Shahi, E. Einarsson, Approaching completely continuous centimeter-scale graphene by copolymer-assisted transfer. RSC Adv. 8(4), 1725–1729 (2018). https://doi.org/10.1039/C7RA12328K
T. Choi, S.J. Kim, S. Park, T. Hwang, Y. Jeon, B.H. Hong, 2015 IEEE Int. Electron Dev. Meet. (IEDM). 27. 21-27.24 (2015). https://doi.org/10.1109/iedm.2015.7409784
Z. Huang, A. Zhou, J. Wu, Y. Chen, X. Lan, H. Bai, L. Li, Bottom-up preparation of ultrathin 2D aluminum oxide nanosheets by duplicating graphene oxide. Adv. Mater. 28(8), 1703–1708 (2016). https://doi.org/10.1002/adma.201504484
Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M.A. Pimenta, M. Terrones, Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3(2), 022002 (2016). https://doi.org/10.1088/2053-1583/3/2/022002
J. Li, W. Su, F. Chen, L. Fu, S. Ding, K. Song, X. Huang, L. Zhang, Atypical defect-mediated photoluminescence and resonance raman spectroscopy of monolayer Ws2. J. Phys. Chem. C 123(6), 3900–3907 (2019). https://doi.org/10.1021/acs.jpcc.8b11647
P. Vancsó, G.Z. Magda, J. Pető, J.-Y. Noh, Y.-S. Kim, C. Hwang, L.P. Biró, L. Tapasztó, The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016). https://doi.org/10.1038/srep29726
F. Cheng, Z. Ding, H. Xu, S.J.R. Tan, I. Abdelwahab, J. Su, P. Zhou, J. Martin, K.P. Loh, Epitaxial growth of single-layer niobium selenides with controlled stoichiometric phases. Adv. Mater. Interfaces 5(15), 1800429 (2018). https://doi.org/10.1002/admi.201800429
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615–2622 (2013). https://doi.org/10.1021/nl4007479
P.K. Chow, E. Singh, B.C. Viana, J. Gao, J. Luo et al., Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano 9(3), 3023–3031 (2015). https://doi.org/10.1021/nn5072073
A.L. Elías, N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv et al., Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7(6), 5235–5242 (2013). https://doi.org/10.1021/nn400971k
N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E.K.L. Yeow, T. Yu, Nonblinking, Intense two-dimensional light emitter: monolayer WS2 triangles. ACS Nano 7(12), 10985–10994 (2013). https://doi.org/10.1021/nn4046002
I.S. Kim, V.K. Sangwan, D. Jariwala, J.D. Wood, S. Park et al., Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 8(10), 10551–10558 (2014). https://doi.org/10.1021/nn503988x
A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554 (2013). https://doi.org/10.1038/nmat3633
R.G. Mendes, J. Pang, A. Bachmatiuk, H.Q. Ta, L. Zhao, T. Gemming, L. Fu, Z. Liu, M.H. Rümmeli, Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13(2), 978–995 (2019). https://doi.org/10.1021/acsnano.8b08079
Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu et al., Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138(25), 7965–7972 (2016). https://doi.org/10.1021/jacs.6b03714
X. Ding, F. Peng, J. Zhou, W. Gong, G. Slaven, K.P. Loh, C.T. Lim, D.T. Leong, Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10(1), 41 (2019). https://doi.org/10.1038/s41467-018-07835-1
J. Xie, H. Zhang, S. Li, R. Wang, X. Sun et al., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25(40), 5807–5813 (2013). https://doi.org/10.1002/adma.201302685
H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109(3), 035503 (2012). https://doi.org/10.1103/PhysRevLett.109.035503
Z. Liu, K. Suenaga, Z. Wang, Z. Shi, E. Okunishi, S. Iijima, Identification of active atomic defects in a monolayered tungsten disulphide nanoribbon. Nat. Commun. 2, 213 (2011). https://doi.org/10.1038/ncomms1224
M.R. Islam, N. Kang, U. Bhanu, H.P. Paudel, M. Erementchouk, L. Tetard, M.N. Leuenberger, S.I. Khondaker, Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6(17), 10033–10039 (2014). https://doi.org/10.1039/C4NR02142H
M. Yamamoto, S. Dutta, S. Aikawa, S. Nakaharai, K. Wakabayashi, M.S. Fuhrer, K. Ueno, K. Tsukagoshi, Self-limiting layer-by-layer oxidation of atomically thin WSe2. Nano Lett. 15(3), 2067–2073 (2015). https://doi.org/10.1021/nl5049753
M. Chen, H. Nam, S. Wi, G. Priessnitz, I.M. Gunawan, X. Liang, Multibit data storage states formed in plasma-treated MoS2 transistors. ACS Nano 8(4), 4023–4032 (2014). https://doi.org/10.1021/nn501181t
T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, T. Lee, Irradiation effects of high-energy proton beams on MoS2 field effect transistors. ACS Nano 8(3), 2774–2781 (2014). https://doi.org/10.1021/nn4064924
S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce et al., Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013). https://doi.org/10.1038/srep02657
J. Feng, K. Liu, M. Graf, M. Lihter, R.D. Bulushev et al., Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15(5), 3431–3438 (2015). https://doi.org/10.1021/acs.nanolett.5b00768
B. Groven, A. Nalin Mehta, H. Bender, J. Meersschaut, T. Nuytten et al., Two-dimensional crystal grain size tuning in WS2 atomic layer deposition: an insight in the nucleation mechanism. Chem. Mater. 30(21), 7648–7663 (2018). https://doi.org/10.1021/acs.chemmater.8b02924
S. Feldmann, S. Macpherson, S.P. Senanayak, M. Abdi-Jalebi, J.P.H. Rivett et al., Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nat. Photonics 10, 15–20 (2019). https://doi.org/10.1038/s41566-019-0546-8
C.-P. Lu, G. Li, J. Mao, L.-M. Wang, E.Y. Andrei, Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 14(8), 4628–4633 (2014). https://doi.org/10.1021/nl501659n
H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8(6), 5738–5745 (2014). https://doi.org/10.1021/nn500532f
W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, P. Avouris, Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014). https://doi.org/10.1038/ncomms4087
A. McCreary, A. Berkdemir, J. Wang, M.A. Nguyen, A.L. Elías et al., Distinct Photoluminescence and raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods. J. Mater. Res. Technol. 31(7), 931–944 (2016). https://doi.org/10.1557/jmr.2016.47
N. Kang, H.P. Paudel, M.N. Leuenberger, L. Tetard, S.I. Khondaker, Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118(36), 21258–21263 (2014). https://doi.org/10.1021/jp506964m
W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, P.-H. Tan, Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2and WSe2. 2D Mater. 3(2), 025016 (2016). https://doi.org/10.1088/2053-1583/3/2/025016
S. Yuan, R. Roldán, M.I. Katsnelson, F. Guinea, Effect of point defects on the optical and transport properties of MoS2 and WS2. Phys. Rev. B 90(4), 041402 (2014). https://doi.org/10.1103/PhysRevB.90.041402
Q. Ma, M. Isarraraz, C.S. Wang, E. Preciado, V. Klee et al., Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 8(5), 4672–4677 (2014). https://doi.org/10.1021/nn5004327
C. Sun, P. Wang, H. Wang, C. Xu, J. Zhu et al., Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 12(7), 1613–1618 (2019). https://doi.org/10.1007/s12274-019-2400-1
Y. Liu, H. Nan, X. Wu, W. Pan, W. Wang et al., Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7(5), 4202–4209 (2013). https://doi.org/10.1021/nn400644t
S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Effect of disorder on raman scattering of single-layer MoS2. Phys. Rev. B 91(19), 195411 (2015). https://doi.org/10.1103/PhysRevB.91.195411
T.S. Sreeprasad, P. Nguyen, N. Kim, V. Berry, Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett. 13(9), 4434–4441 (2013). https://doi.org/10.1021/nl402278y
X. Zhang, T.H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala et al., Diffusion-controlled epitaxy of large area coalesced WSe2 monolayers on sapphire. Nano Lett. 18(2), 1049–1056 (2018). https://doi.org/10.1021/acs.nanolett.7b04521
H. Lin, Q. Zhu, D. Shu, D. Lin, J. Xu, X. Huang, W. Shi, X. Xi, J. Wang, L. Gao, Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019). https://doi.org/10.1038/s41563-019-0321-8
T. Daeneke, P. Atkin, R. Orrell-Trigg, A. Zavabeti, T. Ahmed et al., Wafer-scale synthesis of semiconducting SnO monolayers from interfacial oxide layers of metallic liquid tin. ACS Nano 11(11), 10974–10983 (2017). https://doi.org/10.1021/acsnano.7b04856
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
L. Tang, C. Teng, Y. Luo, U. Khan, H. Pan et al., Confined van der waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research 2019, 10 (2019). https://doi.org/10.1155/2019/2763704
J.L.M. Östling, Scalable fabrication of 2D Semiconducting crystals for future electronics. Electronics 4(4), 1033–1061 (2015). https://doi.org/10.3390/electronics4041033
H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong et al., Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9(11), 1974–1981 (2013). https://doi.org/10.1002/smll.201202919
A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012). https://doi.org/10.1021/nl301164v
R. Yue, Y. Nie, L.A. Walsh, R. Addou, C. Liang et al., Nucleation and growth of Wse2: enabling large grain transition metal dichalcogenides. 2D Mater. 4(4), 045019 (2017). https://doi.org/10.1088/2053-1583/aa8ab5
K. Kalantar-Zadeh, J. Tang, T. Daeneke, A.P. O’Mullane, L.A. Stewart et al., Emergence of liquid metals in nanotechnology. ACS Nano 13(7), 7388–7395 (2019). https://doi.org/10.1021/acsnano.9b04843
A. Arash, T. Ahmed, A. Govind Rajan, S. Walia, F. Rahman et al., Large-area synthesis of 2D MoO3−X for enhanced optoelectronic applications. 2D Mater. 6(3), 035031 (2019). https://doi.org/10.1088/2053-1583/ab1114
F. Rahman, A. Zavabeti, M.A. Rahman, A. Arash, A. Mazumder et al., Dual selective gas sensing characteristics of 2D Α-MoO3–X via a facile transfer process. ACS Appl. Mater. Interfaces 11(43), 40189–40195 (2019). https://doi.org/10.1021/acsami.9b11311