Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts
Corresponding Author: Jian Zhen Ou
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 23
Abstract
Two-dimensional (2D) transition metal oxide and chalcogenide (TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environmental pollution. The ultrahigh surface area and unconventional physiochemical, electronic and optical properties of 2D TMO&Cs have been demonstrated to facilitate photocatalytic applications. This review provides a concise overview of properties, synthesis methods and applications of 2D TMO&C-based photocatalysts. Particular attention is paid on the emerging strategies to improve the abilities of light harvesting and photoinduced charge separation for enhancing photocatalytic performances, which include elemental doping, surface functionalization as well as heterojunctions with semiconducting and conductive materials. The future opportunities regarding the research pathways of 2D TMO&C-based photocatalysts are also presented.
Highlights:
1 This review summarizes current two-dimensional (2D) transition metal oxide and chalcogenide (TMO&C)-based photocatalytic systems for hydrogen evolution reactions, organic pollutant degradation, carbon reduction and microbial disinfectants.
2 The influences of unique features of 2D TMO&C in terms of crystal and electronic band structures are reviewed regarding their photocatalytic performances.
3 The improvement strategies of 2D TMO&C photocatalysts including elemental doping, surface functionalization and heterojunction formation are critically discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864), 625–627 (2001). https://doi.org/10.1038/414625a
- D. Bahnemann, Photocatalytic water treatment: solar energy applications. Sol. Energy 77(5), 445–459 (2004). https://doi.org/10.1016/j.solener.2004.03.031
- K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature 440(7082), 295 (2006). https://doi.org/10.1038/440295a
- T.P. Yoon, M.A. Ischay, J. Du, Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2(7), 527–532 (2010). https://doi.org/10.1038/nchem.687
- W. Li, L. Li, H. Xiao, R. Qi, Y. Huang, Z. Xie, X. Jing, H. Zhang, Iodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Adv. 3(32), 13417–13421 (2013). https://doi.org/10.1039/c3ra40932e
- H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19(29), 5089–5121 (2009). https://doi.org/10.1039/b821991e
- K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). https://doi.org/10.1021/jz1007966
- M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ. Sci. 2(12), 1231–1257 (2009). https://doi.org/10.1039/b907933e
- Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin. Chem. Rev. 257(1), 171–186 (2013). https://doi.org/10.1016/j.ccr.2012.04.018
- C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122(1), 178–192 (1990). https://doi.org/10.1016/0021-9517(90)90269-P
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125(33), 331–349 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036
- U. Akpan, B. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard Mater. 170(2), 520–529 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039
- X. Meng, Z. Zhang, X. Li, Synergetic photoelectrocatalytic reactors for environmental remediation: a review. J. Photochem. Photobiol. C 24, 83–101 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.07.003
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012). https://doi.org/10.1002/adma.201102752
- S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20(21), 6784–6791 (2008). https://doi.org/10.1021/cm802282t
- Y. Wu, H. Yan, P. Yang, Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics. Top. Catal. 19(2), 197–202 (2002). https://doi.org/10.1023/A:1015260008046
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1(1), 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
- A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
- J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 42(13), 4902–4907 (2008). https://doi.org/10.1021/es800036n
- Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.-J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties. CrystEngComm 12(11), 3740–3747 (2010). https://doi.org/10.1039/c000744g
- J.Z. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem. Commun. 27(1), 128–132 (2013). https://doi.org/10.1016/j.elecom.2012.11.009
- H. Jiang, M. Nagai, K. Kobayashi, Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite. J. Alloys Compd. 479(1), 821–827 (2009). https://doi.org/10.1016/j.jallcom.2009.01.051
- S. Xu, D.D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. Int. J. Hydrog. Energy 34(15), 6096–6104 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.119
- J. Bandara, C. Udawatta, C. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photoch. Photobiol. Sci. 4(11), 857–861 (2005). https://doi.org/10.1039/b507816d
- S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8(3), 731–759 (2015). https://doi.org/10.1039/C4EE03271C
- J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanops. Angew. Chem. Int. Ed. 117(8), 1295–1299 (2005). https://doi.org/10.1002/ange.200462057
- J.F. Reber, K. Meier, Photochemical production of hydrogen with zinc sulfide suspensions. J. Phys. Chem. 88(24), 5903–5913 (1984). https://doi.org/10.1021/j150668a032
- M. Kanemoto, T. Shiragami, C. Pac, S. Yanagida, Semiconductor photocatalysis. Effective photoreduction of carbon dioxide catalyzed by ZnS quantum crystallites with low density of surface defects. J. Phys. Chem. 96(8), 3521–3526 (1992). https://doi.org/10.1021/j100187a062
- M. Sathish, B. Viswanathan, R. Viswanath, Alternate synthetic strategy for the preparation of CdS nanops and its exploitation for water splitting. Int. J. Hydrog. Energy 31(7), 891–898 (2006). https://doi.org/10.1016/j.ijhydene.2005.08.002
- H. Yin, Y. Wada, T. Kitamura, S. Yanagida, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environ. Sci. Technol. 35(1), 227–231 (2001). https://doi.org/10.1021/es001114d
- J.F. Callejas, J.M. McEnaney, C.G. Read, J.C. Crompton, A.J. Biacchi, E.J. Popczun, T.R. Gordon, N.S. Lewis, R.E. Schaak, Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanops. ACS Nano 8(11), 11101–11107 (2014). https://doi.org/10.1021/nn5048553
- J.S. Jang, D.J. Ham, N. Lakshminarasimhan, W.Y. Choi, J.S. Lee, Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl. Catal. A 346(1), 149–154 (2008). https://doi.org/10.1016/j.apcata.2008.05.020
- Y.K. Kim, H. Park, Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ. Sci. 4(3), 685–694 (2011). https://doi.org/10.1039/C0EE00330A
- C. Han, M.-Q. Yang, N. Zhang, Y.-J. Xu, Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J. Mater. Chem. A 2(45), 19156–19166 (2014). https://doi.org/10.1039/C4TA04151H
- K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, M.S. Strano, M. Pumera, S.L. Gras, Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25(32), 5086–5099 (2015). https://doi.org/10.1002/adfm.201500891
- K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012
- Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
- B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8(13), 6904–6920 (2016). https://doi.org/10.1039/C6NR00546B
- Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, F. Lei, S. Wei, Y. Xie, All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4(1), 130611 (2014). https://doi.org/10.1002/aenm.201300611
- M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, B. Dubertret, Two-dimensional colloidal nanocrystals. Chem. Rev. 116(18), 10934–10982 (2016). https://doi.org/10.1021/acs.chemrev.6b00164
- W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Highly reactive 001 facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6(4), 1946–2008 (2014). https://doi.org/10.1039/c3nr04655a
- H. Xu, S. Ouyang, P. Li, T. Kako, J. Ye, High-active anatase TiO2 nanosheets exposed with 95% 100 facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl. Mater. Interfaces 5(4), 1348–1354 (2013). https://doi.org/10.1021/am302631b
- J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136(25), 8839–8842 (2014). https://doi.org/10.1021/ja5044787
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- H.R. Gutierrez, N. Perea-López, A. Elías, A. Berkdemir, B. Wang, et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2013). http://pubs.acs.org/doi/abs/10.1021/nl3026357
- H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huang, C. Zhang, Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J. Chem. 39(11), 8492–8497 (2015). https://doi.org/10.1039/C5NJ01698C
- Y. Wang, J.Z. Ou, S. Balendhran, A.F. Chrimes, M. Mortazavi et al., Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 7(11), 10083–10093 (2013). https://doi.org/10.1021/nn4041987
- Y. Peng, L. Shang, T. Bian, Y. Zhao, C. Zhou, H. Yu, L.Z. Wu, C.H. Tung, T. Zhang, Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H2 production. Chem. Commun. 51(22), 4677–4680 (2015). https://doi.org/10.1039/C5CC00136F
- X. Chen, Y. Zhou, Q. Liu, Z. Li, J. Liu, Z. Zou, Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces 4(7), 3372–3377 (2012). https://doi.org/10.1021/am300661s
- J.A. Scher, J.M. Elward, A. Chakraborty, Shape matters: effect of 1D, 2D, and 3D isovolumetric quantum confinement in semiconductor nanops. J. Phys. Chem. C 120(43), 24999–25009 (2016). https://doi.org/10.1021/acs.jpcc.6b06728
- I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanops. J. Am. Chem. Soc. 129(14), 4136–4137 (2007). https://doi.org/10.1021/ja070099a
- Y. Wang, J.Z. Ou, A.F. Chrimes, B.J. Carey, T. Daeneke et al., Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett. 15(2), 883–890 (2015). https://doi.org/10.1021/nl503563g
- M.M. Alsaif, K. Latham, M.R. Field, D.D. Yao, N.V. Medehkar et al., Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv. Mater. 26(23), 3931–3937 (2014). https://doi.org/10.1002/adma.201306097
- C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 7873 (2015). https://doi.org/10.1038/ncomms8873
- B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136(40), 14121–14127 (2014). https://doi.org/10.1021/ja506261t
- W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013). https://doi.org/10.1002/smll.201201161
- Q. Li, N. Zhang, Y. Yang, G. Wang, D.H. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30(29), 8965–8972 (2014). https://doi.org/10.1021/la502033t
- R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). https://doi.org/10.1038/nmat4080
- M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
- M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
- Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9(5), 391–396 (2014). https://doi.org/10.1038/nnano.2014.64
- J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135(47), 17881–17888 (2013). https://doi.org/10.1021/ja408329q
- D. Kozawa, R. Kumar, A. Carvalho, A.K. Kumar, W. Zhao et al., Photocarrier relaxation in two-dimensional semiconductors. Nat. Commun. 5, 4543 (2014). https://doi.org/10.1038/ncomms5543
- H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7(2), 1072–1080 (2013). https://doi.org/10.1021/nn303973r
- P.D. Cunningham, K.M. McCreary, A.T. Hanbicki, M. Currie, B.T. Jonker, L.M. Hayden, Charge trapping and exciton dynamics in large-area CVD grown MoS2. J. Phys. Chem. C 120(10), 5819–5826 (2016). https://doi.org/10.1021/acs.jpcc.6b00647
- H. Liu, J. Lu, Exciton dynamics in tungsten dichalcogenide monolayers. Phys. Chem. Chem. Phys. 19(27), 17877–17882 (2017). https://doi.org/10.1039/C7CP02510F
- C. Pöllmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger et al., Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14(9), 889–893 (2015). https://doi.org/10.1038/nmat4356
- Y. Song, Y. Lei, H. Xu, C. Wang, J. Yan et al., Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. Dalton Trans. 44(7), 3057–3066 (2015). https://doi.org/10.1039/C4DT03242J
- Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanops. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). https://doi.org/10.1021/ja302846n
- M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, B. Xiang, MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50(97), 15447–15449 (2014). https://doi.org/10.1039/C4CC07351G
- X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015). https://doi.org/10.1039/C5CS00507H
- S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23(32), 3952–3970 (2013). https://doi.org/10.1002/adfm.201300125
- D.D. Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrodeposited α-and β-phase MoO3 films and investigation of their gasochromic properties. Cryst. Growth Des. 12(4), 1865–1870 (2012). https://doi.org/10.1021/cg201500b
- V.V. Kumar, K. Gayathri, S.P. Anthony, Synthesis of α-MoO3 nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes. Mater. Res. Bull. 76(4706), 147–154 (2016). https://doi.org/10.1016/j.materresbull.2015.12.016
- C. Bhandari, W.R. Lambrecht, M. van Schilfgaarde, Quasip self-consistent GW calculations of the electronic band structure of bulk and monolayer V2O5. Phys. Rev. B 91(12), 125116 (2015). https://doi.org/10.1103/PhysRevB.91.125116
- T. Puangpetch, S. Chavadej, T. Sreethawong, Mesoporous-assembled V2O5 nanosheet synthesized via a surfactant-modified sol–gel technique and its photocatalytic H2 production activity under visible light irradiation. Powder Technol. 208(1), 37–41 (2011). https://doi.org/10.1016/j.powtec.2010.11.039
- L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114(19), 9455–9486 (2014). https://doi.org/10.1021/cr400627u
- T. Zhu, S.-P. Gao, The stability, electronic structure, and optical property of TiO2 polymorphs. J. Phys. Chem. C 118(21), 11385–11396 (2014). https://doi.org/10.1021/jp412462m
- D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail et al., Band alignment of rutile and anatase TiO2. Nat. Mater. 12(9), 798–801 (2013). https://doi.org/10.1038/nmat3697
- Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures. Nat. Mater. 2(12), 821–826 (2003). https://doi.org/10.1038/nmat1014
- Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X
- M. Kalay, H. Kart, S.Ö. Kart, T. Çağın, Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations. J. Alloys Compd. 484(1), 431–438 (2009). https://doi.org/10.1016/j.jallcom.2009.04.116
- C. Tusche, H. Meyerheim, J. Kirschner, Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99(2), 026102 (2007). https://doi.org/10.1103/PhysRevLett.99.026102
- Y. Miao, H. Zhang, S. Yuan, Z. Jiao, X. Zhu, Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J. Colloid Interface Sci. 462, 9–18 (2016). https://doi.org/10.1016/j.jcis.2015.09.064
- X. Zhao, F. Lou, M. Li, X. Lou, Z. Li, J. Zhou, Sol–gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications. Ceram. Int. 40(4), 5507–5514 (2014). https://doi.org/10.1016/j.ceramint.2013.10.140
- H. Wu, Q. Xie, L. An, P. Jin, D.-L. Peng, C. Huang, H. Wan, Facile preparation of porous flower-like ZnO microspheres with excellent photocatalytic performance. Mater. Lett. 139, 393–396 (2015). https://doi.org/10.1016/j.matlet.2014.10.101
- N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 20(1), 110–117 (2007). https://doi.org/10.1021/cm7029344
- Q. Wu, F. Sun, Photochemical synthesis of ZnS nanosheet and its use in photodegradation of organic pollutants, in 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE) (2010), pp. 1–4. https://doi.org/10.1109/ICBBE.2010.5517517
- Y.-N. Xu, W. Ching, Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 48(7), 4335 (1993). https://doi.org/10.1103/PhysRevB.48.4335
- B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, H. Song, Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanops. J. Alloys Compd. 555(555), 241–245 (2013). https://doi.org/10.1016/j.jallcom.2012.12.074
- X. Wu, R. Xu, R. Zhu, R. Wu, B. Zhang, Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances. Nanoscale 7(21), 9752–9759 (2015). https://doi.org/10.1039/C5NR02329G
- Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 49(84), 9803–9805 (2013). https://doi.org/10.1039/c3cc46342g
- Q. Xiang, B. Cheng, J. Yu, Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl. Catal. B 138, 299–303 (2013). https://doi.org/10.1016/j.apcatb.2013.03.005
- H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21(12), 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477
- D. Sanchez-Martinez, C. Gomez-Solis, L.M. Torres-Martinez, CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO3. Mater. Res. Bull. 61, 165–172 (2015). https://doi.org/10.1016/j.materresbull.2014.10.034
- J. Huang, L. Xiao, X. Yang, WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties. Mater. Res. Bull. 48(8), 2782–2785 (2013). https://doi.org/10.1016/j.materresbull.2013.04.022
- X.-N. Song, C.-Y. Wang, W.-K. Wang, X. Zhang, N.-N. Hou, H.-Q. Yu, A dissolution-regeneration route to synthesize blue tungsten oxide flowers and their applications in photocatalysis and gas sensing. Adv. Mater. Interfaces 3(1), 1500417 (2016). https://doi.org/10.1002/admi.201500417
- S. Han, L. Hu, Z. Liang, S. Wageh, A.A. Al-Ghamdi, Y. Chen, X. Fang, One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 24(36), 5719–5727 (2014). https://doi.org/10.1002/adfm.201401279
- J. Zhu, X. Qian, From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. J. Solid State Chem. 183(7), 1632–1639 (2010). https://doi.org/10.1016/j.jssc.2010.05.015
- N.Y. Dzade, A. Roldan, N.H. de Leeuw, A density functional theory study of the adsorption of benzene on hematite (α-Fe2O3) surfaces. Minerals 4(1), 89–115 (2014). https://doi.org/10.3390/min4010089
- Y.-J. Zhu, S.-W. Cao, Hierarchically nanostructured r-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J. Phys. Chem. C 112(16), 6253–6257 (2008). https://doi.org/10.1021/jp8000465
- D. Su, X. Xie, S. Dou, G. Wang, CuO single crystal with exposed 001 facets-A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 (2014). https://doi.org/10.1038/srep05753
- F. Li, X. Liu, Q. Zhang, T. Kong, H. Jin, Fabrication and photocatalytic property of CuO nanosheets via a facile solution route. Cryst. Res. Technol. 47(11), 1140–1147 (2012). https://doi.org/10.1002/crat.201200143
- B. Peng, P.K. Ang, K.P. Loh, Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10(2), 128–137 (2015). https://doi.org/10.1016/j.nantod.2015.01.007
- M. Osada, T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19(17), 2503–2511 (2009). https://doi.org/10.1039/b820160a
- K. Kalantar-zadeh, A. Vijayaraghavan, M.-H. Ham, H. Zheng, M. Breedon, M.S. Strano, Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22(19), 5660–5666 (2010). https://doi.org/10.1021/cm1019603
- H. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C. Rao, MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49(24), 4059–4062 (2010). https://doi.org/10.1002/anie.201000009
- M. Zhou, X.W.D. Lou, Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8(6), 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002
- J. Mujtaba, H. Sun, F. Fang, M. Ahmad, J. Zhu, Fine control over the morphology and photocatalytic activity of 3D ZnO hierarchical nanostructures: capping vs. etching. RSC Adv. 5(69), 56232–56238 (2015). https://doi.org/10.1039/C5RA08325G
- L. Zhang, H. Yang, J. Yu, F. Shao, L. Li, F. Zhang, H. Zhao, Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J. Phys. Chem. C 113(14), 5434–5443 (2009). https://doi.org/10.1021/jp810385v
- G. Tang, J. Sun, C. Wei, K. Wu, X. Ji, S. Liu, H. Tang, C. Li, Synthesis and characterization of flowerlike MoS2 nanostructures through CTAB-assisted hydrothermal process. Mater. Lett. 86(11), 9–12 (2012). https://doi.org/10.1016/j.matlet.2012.07.014
- M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, From MoS2 microspheres to α-MoO3 nanoplates: growth mechanism and photocatalytic activities. Eur. J. Inorg. Chem. 2014(20), 3245–3251 (2014). https://doi.org/10.1002/ejic.201402079
- H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). https://doi.org/10.1126/science.1061051
- S. Bilmes, P. Mandelbaum, F. Alvarez, N. Victoria, Surface, electronic structure of titanium dioxide photocatalysts. J. Phys. Chem. B 104(42), 9851–9858 (2000). https://doi.org/10.1021/jp0010132
- N. Serpone, D. Lawless, J. Disdier, J.-M. Herrmann, Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10(3), 643–652 (1994). https://doi.org/10.1021/la00015a010
- P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like n-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27(22), 225403 (2016). https://doi.org/10.1088/0957-4484/27/22/225403
- Q. Xiang, J. Yu, W. Wang, M. Jaroniec, Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem. Commun. 47(24), 6906–6908 (2011). https://doi.org/10.1039/c1cc11740h
- B. Wang, M.K.H. Leung, X.-Y. Lu, S.-Y. Chen, Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 112(16), 1190–1197 (2013). https://doi.org/10.1016/j.apenergy.2013.03.084
- S. Liu, C. Li, J. Yu, Q. Xiang, Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13(7), 2533 (2011). https://doi.org/10.1039/c0ce00295j
- Y. Liu, S. Xie, H. Li, X. Wang, A highly efficient sunlight driven ZnO nanosheet photocatalyst: synergetic effect of P-doping and MoS2 atomic layer loading. ChemCatChem 6(9), 2522–2526 (2014). https://doi.org/10.1002/cctc.201402191
- N. Li, H. Teng, L. Zhang, J. Zhou, M. Liu, Synthesis of Mo-doped WO3 nanosheets with enhanced visible-light-driven photocatalytic properties. RSC Adv. 5(115), 95394–95400 (2015). https://doi.org/10.1039/C5RA17098B
- T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, M. Yu, Optical and photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol. 51(1), 58–64 (2016). https://doi.org/10.1002/crat.201500152
- M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin et al., Visible light photocatalysis with c-WO(3−x)/WO3xH2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J. Am. Chem. Soc. 135(11), 4467–4475 (2013). https://doi.org/10.1021/ja3126678
- M.M. Alsaif, A.F. Chrimes, T. Daeneke, S. Balendhran, D.O. Bellisario et al., High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 26(1), 91–100 (2016). https://doi.org/10.1002/adfm.201503698
- H. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem. Int. Ed. 53(11), 2910–2914 (2014). https://doi.org/10.1002/anie.201309759
- X. Tan, L. Wang, C. Cheng, X. Yan, B. Shen, J. Zhang, Plasmonic MoO3−x@ MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 52(14), 2893–2896 (2016). https://doi.org/10.1039/C5CC10020H
- Y. Liao, Z. Hu, Q. Gu, C. Xue, Amine-functionalized ZnO nanosheets for efficient CO2 capture and photoreduction. Molecules 20(10), 18847–18855 (2015). https://doi.org/10.3390/molecules201018847
- Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol. 35(5), 966–970 (2001). https://doi.org/10.1021/es001245e
- K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys. 12(40), 13020–13025 (2010). https://doi.org/10.1039/c0cp00611d
- Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding et al., Enhanced visible-light-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS2/TiO2 assembly. Chem. Eng. J. 275, 8–16 (2015). https://doi.org/10.1016/j.cej.2015.04.015
- S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242–247 (2014). https://doi.org/10.1038/nchem.1861
- Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, H.-W. Lu, Z.-G. Ji et al., Visible-light-driven hydrogen production from water in a noble-metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO. Dyes Pigm. 123, 285–292 (2015). https://doi.org/10.1016/j.dyepig.2015.08.014
- S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C 116(48), 25415–25424 (2012). https://doi.org/10.1021/jp3093786
- T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016). https://doi.org/10.3390/molecules21070900
- L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrog. Energy 38(17), 6960–6969 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.006
- M.Q. Wen, T. Xiong, Z.G. Zang, W. Wei, X.S. Tang, F. Dong, Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt. Express 24(10), 10205–10212 (2016). https://doi.org/10.1364/OE.24.010205
- G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloys Compd. 682, 208–215 (2016). https://doi.org/10.1016/j.jallcom.2016.04.267
- X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1(1), 33–44 (2015). https://doi.org/10.1016/j.jmat.2015.03.003
- L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan, Z. Li, MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B 144(2), 521–527 (2014). https://doi.org/10.1016/j.apcatb.2013.07.064
- Y.-J. Yuan, D.-Q. Chen, Y.-W. Huang, Z.-T. Yu, J.-S. Zhong et al., MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. Chemsuschem 9(9), 1003–1009 (2016). https://doi.org/10.1002/cssc.201600006
- C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B 164, 1–9 (2015). https://doi.org/10.1016/j.apcatb.2014.08.046
- X. Zhang, C. Shao, X. Li, F. Miao, K. Wang, N. Lu, Y. Liu, 3D MoS2 nanosheet/TiO2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. J. Alloys Compd. 686, 137–144 (2016). https://doi.org/10.1016/j.jallcom.2016.05.336
- Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A 2(8), 2578 (2014). https://doi.org/10.1039/c3ta14240j
- C. Wang, H. Lin, Z. Xu, H. Cheng, C. Zhang, One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities. RSC Adv. 5(20), 15621–15626 (2015). https://doi.org/10.1039/C4RA15632C
- B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao, Y. Chen, B. Gao, Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. A 2(11), 3819 (2014). https://doi.org/10.1039/C3TA14819J
- Y.J. Yuan, F. Wang, B. Hu, H.W. Lu, Z.T. Yu, Z.G. Zou, Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst. Dalton Trans. 44(24), 10997–11003 (2015). https://doi.org/10.1039/C5DT00906E
- N. Meng, Y. Zhou, W. Nie, L. Song, P. Chen, CuS/MoS2 nanocomposite with high solar photocatalytic activity. J. Nanopart. Res. 17(7), 300 (2015). https://doi.org/10.1007/s11051-015-3105-3
- L. Gu, J. Wang, Z. Zou, X. Han, Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard Mater. 268(6), 216–223 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.021
- Y. Hou, Y. Zhu, Y. Xu, X. Wang, Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. Appl. Catal. B 156, 122–127 (2014). https://doi.org/10.1016/j.apcatb.2014.03.002
- J. Fu, G. Li, F. Xi, X. Dong, Hybrid nanocomposite with visible-light photocatalytic activity: CdS-pillared titanate. Chem. Eng. J. 180(3), 330–336 (2012). https://doi.org/10.1016/j.cej.2011.10.098
- J. Zhang, Z. Zhu, Y. Tang, K. Müllen, X. Feng, Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 26(5), 734–738 (2014). https://doi.org/10.1002/adma.201303571
- H.N. Kim, T.W. Kim, I.Y. Kim, S.-J. Hwang, Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv. Funct. Mater. 21(16), 3111–3118 (2011). https://doi.org/10.1002/adfm.201100453
- F. Zheng, H. Lu, M. Guo, M. Zhang, Q. Zhen, Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J. Mater. Chem. C 3(29), 7612–7620 (2015). https://doi.org/10.1039/C5TC01125F
- A.K. Kole, C.S. Tiwary, P. Kumbhakar, Ethylenediamine assisted synthesis of wurtzite zinc sulphide nanosheets and porous zinc oxide nanostructures: near white light photoluminescence emission and photocatalytic activity under visible light irradiation. CrystEngComm 15(27), 5515–5525 (2013). https://doi.org/10.1039/c3ce40531a
- X. Liu, J. Cao, B. Feng, L. Yang, M. Wei et al., Facile fabrication and photocatalytic properties of ZnO nanorods/ZnSe nanosheets heterostructure. Superlattices Microstruct. 83, 447–458 (2015). https://doi.org/10.1016/j.spmi.2015.03.051
- N. Huo, Q. Yue, J. Yang, S. Yang, J. Li, Abnormal photocurrent response and enhanced photocatalytic activity induced by charge transfer between WS2 nanosheets and WO3 nanops. ChemPhysChem 14(18), 4069–4073 (2013). https://doi.org/10.1002/cphc.201300680
- Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27(2), 363–369 (2015). https://doi.org/10.1002/adma.201403264
- X. Yu, J. Liu, Y. Yu, S. Zuo, B. Li, Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 68, 718–724 (2014). https://doi.org/10.1016/j.carbon.2013.11.053
- P. Atkin, T. Daeneke, Y. Wang, B. Carey, K. Berean et al., 2D WS2/carbon dot hybrids with enhanced photocatalytic activity. J. Mater. Chem. A 4(35), 13563–13571 (2016). https://doi.org/10.1039/C6TA06415A
- S. Ida, A. Takashiba, S. Koga, H. Hagiwara, T. Ishihara, Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136(5), 1872–1878 (2014). https://doi.org/10.1021/ja409465k
- F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135(28), 10286–10289 (2013). https://doi.org/10.1021/ja404851s
- Z. Xing, X. Zong, Y. Zhu, Z. Chen, Y. Bai, L. Wang, A nanohybrid of CdTe@ CdS nanocrystals and titania nanosheets with p–n nanojunctions for improved visible light-driven hydrogen production. Catal. Today 264, 229–235 (2016). https://doi.org/10.1016/j.cattod.2015.08.007
- J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011). https://doi.org/10.1021/nl202587b
- Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.-M. Cheng, Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 1(8), 2773–2776 (2013). https://doi.org/10.1039/c3ta01476b
- C. Zhu, L. Zhang, B. Jiang, J. Zheng, P. Hu, S. Li, M. Wu, W. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377, 99–108 (2016). https://doi.org/10.1016/j.apsusc.2016.03.143
- W.C. Peng, X. Wang, X.Y. Li, The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light. Nanoscale 6(14), 8311–8317 (2014). https://doi.org/10.1039/c4nr01654h
- C. Wang, M. Wu, M. Yan, H. Shen, F. Cai, B. Hu, W. Shi, Enhanced visible-light photocatalytic activity and the mechanism study of WO3 nanosheets coupled with Ag3PO4 nanocrystals. Ceram. Int. 41(5), 6784–6792 (2015). https://doi.org/10.1016/j.ceramint.2015.01.125
- W. Tu, Y. Zhou, S. Feng, Q. Xu, P. Li, X. Wang, M. Xiao, Z. Zou, Hollow spheres consisting of Ti0.91O2/CdS nanohybrids for CO2 photofixation. Chem. Commun. 51(69), 13354–13357 (2015). https://doi.org/10.1039/C5CC03905C
- K. Schierbaum, U. Kirner, J. Geiger, W. Göpel, Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2. Sens. Actuator-B Chem. 4(1), 87–94 (1991). https://doi.org/10.1016/0925-4005(91)80181-I
- A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). https://doi.org/10.1021/cr00035a013
- Y. Gao, W. Lee, R. Trehan, R. Kershaw, K. Dwight, A. Wold, Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2. Mater. Res. Bull. 26(12), 1247–1254 (1991). https://doi.org/10.1016/0025-5408(91)90138-C
- V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal p size on the Fermi level equilibration. J. Am. Chem. Soc. 126(15), 4943–4950 (2004). https://doi.org/10.1021/ja0315199
- Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Appl. Surf. Sci. 332, 32–39 (2015). https://doi.org/10.1016/j.apsusc.2015.01.116
- A.J. Cheah, W.S. Chiu, P.S. Khiew, H. Nakajima, T. Saisopa, P. Songsiriritthigul, S. Radiman, M.A.A. Hamid, Facile synthesis of a Ag/MoS2 nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catal. Sci. Technol. 5(8), 4133–4143 (2015). https://doi.org/10.1039/C5CY00464K
- D. Zhang, X. Liu, X. Wang, Growth and photocatalytic activity of ZnO nanosheets stabilized by Ag nanops. J. Alloys Compd. 509(15), 4972–4977 (2011). https://doi.org/10.1016/j.jallcom.2011.01.145
- Y. Xin, L. Wu, L. Ge, C. Han, Y. Li, S. Fang, Gold-palladium bimetallic nanoalloy decorated ultrathin 2D TiO2 nanosheets as efficient photocatalysts with high hydrogen evolution activity. J. Mater. Chem. A 3(16), 8659–8666 (2015). https://doi.org/10.1039/C5TA00759C
- L. Yang, D. Zhong, J. Zhang, Z. Yan, S. Ge et al., Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution. ACS Nano 8(7), 6979–6985 (2014). https://doi.org/10.1021/nn501807y
- S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, D. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38(13), 3001–3008 (2004). https://doi.org/10.1016/j.watres.2004.04.046
- Y. Homma, Y. Kobayashi, T. Ogino, D. Takagi, R. Ito, Y.J. Jung, P.M. Ajayan, Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 107(44), 12161–12164 (2003). https://doi.org/10.1021/jp0353845
- Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan, X. Xiong, CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale 8(1), 440–450 (2016). https://doi.org/10.1039/C5NR05748E
- S. Kong, Z. Jin, H. Liu, Y. Wang, Morphological effect of graphene nanosheets on ultrathin CoS nanosheets and their applications for high-performance Li–ion batteries and photocatalysis. J. Phys. Chem. C 118(44), 25355–25364 (2014). https://doi.org/10.1021/jp508698q
- W. Guo, F. Zhang, C. Lin, Z.L. Wang, Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 24(35), 4761–4764 (2012). https://doi.org/10.1002/adma.201201075
- T. Daeneke, N. Dahr, P. Atkin, R.M. Clark, C.J. Harrison, et al., Surface water dependent properties of sulfur-rich molybdenum sulfides: electrolyteless gas phase water splitting. ACS Nano 11(7), 6782–6794 (2017). http://pubs.acs.org/doi/abs/10.1021/acsnano.7b01632
- J. Sun, H. Zhang, L.-H. Guo, L. Zhao, Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Interfaces 5(24), 13035–13041 (2013). https://doi.org/10.1021/am403937y
- Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube. ACS Nano 5(9), 7426–7435 (2011). https://doi.org/10.1021/nn202519j
- W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, Z. Zou, Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv. Funct. Mater. 22(6), 1215–1221 (2012). https://doi.org/10.1002/adfm.201102566
- S. Bai, L. Wang, X. Chen, J. Du, Y. Xiong, Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8(1), 175–183 (2014). https://doi.org/10.1007/s12274-014-0606-9
- R. Bera, S. Kundu, A. Patra, 2D hybrid nanostructure of reduced graphene oxide-CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 7(24), 13251–13259 (2015). https://doi.org/10.1021/acsami.5b03800
- D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates. Nanoscale 4(17), 5431–5439 (2012). https://doi.org/10.1039/c2nr31030a
- Z. Zhang, J. Huang, M. Zhang, Q. Yuan, B. Dong, Ultrathin hexagonal SnS2 nanosheets coupled with gC3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B 163(163), 298–305 (2015). https://doi.org/10.1016/j.apcatb.2014.08.013
- X. Yang, H. Xue, J. Xu, X. Huang, J. Zhang et al., Synthesis of porous ZnS:Ag2S nanosheets by ion exchange for photocatalytic H2 generation. ACS Appl. Mater. Interfaces 6(12), 9078–9084 (2014). https://doi.org/10.1021/am5020953
- Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu, Z.-G. Zou, Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 6(2), 532–541 (2016). https://doi.org/10.1021/acscatal.5b02036
- X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176–7177 (2008). https://doi.org/10.1021/ja8007825
- X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152–3153 (2009). https://doi.org/10.1021/ja8092373
- L. Yang, X. Kong, J. Wang, M. Pan, W. Yang, J. Yang, W. Jiang, Synthesis and photocatalytic performance of ZnO hollow spheres and porous nanosheets. J. Mater. Sci. Mater. El. 27(1), 203–209 (2015). https://doi.org/10.1007/s10854-015-3738-0
- M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahir, N. Mahmood, Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16(24), 5290 (2014). https://doi.org/10.1039/c4ce00090k
- Y. Wen, Y. Zhu, S. Zhang, Low temperature synthesis of ZrS2 nanoflakes and their catalytic activity. RSC Adv. 5(81), 66082–66085 (2015). https://doi.org/10.1039/C5RA12412C
- T. Lin, J. Wang, L. Guo, F. Fu, Fe3O4@MoS2 core-shell composites: preparation, characterization, and catalytic application. J. Phys. Chem. C 119(24), 13658–13664 (2015). https://doi.org/10.1021/acs.jpcc.5b02516
- M. Tou, Z. Luo, S. Bai, F. Liu, Q. Chai, S. Li, Z. Li, Sequential coating upconversion NaYF4:Yb, Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications. Mater. Sci. Eng. C 70(Pt 2), 1141–1148 (2016). https://doi.org/10.1016/j.msec.2016.03.038
- K. Kamaraj, R.P. George, B. Anandkumar, N. Parvathavarthini, U. Kamachi Mudali, A silver nanop loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry 106(Pt B), 290–297 (2015). https://doi.org/10.1016/j.bioelechem.2015.07.005
- W. Wu, C. Jiang, V.A. Roy, Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7(1), 38–58 (2015). https://doi.org/10.1039/C4NR04244A
- M.T. Greiner, M.G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, Z.-H. Lu, Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11(1), 76–81 (2012). https://doi.org/10.1038/nmat3159
- R. van de Krol, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311–2320 (2008). https://doi.org/10.1039/b718969a
- M.T. Greiner, Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5(7), 547–556 (2013). https://doi.org/10.1038/am.2013.29
- Y. Xu, M.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85(3), 543–556 (2000). https://doi.org/10.2138/am-2000-0416
- J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express 2(5), 594–628 (2012). https://doi.org/10.1364/OME.2.000594
- M. Thripuranthaka, R.V. Kashid, C. Sekhar Rout, D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 104(8), 081911 (2014). https://doi.org/10.1063/1.4866782
- R. Das, S. Pandey, Comparison of optical properties of bulk and nano crystalline thin films of CdS using different precursors. Int. J. Mater. Sci. 1(1), 35–40 (2011). http://www.dpi-journals.com/index.php/IJMSCI//view/881/749
- S. Balendhran, J. Deng, J.Z. Ou, S. Walia, J. Scott, J. Tang, K.L. Wang, M.R. Field, S. Russo, S. Zhuiykov, Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 25(1), 109–114 (2013). https://doi.org/10.1002/adma.201203346
- J. Zheng, H. Zhang, S. Dong, Y. Liu, C.T. Nai, H.S. Shin, H.Y. Jeong, B. Liu, K.P. Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5(1), 2995 (2014). https://doi.org/10.1038/ncomms3995
- Y. Zhang, S. Liu, W. Liu, T. Liang, X. Yang, M. Xu, H. Chen, Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. Phys. Chem. Chem. Phys. 17(41), 27565–27572 (2015). https://doi.org/10.1039/C5CP05011A
- X. Xiao, H. Song, S. Lin, Y. Zhou, X. Zhan et al., Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016). https://doi.org/10.1038/ncomms11296
- R. Das, H. Mishra, A. Srivastava, A.M. Kayastha, Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem. Eng. J. 328, 215–227 (2017). https://doi.org/10.1016/j.cej.2017.07.019
- S.S. Lo, T. Mirkovic, C.H. Chuang, C. Burda, G.D. Scholes, Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv. Mater. 23(2), 180–197 (2011). https://doi.org/10.1002/adma.201002290
- R. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 3(12), 6565–6574 (2015). https://doi.org/10.1039/C5TA00764J
References
Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414(6864), 625–627 (2001). https://doi.org/10.1038/414625a
D. Bahnemann, Photocatalytic water treatment: solar energy applications. Sol. Energy 77(5), 445–459 (2004). https://doi.org/10.1016/j.solener.2004.03.031
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water. Nature 440(7082), 295 (2006). https://doi.org/10.1038/440295a
T.P. Yoon, M.A. Ischay, J. Du, Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2(7), 527–532 (2010). https://doi.org/10.1038/nchem.687
W. Li, L. Li, H. Xiao, R. Qi, Y. Huang, Z. Xie, X. Jing, H. Zhang, Iodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Adv. 3(32), 13417–13421 (2013). https://doi.org/10.1039/c3ra40932e
H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19(29), 5089–5121 (2009). https://doi.org/10.1039/b821991e
K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). https://doi.org/10.1021/jz1007966
M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ. Sci. 2(12), 1231–1257 (2009). https://doi.org/10.1039/b907933e
Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin. Chem. Rev. 257(1), 171–186 (2013). https://doi.org/10.1016/j.ccr.2012.04.018
C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122(1), 178–192 (1990). https://doi.org/10.1016/0021-9517(90)90269-P
M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125(33), 331–349 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036
U. Akpan, B. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard Mater. 170(2), 520–529 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.039
X. Meng, Z. Zhang, X. Li, Synergetic photoelectrocatalytic reactors for environmental remediation: a review. J. Photochem. Photobiol. C 24, 83–101 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.07.003
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012). https://doi.org/10.1002/adma.201102752
S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20(21), 6784–6791 (2008). https://doi.org/10.1021/cm802282t
Y. Wu, H. Yan, P. Yang, Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics. Top. Catal. 19(2), 197–202 (2002). https://doi.org/10.1023/A:1015260008046
A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1(1), 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 42(13), 4902–4907 (2008). https://doi.org/10.1021/es800036n
Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.-J. Zhu, Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties. CrystEngComm 12(11), 3740–3747 (2010). https://doi.org/10.1039/c000744g
J.Z. Ou, R.A. Rani, S. Balendhran, A.S. Zoolfakar, M.R. Field, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochem. Commun. 27(1), 128–132 (2013). https://doi.org/10.1016/j.elecom.2012.11.009
H. Jiang, M. Nagai, K. Kobayashi, Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite. J. Alloys Compd. 479(1), 821–827 (2009). https://doi.org/10.1016/j.jallcom.2009.01.051
S. Xu, D.D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. Int. J. Hydrog. Energy 34(15), 6096–6104 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.119
J. Bandara, C. Udawatta, C. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photoch. Photobiol. Sci. 4(11), 857–861 (2005). https://doi.org/10.1039/b507816d
S.J. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8(3), 731–759 (2015). https://doi.org/10.1039/C4EE03271C
J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanops. Angew. Chem. Int. Ed. 117(8), 1295–1299 (2005). https://doi.org/10.1002/ange.200462057
J.F. Reber, K. Meier, Photochemical production of hydrogen with zinc sulfide suspensions. J. Phys. Chem. 88(24), 5903–5913 (1984). https://doi.org/10.1021/j150668a032
M. Kanemoto, T. Shiragami, C. Pac, S. Yanagida, Semiconductor photocatalysis. Effective photoreduction of carbon dioxide catalyzed by ZnS quantum crystallites with low density of surface defects. J. Phys. Chem. 96(8), 3521–3526 (1992). https://doi.org/10.1021/j100187a062
M. Sathish, B. Viswanathan, R. Viswanath, Alternate synthetic strategy for the preparation of CdS nanops and its exploitation for water splitting. Int. J. Hydrog. Energy 31(7), 891–898 (2006). https://doi.org/10.1016/j.ijhydene.2005.08.002
H. Yin, Y. Wada, T. Kitamura, S. Yanagida, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environ. Sci. Technol. 35(1), 227–231 (2001). https://doi.org/10.1021/es001114d
J.F. Callejas, J.M. McEnaney, C.G. Read, J.C. Crompton, A.J. Biacchi, E.J. Popczun, T.R. Gordon, N.S. Lewis, R.E. Schaak, Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanops. ACS Nano 8(11), 11101–11107 (2014). https://doi.org/10.1021/nn5048553
J.S. Jang, D.J. Ham, N. Lakshminarasimhan, W.Y. Choi, J.S. Lee, Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl. Catal. A 346(1), 149–154 (2008). https://doi.org/10.1016/j.apcata.2008.05.020
Y.K. Kim, H. Park, Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ. Sci. 4(3), 685–694 (2011). https://doi.org/10.1039/C0EE00330A
C. Han, M.-Q. Yang, N. Zhang, Y.-J. Xu, Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J. Mater. Chem. A 2(45), 19156–19166 (2014). https://doi.org/10.1039/C4TA04151H
K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, M.S. Strano, M. Pumera, S.L. Gras, Two-dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 25(32), 5086–5099 (2015). https://doi.org/10.1002/adfm.201500891
K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, M.S. Fuhrer, Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016). https://doi.org/10.1016/j.apmt.2016.09.012
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8(13), 6904–6920 (2016). https://doi.org/10.1039/C6NR00546B
Y. Sun, Z. Sun, S. Gao, H. Cheng, Q. Liu, F. Lei, S. Wei, Y. Xie, All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 4(1), 130611 (2014). https://doi.org/10.1002/aenm.201300611
M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, B. Dubertret, Two-dimensional colloidal nanocrystals. Chem. Rev. 116(18), 10934–10982 (2016). https://doi.org/10.1021/acs.chemrev.6b00164
W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Highly reactive 001 facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale 6(4), 1946–2008 (2014). https://doi.org/10.1039/c3nr04655a
H. Xu, S. Ouyang, P. Li, T. Kako, J. Ye, High-active anatase TiO2 nanosheets exposed with 95% 100 facets toward efficient H2 evolution and CO2 photoreduction. ACS Appl. Mater. Interfaces 5(4), 1348–1354 (2013). https://doi.org/10.1021/am302631b
J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J. Am. Chem. Soc. 136(25), 8839–8842 (2014). https://doi.org/10.1021/ja5044787
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010). https://doi.org/10.1021/nl903868w
H.R. Gutierrez, N. Perea-López, A. Elías, A. Berkdemir, B. Wang, et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2013). http://pubs.acs.org/doi/abs/10.1021/nl3026357
H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huang, C. Zhang, Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J. Chem. 39(11), 8492–8497 (2015). https://doi.org/10.1039/C5NJ01698C
Y. Wang, J.Z. Ou, S. Balendhran, A.F. Chrimes, M. Mortazavi et al., Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 7(11), 10083–10093 (2013). https://doi.org/10.1021/nn4041987
Y. Peng, L. Shang, T. Bian, Y. Zhao, C. Zhou, H. Yu, L.Z. Wu, C.H. Tung, T. Zhang, Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H2 production. Chem. Commun. 51(22), 4677–4680 (2015). https://doi.org/10.1039/C5CC00136F
X. Chen, Y. Zhou, Q. Liu, Z. Li, J. Liu, Z. Zou, Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces 4(7), 3372–3377 (2012). https://doi.org/10.1021/am300661s
J.A. Scher, J.M. Elward, A. Chakraborty, Shape matters: effect of 1D, 2D, and 3D isovolumetric quantum confinement in semiconductor nanops. J. Phys. Chem. C 120(43), 24999–25009 (2016). https://doi.org/10.1021/acs.jpcc.6b06728
I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanops. J. Am. Chem. Soc. 129(14), 4136–4137 (2007). https://doi.org/10.1021/ja070099a
Y. Wang, J.Z. Ou, A.F. Chrimes, B.J. Carey, T. Daeneke et al., Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett. 15(2), 883–890 (2015). https://doi.org/10.1021/nl503563g
M.M. Alsaif, K. Latham, M.R. Field, D.D. Yao, N.V. Medehkar et al., Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv. Mater. 26(23), 3931–3937 (2014). https://doi.org/10.1002/adma.201306097
C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 6, 7873 (2015). https://doi.org/10.1038/ncomms8873
B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136(40), 14121–14127 (2014). https://doi.org/10.1021/ja506261t
W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013). https://doi.org/10.1002/smll.201201161
Q. Li, N. Zhang, Y. Yang, G. Wang, D.H. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30(29), 8965–8972 (2014). https://doi.org/10.1021/la502033t
R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13(12), 1128–1134 (2014). https://doi.org/10.1038/nmat4080
M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10(4), 313–318 (2015). https://doi.org/10.1038/nnano.2015.40
M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013). https://doi.org/10.1021/ja404523s
Y.-C. Lin, D.O. Dumcenco, Y.-S. Huang, K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9(5), 391–396 (2014). https://doi.org/10.1038/nnano.2014.64
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135(47), 17881–17888 (2013). https://doi.org/10.1021/ja408329q
D. Kozawa, R. Kumar, A. Carvalho, A.K. Kumar, W. Zhao et al., Photocarrier relaxation in two-dimensional semiconductors. Nat. Commun. 5, 4543 (2014). https://doi.org/10.1038/ncomms5543
H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7(2), 1072–1080 (2013). https://doi.org/10.1021/nn303973r
P.D. Cunningham, K.M. McCreary, A.T. Hanbicki, M. Currie, B.T. Jonker, L.M. Hayden, Charge trapping and exciton dynamics in large-area CVD grown MoS2. J. Phys. Chem. C 120(10), 5819–5826 (2016). https://doi.org/10.1021/acs.jpcc.6b00647
H. Liu, J. Lu, Exciton dynamics in tungsten dichalcogenide monolayers. Phys. Chem. Chem. Phys. 19(27), 17877–17882 (2017). https://doi.org/10.1039/C7CP02510F
C. Pöllmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger et al., Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14(9), 889–893 (2015). https://doi.org/10.1038/nmat4356
Y. Song, Y. Lei, H. Xu, C. Wang, J. Yan et al., Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. Dalton Trans. 44(7), 3057–3066 (2015). https://doi.org/10.1039/C4DT03242J
Q. Xiang, J. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanops. J. Am. Chem. Soc. 134(15), 6575–6578 (2012). https://doi.org/10.1021/ja302846n
M. Shen, Z. Yan, L. Yang, P. Du, J. Zhang, B. Xiang, MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem. Commun. 50(97), 15447–15449 (2014). https://doi.org/10.1039/C4CC07351G
X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44(24), 8859–8876 (2015). https://doi.org/10.1039/C5CS00507H
S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23(32), 3952–3970 (2013). https://doi.org/10.1002/adfm.201300125
D.D. Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrodeposited α-and β-phase MoO3 films and investigation of their gasochromic properties. Cryst. Growth Des. 12(4), 1865–1870 (2012). https://doi.org/10.1021/cg201500b
V.V. Kumar, K. Gayathri, S.P. Anthony, Synthesis of α-MoO3 nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes. Mater. Res. Bull. 76(4706), 147–154 (2016). https://doi.org/10.1016/j.materresbull.2015.12.016
C. Bhandari, W.R. Lambrecht, M. van Schilfgaarde, Quasip self-consistent GW calculations of the electronic band structure of bulk and monolayer V2O5. Phys. Rev. B 91(12), 125116 (2015). https://doi.org/10.1103/PhysRevB.91.125116
T. Puangpetch, S. Chavadej, T. Sreethawong, Mesoporous-assembled V2O5 nanosheet synthesized via a surfactant-modified sol–gel technique and its photocatalytic H2 production activity under visible light irradiation. Powder Technol. 208(1), 37–41 (2011). https://doi.org/10.1016/j.powtec.2010.11.039
L. Wang, T. Sasaki, Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 114(19), 9455–9486 (2014). https://doi.org/10.1021/cr400627u
T. Zhu, S.-P. Gao, The stability, electronic structure, and optical property of TiO2 polymorphs. J. Phys. Chem. C 118(21), 11385–11396 (2014). https://doi.org/10.1021/jp412462m
D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail et al., Band alignment of rutile and anatase TiO2. Nat. Mater. 12(9), 798–801 (2013). https://doi.org/10.1038/nmat3697
Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures. Nat. Mater. 2(12), 821–826 (2003). https://doi.org/10.1038/nmat1014
Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7(6), 26–33 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X
M. Kalay, H. Kart, S.Ö. Kart, T. Çağın, Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations. J. Alloys Compd. 484(1), 431–438 (2009). https://doi.org/10.1016/j.jallcom.2009.04.116
C. Tusche, H. Meyerheim, J. Kirschner, Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99(2), 026102 (2007). https://doi.org/10.1103/PhysRevLett.99.026102
Y. Miao, H. Zhang, S. Yuan, Z. Jiao, X. Zhu, Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J. Colloid Interface Sci. 462, 9–18 (2016). https://doi.org/10.1016/j.jcis.2015.09.064
X. Zhao, F. Lou, M. Li, X. Lou, Z. Li, J. Zhou, Sol–gel-based hydrothermal method for the synthesis of 3D flower-like ZnO microstructures composed of nanosheets for photocatalytic applications. Ceram. Int. 40(4), 5507–5514 (2014). https://doi.org/10.1016/j.ceramint.2013.10.140
H. Wu, Q. Xie, L. An, P. Jin, D.-L. Peng, C. Huang, H. Wan, Facile preparation of porous flower-like ZnO microspheres with excellent photocatalytic performance. Mater. Lett. 139, 393–396 (2015). https://doi.org/10.1016/j.matlet.2014.10.101
N. Bao, L. Shen, T. Takata, K. Domen, Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 20(1), 110–117 (2007). https://doi.org/10.1021/cm7029344
Q. Wu, F. Sun, Photochemical synthesis of ZnS nanosheet and its use in photodegradation of organic pollutants, in 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE) (2010), pp. 1–4. https://doi.org/10.1109/ICBBE.2010.5517517
Y.-N. Xu, W. Ching, Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 48(7), 4335 (1993). https://doi.org/10.1103/PhysRevB.48.4335
B. Feng, J. Yang, J. Cao, L. Yang, M. Gao, M. Wei, H. Zhai, Y. Sun, H. Song, Growth mechanism, optical and photocatalytic properties of the ZnSe nanosheets constructed by the nanops. J. Alloys Compd. 555(555), 241–245 (2013). https://doi.org/10.1016/j.jallcom.2012.12.074
X. Wu, R. Xu, R. Zhu, R. Wu, B. Zhang, Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances. Nanoscale 7(21), 9752–9759 (2015). https://doi.org/10.1039/C5NR02329G
Y. Xu, W. Zhao, R. Xu, Y. Shi, B. Zhang, Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 49(84), 9803–9805 (2013). https://doi.org/10.1039/c3cc46342g
Q. Xiang, B. Cheng, J. Yu, Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl. Catal. B 138, 299–303 (2013). https://doi.org/10.1016/j.apcatb.2013.03.005
H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 21(12), 2175–2196 (2011). https://doi.org/10.1002/adfm.201002477
D. Sanchez-Martinez, C. Gomez-Solis, L.M. Torres-Martinez, CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO3. Mater. Res. Bull. 61, 165–172 (2015). https://doi.org/10.1016/j.materresbull.2014.10.034
J. Huang, L. Xiao, X. Yang, WO3 nanoplates, hierarchical flower-like assemblies and their photocatalytic properties. Mater. Res. Bull. 48(8), 2782–2785 (2013). https://doi.org/10.1016/j.materresbull.2013.04.022
X.-N. Song, C.-Y. Wang, W.-K. Wang, X. Zhang, N.-N. Hou, H.-Q. Yu, A dissolution-regeneration route to synthesize blue tungsten oxide flowers and their applications in photocatalysis and gas sensing. Adv. Mater. Interfaces 3(1), 1500417 (2016). https://doi.org/10.1002/admi.201500417
S. Han, L. Hu, Z. Liang, S. Wageh, A.A. Al-Ghamdi, Y. Chen, X. Fang, One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 24(36), 5719–5727 (2014). https://doi.org/10.1002/adfm.201401279
J. Zhu, X. Qian, From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. J. Solid State Chem. 183(7), 1632–1639 (2010). https://doi.org/10.1016/j.jssc.2010.05.015
N.Y. Dzade, A. Roldan, N.H. de Leeuw, A density functional theory study of the adsorption of benzene on hematite (α-Fe2O3) surfaces. Minerals 4(1), 89–115 (2014). https://doi.org/10.3390/min4010089
Y.-J. Zhu, S.-W. Cao, Hierarchically nanostructured r-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J. Phys. Chem. C 112(16), 6253–6257 (2008). https://doi.org/10.1021/jp8000465
D. Su, X. Xie, S. Dou, G. Wang, CuO single crystal with exposed 001 facets-A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 (2014). https://doi.org/10.1038/srep05753
F. Li, X. Liu, Q. Zhang, T. Kong, H. Jin, Fabrication and photocatalytic property of CuO nanosheets via a facile solution route. Cryst. Res. Technol. 47(11), 1140–1147 (2012). https://doi.org/10.1002/crat.201200143
B. Peng, P.K. Ang, K.P. Loh, Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10(2), 128–137 (2015). https://doi.org/10.1016/j.nantod.2015.01.007
M. Osada, T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 19(17), 2503–2511 (2009). https://doi.org/10.1039/b820160a
K. Kalantar-zadeh, A. Vijayaraghavan, M.-H. Ham, H. Zheng, M. Breedon, M.S. Strano, Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mater. 22(19), 5660–5666 (2010). https://doi.org/10.1021/cm1019603
H. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C. Rao, MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49(24), 4059–4062 (2010). https://doi.org/10.1002/anie.201000009
M. Zhou, X.W.D. Lou, Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8(6), 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002
J. Mujtaba, H. Sun, F. Fang, M. Ahmad, J. Zhu, Fine control over the morphology and photocatalytic activity of 3D ZnO hierarchical nanostructures: capping vs. etching. RSC Adv. 5(69), 56232–56238 (2015). https://doi.org/10.1039/C5RA08325G
L. Zhang, H. Yang, J. Yu, F. Shao, L. Li, F. Zhang, H. Zhao, Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J. Phys. Chem. C 113(14), 5434–5443 (2009). https://doi.org/10.1021/jp810385v
G. Tang, J. Sun, C. Wei, K. Wu, X. Ji, S. Liu, H. Tang, C. Li, Synthesis and characterization of flowerlike MoS2 nanostructures through CTAB-assisted hydrothermal process. Mater. Lett. 86(11), 9–12 (2012). https://doi.org/10.1016/j.matlet.2012.07.014
M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, From MoS2 microspheres to α-MoO3 nanoplates: growth mechanism and photocatalytic activities. Eur. J. Inorg. Chem. 2014(20), 3245–3251 (2014). https://doi.org/10.1002/ejic.201402079
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015). https://doi.org/10.1021/acsnano.5b05040
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269–271 (2001). https://doi.org/10.1126/science.1061051
S. Bilmes, P. Mandelbaum, F. Alvarez, N. Victoria, Surface, electronic structure of titanium dioxide photocatalysts. J. Phys. Chem. B 104(42), 9851–9858 (2000). https://doi.org/10.1021/jp0010132
N. Serpone, D. Lawless, J. Disdier, J.-M. Herrmann, Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10(3), 643–652 (1994). https://doi.org/10.1021/la00015a010
P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like n-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27(22), 225403 (2016). https://doi.org/10.1088/0957-4484/27/22/225403
Q. Xiang, J. Yu, W. Wang, M. Jaroniec, Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem. Commun. 47(24), 6906–6908 (2011). https://doi.org/10.1039/c1cc11740h
B. Wang, M.K.H. Leung, X.-Y. Lu, S.-Y. Chen, Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 112(16), 1190–1197 (2013). https://doi.org/10.1016/j.apenergy.2013.03.084
S. Liu, C. Li, J. Yu, Q. Xiang, Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13(7), 2533 (2011). https://doi.org/10.1039/c0ce00295j
Y. Liu, S. Xie, H. Li, X. Wang, A highly efficient sunlight driven ZnO nanosheet photocatalyst: synergetic effect of P-doping and MoS2 atomic layer loading. ChemCatChem 6(9), 2522–2526 (2014). https://doi.org/10.1002/cctc.201402191
N. Li, H. Teng, L. Zhang, J. Zhou, M. Liu, Synthesis of Mo-doped WO3 nanosheets with enhanced visible-light-driven photocatalytic properties. RSC Adv. 5(115), 95394–95400 (2015). https://doi.org/10.1039/C5RA17098B
T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, M. Yu, Optical and photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol. 51(1), 58–64 (2016). https://doi.org/10.1002/crat.201500152
M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin et al., Visible light photocatalysis with c-WO(3−x)/WO3xH2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J. Am. Chem. Soc. 135(11), 4467–4475 (2013). https://doi.org/10.1021/ja3126678
M.M. Alsaif, A.F. Chrimes, T. Daeneke, S. Balendhran, D.O. Bellisario et al., High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 26(1), 91–100 (2016). https://doi.org/10.1002/adfm.201503698
H. Cheng, T. Kamegawa, K. Mori, H. Yamashita, Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem. Int. Ed. 53(11), 2910–2914 (2014). https://doi.org/10.1002/anie.201309759
X. Tan, L. Wang, C. Cheng, X. Yan, B. Shen, J. Zhang, Plasmonic MoO3−x@ MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 52(14), 2893–2896 (2016). https://doi.org/10.1039/C5CC10020H
Y. Liao, Z. Hu, Q. Gu, C. Xue, Amine-functionalized ZnO nanosheets for efficient CO2 capture and photoreduction. Molecules 20(10), 18847–18855 (2015). https://doi.org/10.3390/molecules201018847
Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ. Sci. Technol. 35(5), 966–970 (2001). https://doi.org/10.1021/es001245e
K. Takanabe, K. Kamata, X. Wang, M. Antonietti, J. Kubota, K. Domen, Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys. 12(40), 13020–13025 (2010). https://doi.org/10.1039/c0cp00611d
Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding et al., Enhanced visible-light-induced hydrogen evolution from water in a noble-metal-free system catalyzed by ZnTCPP-MoS2/TiO2 assembly. Chem. Eng. J. 275, 8–16 (2015). https://doi.org/10.1016/j.cej.2015.04.015
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242–247 (2014). https://doi.org/10.1038/nchem.1861
Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, H.-W. Lu, Z.-G. Ji et al., Visible-light-driven hydrogen production from water in a noble-metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO. Dyes Pigm. 123, 285–292 (2015). https://doi.org/10.1016/j.dyepig.2015.08.014
S. Min, G. Lu, Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C 116(48), 25415–25424 (2012). https://doi.org/10.1021/jp3093786
T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting-the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016). https://doi.org/10.3390/molecules21070900
L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrog. Energy 38(17), 6960–6969 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.006
M.Q. Wen, T. Xiong, Z.G. Zang, W. Wei, X.S. Tang, F. Dong, Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt. Express 24(10), 10205–10212 (2016). https://doi.org/10.1364/OE.24.010205
G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J. Alloys Compd. 682, 208–215 (2016). https://doi.org/10.1016/j.jallcom.2016.04.267
X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1(1), 33–44 (2015). https://doi.org/10.1016/j.jmat.2015.03.003
L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan, Z. Li, MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl. Catal. B 144(2), 521–527 (2014). https://doi.org/10.1016/j.apcatb.2013.07.064
Y.-J. Yuan, D.-Q. Chen, Y.-W. Huang, Z.-T. Yu, J.-S. Zhong et al., MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. Chemsuschem 9(9), 1003–1009 (2016). https://doi.org/10.1002/cssc.201600006
C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng, Y. Xu, Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B 164, 1–9 (2015). https://doi.org/10.1016/j.apcatb.2014.08.046
X. Zhang, C. Shao, X. Li, F. Miao, K. Wang, N. Lu, Y. Liu, 3D MoS2 nanosheet/TiO2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. J. Alloys Compd. 686, 137–144 (2016). https://doi.org/10.1016/j.jallcom.2016.05.336
Y. Min, G. He, Q. Xu, Y. Chen, Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A 2(8), 2578 (2014). https://doi.org/10.1039/c3ta14240j
C. Wang, H. Lin, Z. Xu, H. Cheng, C. Zhang, One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities. RSC Adv. 5(20), 15621–15626 (2015). https://doi.org/10.1039/C4RA15632C
B. Zhu, B. Lin, Y. Zhou, P. Sun, Q. Yao, Y. Chen, B. Gao, Enhanced photocatalytic H2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J. Mater. Chem. A 2(11), 3819 (2014). https://doi.org/10.1039/C3TA14819J
Y.J. Yuan, F. Wang, B. Hu, H.W. Lu, Z.T. Yu, Z.G. Zou, Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst. Dalton Trans. 44(24), 10997–11003 (2015). https://doi.org/10.1039/C5DT00906E
N. Meng, Y. Zhou, W. Nie, L. Song, P. Chen, CuS/MoS2 nanocomposite with high solar photocatalytic activity. J. Nanopart. Res. 17(7), 300 (2015). https://doi.org/10.1007/s11051-015-3105-3
L. Gu, J. Wang, Z. Zou, X. Han, Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard Mater. 268(6), 216–223 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.021
Y. Hou, Y. Zhu, Y. Xu, X. Wang, Photocatalytic hydrogen production over carbon nitride loaded with WS2 as cocatalyst under visible light. Appl. Catal. B 156, 122–127 (2014). https://doi.org/10.1016/j.apcatb.2014.03.002
J. Fu, G. Li, F. Xi, X. Dong, Hybrid nanocomposite with visible-light photocatalytic activity: CdS-pillared titanate. Chem. Eng. J. 180(3), 330–336 (2012). https://doi.org/10.1016/j.cej.2011.10.098
J. Zhang, Z. Zhu, Y. Tang, K. Müllen, X. Feng, Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 26(5), 734–738 (2014). https://doi.org/10.1002/adma.201303571
H.N. Kim, T.W. Kim, I.Y. Kim, S.-J. Hwang, Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv. Funct. Mater. 21(16), 3111–3118 (2011). https://doi.org/10.1002/adfm.201100453
F. Zheng, H. Lu, M. Guo, M. Zhang, Q. Zhen, Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J. Mater. Chem. C 3(29), 7612–7620 (2015). https://doi.org/10.1039/C5TC01125F
A.K. Kole, C.S. Tiwary, P. Kumbhakar, Ethylenediamine assisted synthesis of wurtzite zinc sulphide nanosheets and porous zinc oxide nanostructures: near white light photoluminescence emission and photocatalytic activity under visible light irradiation. CrystEngComm 15(27), 5515–5525 (2013). https://doi.org/10.1039/c3ce40531a
X. Liu, J. Cao, B. Feng, L. Yang, M. Wei et al., Facile fabrication and photocatalytic properties of ZnO nanorods/ZnSe nanosheets heterostructure. Superlattices Microstruct. 83, 447–458 (2015). https://doi.org/10.1016/j.spmi.2015.03.051
N. Huo, Q. Yue, J. Yang, S. Yang, J. Li, Abnormal photocurrent response and enhanced photocatalytic activity induced by charge transfer between WS2 nanosheets and WO3 nanops. ChemPhysChem 14(18), 4069–4073 (2013). https://doi.org/10.1002/cphc.201300680
Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, From UV to near-infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 27(2), 363–369 (2015). https://doi.org/10.1002/adma.201403264
X. Yu, J. Liu, Y. Yu, S. Zuo, B. Li, Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 68, 718–724 (2014). https://doi.org/10.1016/j.carbon.2013.11.053
P. Atkin, T. Daeneke, Y. Wang, B. Carey, K. Berean et al., 2D WS2/carbon dot hybrids with enhanced photocatalytic activity. J. Mater. Chem. A 4(35), 13563–13571 (2016). https://doi.org/10.1039/C6TA06415A
S. Ida, A. Takashiba, S. Koga, H. Hagiwara, T. Ishihara, Potential gradient and photocatalytic activity of an ultrathin p–n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 136(5), 1872–1878 (2014). https://doi.org/10.1021/ja409465k
F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135(28), 10286–10289 (2013). https://doi.org/10.1021/ja404851s
Z. Xing, X. Zong, Y. Zhu, Z. Chen, Y. Bai, L. Wang, A nanohybrid of CdTe@ CdS nanocrystals and titania nanosheets with p–n nanojunctions for improved visible light-driven hydrogen production. Catal. Today 264, 229–235 (2016). https://doi.org/10.1016/j.cattod.2015.08.007
J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 11(11), 4774–4779 (2011). https://doi.org/10.1021/nl202587b
Z.B. Yu, Y.P. Xie, G. Liu, G.Q. Lu, X.L. Ma, H.-M. Cheng, Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 1(8), 2773–2776 (2013). https://doi.org/10.1039/c3ta01476b
C. Zhu, L. Zhang, B. Jiang, J. Zheng, P. Hu, S. Li, M. Wu, W. Wu, Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 377, 99–108 (2016). https://doi.org/10.1016/j.apsusc.2016.03.143
W.C. Peng, X. Wang, X.Y. Li, The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light. Nanoscale 6(14), 8311–8317 (2014). https://doi.org/10.1039/c4nr01654h
C. Wang, M. Wu, M. Yan, H. Shen, F. Cai, B. Hu, W. Shi, Enhanced visible-light photocatalytic activity and the mechanism study of WO3 nanosheets coupled with Ag3PO4 nanocrystals. Ceram. Int. 41(5), 6784–6792 (2015). https://doi.org/10.1016/j.ceramint.2015.01.125
W. Tu, Y. Zhou, S. Feng, Q. Xu, P. Li, X. Wang, M. Xiao, Z. Zou, Hollow spheres consisting of Ti0.91O2/CdS nanohybrids for CO2 photofixation. Chem. Commun. 51(69), 13354–13357 (2015). https://doi.org/10.1039/C5CC03905C
K. Schierbaum, U. Kirner, J. Geiger, W. Göpel, Schottky-barrier and conductivity gas sensors based upon Pd/SnO2 and Pt/TiO2. Sens. Actuator-B Chem. 4(1), 87–94 (1991). https://doi.org/10.1016/0925-4005(91)80181-I
A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). https://doi.org/10.1021/cr00035a013
Y. Gao, W. Lee, R. Trehan, R. Kershaw, K. Dwight, A. Wold, Improvement of photocatalytic activity of titanium (IV) oxide by dispersion of Au on TiO2. Mater. Res. Bull. 26(12), 1247–1254 (1991). https://doi.org/10.1016/0025-5408(91)90138-C
V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal p size on the Fermi level equilibration. J. Am. Chem. Soc. 126(15), 4943–4950 (2004). https://doi.org/10.1021/ja0315199
Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Appl. Surf. Sci. 332, 32–39 (2015). https://doi.org/10.1016/j.apsusc.2015.01.116
A.J. Cheah, W.S. Chiu, P.S. Khiew, H. Nakajima, T. Saisopa, P. Songsiriritthigul, S. Radiman, M.A.A. Hamid, Facile synthesis of a Ag/MoS2 nanocomposite photocatalyst for enhanced visible-light driven hydrogen gas evolution. Catal. Sci. Technol. 5(8), 4133–4143 (2015). https://doi.org/10.1039/C5CY00464K
D. Zhang, X. Liu, X. Wang, Growth and photocatalytic activity of ZnO nanosheets stabilized by Ag nanops. J. Alloys Compd. 509(15), 4972–4977 (2011). https://doi.org/10.1016/j.jallcom.2011.01.145
Y. Xin, L. Wu, L. Ge, C. Han, Y. Li, S. Fang, Gold-palladium bimetallic nanoalloy decorated ultrathin 2D TiO2 nanosheets as efficient photocatalysts with high hydrogen evolution activity. J. Mater. Chem. A 3(16), 8659–8666 (2015). https://doi.org/10.1039/C5TA00759C
L. Yang, D. Zhong, J. Zhang, Z. Yan, S. Ge et al., Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution. ACS Nano 8(7), 6979–6985 (2014). https://doi.org/10.1021/nn501807y
S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, D. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38(13), 3001–3008 (2004). https://doi.org/10.1016/j.watres.2004.04.046
Y. Homma, Y. Kobayashi, T. Ogino, D. Takagi, R. Ito, Y.J. Jung, P.M. Ajayan, Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B 107(44), 12161–12164 (2003). https://doi.org/10.1021/jp0353845
Y. Wu, M. Xu, X. Chen, S. Yang, H. Wu, J. Pan, X. Xiong, CTAB-assisted synthesis of novel ultrathin MoSe2 nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale 8(1), 440–450 (2016). https://doi.org/10.1039/C5NR05748E
S. Kong, Z. Jin, H. Liu, Y. Wang, Morphological effect of graphene nanosheets on ultrathin CoS nanosheets and their applications for high-performance Li–ion batteries and photocatalysis. J. Phys. Chem. C 118(44), 25355–25364 (2014). https://doi.org/10.1021/jp508698q
W. Guo, F. Zhang, C. Lin, Z.L. Wang, Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 24(35), 4761–4764 (2012). https://doi.org/10.1002/adma.201201075
T. Daeneke, N. Dahr, P. Atkin, R.M. Clark, C.J. Harrison, et al., Surface water dependent properties of sulfur-rich molybdenum sulfides: electrolyteless gas phase water splitting. ACS Nano 11(7), 6782–6794 (2017). http://pubs.acs.org/doi/abs/10.1021/acsnano.7b01632
J. Sun, H. Zhang, L.-H. Guo, L. Zhao, Two-dimensional interface engineering of a titania-graphene nanosheet composite for improved photocatalytic activity. ACS Appl. Mater. Interfaces 5(24), 13035–13041 (2013). https://doi.org/10.1021/am403937y
Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube. ACS Nano 5(9), 7426–7435 (2011). https://doi.org/10.1021/nn202519j
W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, Z. Zou, Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv. Funct. Mater. 22(6), 1215–1221 (2012). https://doi.org/10.1002/adfm.201102566
S. Bai, L. Wang, X. Chen, J. Du, Y. Xiong, Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 8(1), 175–183 (2014). https://doi.org/10.1007/s12274-014-0606-9
R. Bera, S. Kundu, A. Patra, 2D hybrid nanostructure of reduced graphene oxide-CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 7(24), 13251–13259 (2015). https://doi.org/10.1021/acsami.5b03800
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, L. Gao, Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates. Nanoscale 4(17), 5431–5439 (2012). https://doi.org/10.1039/c2nr31030a
Z. Zhang, J. Huang, M. Zhang, Q. Yuan, B. Dong, Ultrathin hexagonal SnS2 nanosheets coupled with gC3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B 163(163), 298–305 (2015). https://doi.org/10.1016/j.apcatb.2014.08.013
X. Yang, H. Xue, J. Xu, X. Huang, J. Zhang et al., Synthesis of porous ZnS:Ag2S nanosheets by ion exchange for photocatalytic H2 generation. ACS Appl. Mater. Interfaces 6(12), 9078–9084 (2014). https://doi.org/10.1021/am5020953
Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu, Z.-G. Zou, Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 6(2), 532–541 (2016). https://doi.org/10.1021/acscatal.5b02036
X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176–7177 (2008). https://doi.org/10.1021/ja8007825
X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131(9), 3152–3153 (2009). https://doi.org/10.1021/ja8092373
L. Yang, X. Kong, J. Wang, M. Pan, W. Yang, J. Yang, W. Jiang, Synthesis and photocatalytic performance of ZnO hollow spheres and porous nanosheets. J. Mater. Sci. Mater. El. 27(1), 203–209 (2015). https://doi.org/10.1007/s10854-015-3738-0
M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahir, N. Mahmood, Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16(24), 5290 (2014). https://doi.org/10.1039/c4ce00090k
Y. Wen, Y. Zhu, S. Zhang, Low temperature synthesis of ZrS2 nanoflakes and their catalytic activity. RSC Adv. 5(81), 66082–66085 (2015). https://doi.org/10.1039/C5RA12412C
T. Lin, J. Wang, L. Guo, F. Fu, Fe3O4@MoS2 core-shell composites: preparation, characterization, and catalytic application. J. Phys. Chem. C 119(24), 13658–13664 (2015). https://doi.org/10.1021/acs.jpcc.5b02516
M. Tou, Z. Luo, S. Bai, F. Liu, Q. Chai, S. Li, Z. Li, Sequential coating upconversion NaYF4:Yb, Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications. Mater. Sci. Eng. C 70(Pt 2), 1141–1148 (2016). https://doi.org/10.1016/j.msec.2016.03.038
K. Kamaraj, R.P. George, B. Anandkumar, N. Parvathavarthini, U. Kamachi Mudali, A silver nanop loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry 106(Pt B), 290–297 (2015). https://doi.org/10.1016/j.bioelechem.2015.07.005
W. Wu, C. Jiang, V.A. Roy, Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7(1), 38–58 (2015). https://doi.org/10.1039/C4NR04244A
M.T. Greiner, M.G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, Z.-H. Lu, Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11(1), 76–81 (2012). https://doi.org/10.1038/nmat3159
R. van de Krol, Y. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311–2320 (2008). https://doi.org/10.1039/b718969a
M.T. Greiner, Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5(7), 547–556 (2013). https://doi.org/10.1038/am.2013.29
Y. Xu, M.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85(3), 543–556 (2000). https://doi.org/10.2138/am-2000-0416
J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee, K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays. Opt. Mater. Express 2(5), 594–628 (2012). https://doi.org/10.1364/OME.2.000594
M. Thripuranthaka, R.V. Kashid, C. Sekhar Rout, D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 104(8), 081911 (2014). https://doi.org/10.1063/1.4866782
R. Das, S. Pandey, Comparison of optical properties of bulk and nano crystalline thin films of CdS using different precursors. Int. J. Mater. Sci. 1(1), 35–40 (2011). http://www.dpi-journals.com/index.php/IJMSCI//view/881/749
S. Balendhran, J. Deng, J.Z. Ou, S. Walia, J. Scott, J. Tang, K.L. Wang, M.R. Field, S. Russo, S. Zhuiykov, Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 25(1), 109–114 (2013). https://doi.org/10.1002/adma.201203346
J. Zheng, H. Zhang, S. Dong, Y. Liu, C.T. Nai, H.S. Shin, H.Y. Jeong, B. Liu, K.P. Loh, High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5(1), 2995 (2014). https://doi.org/10.1038/ncomms3995
Y. Zhang, S. Liu, W. Liu, T. Liang, X. Yang, M. Xu, H. Chen, Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. Phys. Chem. Chem. Phys. 17(41), 27565–27572 (2015). https://doi.org/10.1039/C5CP05011A
X. Xiao, H. Song, S. Lin, Y. Zhou, X. Zhan et al., Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016). https://doi.org/10.1038/ncomms11296
R. Das, H. Mishra, A. Srivastava, A.M. Kayastha, Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: a gateway to boost enzyme application. Chem. Eng. J. 328, 215–227 (2017). https://doi.org/10.1016/j.cej.2017.07.019
S.S. Lo, T. Mirkovic, C.H. Chuang, C. Burda, G.D. Scholes, Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv. Mater. 23(2), 180–197 (2011). https://doi.org/10.1002/adma.201002290
R. Zha, R. Nadimicherla, X. Guo, Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 3(12), 6565–6574 (2015). https://doi.org/10.1039/C5TA00764J