2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000 mA cm−2-Level-Current-Density Hydrogen Evolution Over 100 h in Neutral Water
Corresponding Author: Tianyou Zhai
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 140
Abstract
Water electrolysis at high current density (1000 mA cm−2 level) with excellent durability especially in neutral electrolyte is the pivotal issue for green hydrogen from experiment to industrialization. In addition to the high intrinsic activity determined by the electronic structure, electrocatalysts are also required to be capable of fast mass transfer (electrolyte recharge and bubble overflow) and high mechanical stability. Herein, the 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system was proposed and realized 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. In designed catalysts, 2D stack structure as an adaptive material can buffer the shock of electrolyte convection, hydrogen bubble rupture, and evolution through the release of stress, which insure the long cycle stability. Meanwhile, the rich porosity between stacked units contributed the good infiltration of electrolyte and slippage of hydrogen bubbles, guaranteeing electrolyte fast recharge and bubble evolution at the high-current catalysis. Beyond that, the electron structure modulation induced by interfacial charge transfer is also beneficial to enhance the intrinsic activity. Profoundly, the multiscale coordinated regulation will provide a guide to design high-efficiency industrial electrocatalysts.
Highlights:
1 The 2D CoOOH sheet-encapsulated Ni2P into tubular arrays electrocatalytic system with expediting mass transport, structural stability, and tuned electron was conceptually proposed.
2 The designed electrocatalysts realize expectant 1000 mA cm−2-level-current-density hydrogen evolution in neutral water for over 100 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liu, X. Liang, L. Gu, Y. Zhang, G.D. Li, X. Zou, J.S. Chen, Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 9, 2609 (2018). https://doi.org/10.1038/s41467-018-05019-5
- J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 2034 (2019). https://doi.org/10.1007/s40820-019-0289-6
- J. Cao, K. Wang, J. Chen, C. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 1545 (2019). https://doi.org/10.1007/s40820-019-0299-4
- F. Meng, G. Yilmaz, T.P. Ding, M. Gao, G.W. Ho, A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis. Adv. Mater. 31, 1903605 (2019). https://doi.org/10.1002/adma.201903605
- W.Y. Lim, Y.F. Lim, G.W. Ho, Pseudomorphic-phase transformation of NiCo based ternary hierarchical 2D-1D nanostructures for enhanced electrocatalysis. J. Mater. Chem. A 5, 919–924 (2017). https://doi.org/10.1039/C6TA09323J
- K.J.H. Lim, G. Yilmaz, Y. Lim, G.W. Ho, Multi-compositional hierarchical nanostructured Ni3S2@MoSx/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. J. Mater. Chem. A 6, 20491–20499 (2018). https://doi.org/10.1039/C8TA06023A
- C.T. Dinh, A. Jain, F.P.G. Arquer, P.D. Luna, J. Li et al., Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2019). https://doi.org/10.1038/s41560-018-0296-8
- Y. Wu, X. Liu, D. Han, X. Song, L. Shi et al., Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 9, 1425 (2018). https://doi.org/10.1038/s41467-018-03858-w
- W. Wang, Y.B. Zhu, Q. Wen, Y. Tamg, J. Xia et al., Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 31, 1900528 (2019). https://doi.org/10.1002/adma.201900528
- N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
- W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590–1598 (2018). https://doi.org/10.1021/acs.accounts.8b00070
- J. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
- X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
- L. Yu, Q. Zhou, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
- K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie et al., Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction. Nano-Micro Lett. 11, 21 (2019). https://doi.org/10.1007/s40820-019-0253-5
- H. You, Z. Zhuo, X. Lu, Y. Liu, Y. Guo et al., MoTe2-based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 1, 396–407 (2019). https://doi.org/10.31635/ccschem.019.20190022
- M.S. Faber, R. Dziedzic, M.A. Lukowski, N.S. Kaiser, Q. Ding, S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014). https://doi.org/10.1021/ja504099w
- M.S. Faber, S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014). https://doi.org/10.1039/c4ee01760a
- C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu et al., Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020). https://doi.org/10.1039/c9ee02388g
- Y. Zhao, J. Feng, X. Liu, F. Wang, L. Wang et al., Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat. Commun. 5, 4565 (2014). https://doi.org/10.1038/ncomms5565
- Y. Sun, J. Pan, Z. Zhang, K. Zhang, J. Liang et al., Elastic properties and fracture behaviors of biaxially deformed, Polymorphic MoTe2. Nano Lett. 19, 761–769 (2019). https://doi.org/10.1021/acs.nanolett.8b03833
- G. Yilmaz, T. Yang, Y. Do, X. Yu, Y.P. Feng, L. Shen, G.W. Ho, Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Adv. Sci. 6, 1900140 (2019). https://doi.org/10.1002/advs.201900140
- Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, F.Y. Gao et al., Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 9, 2533 (2018). https://doi.org/10.1038/s41467-018-04954-7
- Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan, Y. Xie, Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 138, 5087–5092 (2016). https://doi.org/10.1021/jacs.6b00858
- C. Tang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 129, 860–864 (2017). https://doi.org/10.1002/anie.201608899
- J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54, 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
- D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu et al., Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 30, 1705633 (2018). https://doi.org/10.1002/adma.201705366
- B. Weng, F. Xu, C. Wang, W. Meng, C.R. Grice, Y. Yan, A layered Na1-xNiyFe1-yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 10, 121–128 (2017). https://doi.org/10.1039/c6ee03088b
- J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- B. Hammer, L. Hansen, J. Nørskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999). https://doi.org/10.1103/PhysRevB.59.7413
- P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- H. Monkhorst, J. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)
- MathSciNet
- G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
- G. Henkelman, B. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
- D. Sheppard, G. Henkelman, Letter to the editor paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769–1771 (2011). https://doi.org/10.1002/jcc.21748
- J. Yang, T. Sasaki, Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating. Chem. Mater. 20, 2049–2056 (2008). https://doi.org/10.1021/cm702868u
- T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294
- L. Wang, X. Liu, R. Zeng, M. Li, Y. Huang, X. Hu, Constructing hierarchical tectorum-like a-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. Int. Ed. 56, 1105–1110 (2017). https://doi.org/10.1002/ange.201609527
- T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 30, e1803590 (2018). https://doi.org/10.1002/adma.201803590
- R. Wu, Q. Gao, Y. Zheng, X. Zheng, J. Zhu, M. Gao, S. Yu, A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem. Int. Ed. 130, 15671–15675 (2018). https://doi.org/10.1002/anie.201808929
- Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He et al., Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019). https://doi.org/10.1021/jacs.9b04492
- K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
- M. Qian, S. Cui, D. Jiang, L. Zhang, P. Du, Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional solid-solution nanoplate arrays. Adv. Mater. 29, 1704075 (2017). https://doi.org/10.1002/adma.201704075
- F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531 (2018). https://doi.org/10.1038/s41467-018-06728-7
- S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220
- Y. Kuang, M.J. Kenney, Y. Meng, W.H. Hung, Y. Liu, Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U.S.A. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- N. Danilovic, R. Subbaraman, D. Strmcnik, K.C. Chang, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/Metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012). https://doi.org/10.1002/anie.201204842
- Y. Luo, L. Tang, U. Khan, Q. Yu, H.M. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
- Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li et al., Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26, 2683–2687 (2014). https://doi.org/10.1002/adma.201304759
- Y. Huang, M. Liu, J. Wang, J. Zhou, L. Wang, Y. Song, L. Jiang, Controllable underwater oil-adhesion-interface films assembled from nonspherical particles. Adv. Funct. Mater. 21, 4436–4441 (2011). https://doi.org/10.1002/adfm.201101598
- J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu et al., Electrochemically accessing ultrathin Co(oxy)-Hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 12, 739–746 (2019). https://doi.org/10.1039/c8ee03208d
- Y. Luo, J. Li, J. Zhu, Y. Zhao, X. Gao, Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces. Angew. Chem. Int. Ed. 54, 4876–4879 (2015). https://doi.org/10.1002/anie.201500137
- X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29, 1700404 (2017). https://doi.org/10.1002/adma.201700404
- K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun et al., Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014). https://doi.org/10.1021/nl501793a
- J. Bertolazzi, A. Kis et al., Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). https://doi.org/10.1021/nn203879f
- C. Lei, W. Zhou, Q. Feng, Y. Lei, Y. Zhang, Y. Chen, J. Qin, Charge engineering of Mo2C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H2 evolution. Nano-Micro Lett. 11, 45 (2019). https://doi.org/10.1007/s40820-019-0279-8
- S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
- G. Yilmaz, C.F. Tan, Y. Lim, G.W. Ho, Pseudomorphic transformation of interpenetrated prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting. Adv. Energy Mater. 9, 1802983 (2019). https://doi.org/10.1002/aenm.201802983
References
Y. Liu, X. Liang, L. Gu, Y. Zhang, G.D. Li, X. Zou, J.S. Chen, Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 9, 2609 (2018). https://doi.org/10.1038/s41467-018-05019-5
J. Lin, Y. Yan, C. Li, X. Si, H. Wang et al., Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting. Nano-Micro Lett. 11, 2034 (2019). https://doi.org/10.1007/s40820-019-0289-6
J. Cao, K. Wang, J. Chen, C. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 1545 (2019). https://doi.org/10.1007/s40820-019-0299-4
F. Meng, G. Yilmaz, T.P. Ding, M. Gao, G.W. Ho, A hybrid solar absorber-electrocatalytic N-doped carbon/alloy/semiconductor electrode for localized photothermic electrocatalysis. Adv. Mater. 31, 1903605 (2019). https://doi.org/10.1002/adma.201903605
W.Y. Lim, Y.F. Lim, G.W. Ho, Pseudomorphic-phase transformation of NiCo based ternary hierarchical 2D-1D nanostructures for enhanced electrocatalysis. J. Mater. Chem. A 5, 919–924 (2017). https://doi.org/10.1039/C6TA09323J
K.J.H. Lim, G. Yilmaz, Y. Lim, G.W. Ho, Multi-compositional hierarchical nanostructured Ni3S2@MoSx/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage. J. Mater. Chem. A 6, 20491–20499 (2018). https://doi.org/10.1039/C8TA06023A
C.T. Dinh, A. Jain, F.P.G. Arquer, P.D. Luna, J. Li et al., Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2019). https://doi.org/10.1038/s41560-018-0296-8
Y. Wu, X. Liu, D. Han, X. Song, L. Shi et al., Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 9, 1425 (2018). https://doi.org/10.1038/s41467-018-03858-w
W. Wang, Y.B. Zhu, Q. Wen, Y. Tamg, J. Xia et al., Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 31, 1900528 (2019). https://doi.org/10.1002/adma.201900528
N. Han, K.R. Yang, Z. Lu, Y. Li, W. Xu et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 9, 924 (2018). https://doi.org/10.1038/s41467-018-03429-z
W. Xu, Z. Lu, X. Sun, L. Jiang, X. Duan, Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 51, 1590–1598 (2018). https://doi.org/10.1021/acs.accounts.8b00070
J. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
L. Yu, Q. Zhou, S. Song, B. McElhenny, D. Wang et al., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019). https://doi.org/10.1038/s41467-019-13092-7
K. Zhang, X. Xia, S. Deng, Y. Zhong, D. Xie et al., Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction. Nano-Micro Lett. 11, 21 (2019). https://doi.org/10.1007/s40820-019-0253-5
H. You, Z. Zhuo, X. Lu, Y. Liu, Y. Guo et al., MoTe2-based on-chip electrocatalytic microdevice: a platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 1, 396–407 (2019). https://doi.org/10.31635/ccschem.019.20190022
M.S. Faber, R. Dziedzic, M.A. Lukowski, N.S. Kaiser, Q. Ding, S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014). https://doi.org/10.1021/ja504099w
M.S. Faber, S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014). https://doi.org/10.1039/c4ee01760a
C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu et al., Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020). https://doi.org/10.1039/c9ee02388g
Y. Zhao, J. Feng, X. Liu, F. Wang, L. Wang et al., Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat. Commun. 5, 4565 (2014). https://doi.org/10.1038/ncomms5565
Y. Sun, J. Pan, Z. Zhang, K. Zhang, J. Liang et al., Elastic properties and fracture behaviors of biaxially deformed, Polymorphic MoTe2. Nano Lett. 19, 761–769 (2019). https://doi.org/10.1021/acs.nanolett.8b03833
G. Yilmaz, T. Yang, Y. Do, X. Yu, Y.P. Feng, L. Shen, G.W. Ho, Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Adv. Sci. 6, 1900140 (2019). https://doi.org/10.1002/advs.201900140
Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, F.Y. Gao et al., Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 9, 2533 (2018). https://doi.org/10.1038/s41467-018-04954-7
Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan, Y. Xie, Heterogeneous spin states in ultrathin nanosheets induce subtle lattice distortion to trigger efficient hydrogen evolution. J. Am. Chem. Soc. 138, 5087–5092 (2016). https://doi.org/10.1021/jacs.6b00858
C. Tang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 129, 860–864 (2017). https://doi.org/10.1002/anie.201608899
J. Huang, J. Chen, T. Yao, J. He, S. Jiang et al., CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem. Int. Ed. 54, 8722–8727 (2015). https://doi.org/10.1002/anie.201502836
D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu et al., Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 30, 1705633 (2018). https://doi.org/10.1002/adma.201705366
B. Weng, F. Xu, C. Wang, W. Meng, C.R. Grice, Y. Yan, A layered Na1-xNiyFe1-yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 10, 121–128 (2017). https://doi.org/10.1039/c6ee03088b
J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
B. Hammer, L. Hansen, J. Nørskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999). https://doi.org/10.1103/PhysRevB.59.7413
P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
H. Monkhorst, J. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)
MathSciNet
G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224
G. Henkelman, B. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672
D. Sheppard, G. Henkelman, Letter to the editor paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769–1771 (2011). https://doi.org/10.1002/jcc.21748
J. Yang, T. Sasaki, Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating. Chem. Mater. 20, 2049–2056 (2008). https://doi.org/10.1021/cm702868u
T. Deng, Y. Lu, W. Zhang, M. Sui, X. Shi, D. Wang, W. Zheng, Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv. Energy Mater. 8, 1702294 (2018). https://doi.org/10.1002/aenm.201702294
L. Wang, X. Liu, R. Zeng, M. Li, Y. Huang, X. Hu, Constructing hierarchical tectorum-like a-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. Int. Ed. 56, 1105–1110 (2017). https://doi.org/10.1002/ange.201609527
T. Liu, A. Li, C. Wang, W. Zhou, S. Liu, L. Guo, Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties. Adv. Mater. 30, e1803590 (2018). https://doi.org/10.1002/adma.201803590
R. Wu, Q. Gao, Y. Zheng, X. Zheng, J. Zhu, M. Gao, S. Yu, A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting. Angew. Chem. Int. Ed. 130, 15671–15675 (2018). https://doi.org/10.1002/anie.201808929
Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He et al., Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019). https://doi.org/10.1021/jacs.9b04492
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng et al., Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 10, 1743 (2019). https://doi.org/10.1038/s41467-019-09765-y
M. Qian, S. Cui, D. Jiang, L. Zhang, P. Du, Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional solid-solution nanoplate arrays. Adv. Mater. 29, 1704075 (2017). https://doi.org/10.1002/adma.201704075
F. Song, W. Li, J. Yang, G. Han, P. Liao, Y. Sun, Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 9, 4531 (2018). https://doi.org/10.1038/s41467-018-06728-7
S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019). https://doi.org/10.1021/acsenergylett.9b00220
Y. Kuang, M.J. Kenney, Y. Meng, W.H. Hung, Y. Liu, Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U.S.A. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.1900556116
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
N. Danilovic, R. Subbaraman, D. Strmcnik, K.C. Chang, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/Metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012). https://doi.org/10.1002/anie.201204842
Y. Luo, L. Tang, U. Khan, Q. Yu, H.M. Cheng, X. Zou, B. Liu, Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
Z. Lu, W. Zhu, X. Yu, H. Zhang, Y. Li et al., Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26, 2683–2687 (2014). https://doi.org/10.1002/adma.201304759
Y. Huang, M. Liu, J. Wang, J. Zhou, L. Wang, Y. Song, L. Jiang, Controllable underwater oil-adhesion-interface films assembled from nonspherical particles. Adv. Funct. Mater. 21, 4436–4441 (2011). https://doi.org/10.1002/adfm.201101598
J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu et al., Electrochemically accessing ultrathin Co(oxy)-Hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 12, 739–746 (2019). https://doi.org/10.1039/c8ee03208d
Y. Luo, J. Li, J. Zhu, Y. Zhao, X. Gao, Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces. Angew. Chem. Int. Ed. 54, 4876–4879 (2015). https://doi.org/10.1002/anie.201500137
X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29, 1700404 (2017). https://doi.org/10.1002/adma.201700404
K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun et al., Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014). https://doi.org/10.1021/nl501793a
J. Bertolazzi, A. Kis et al., Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011). https://doi.org/10.1021/nn203879f
C. Lei, W. Zhou, Q. Feng, Y. Lei, Y. Zhang, Y. Chen, J. Qin, Charge engineering of Mo2C@defect-rich N-doped carbon nanosheets for efficient electrocatalytic H2 evolution. Nano-Micro Lett. 11, 45 (2019). https://doi.org/10.1007/s40820-019-0279-8
S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
G. Yilmaz, C.F. Tan, Y. Lim, G.W. Ho, Pseudomorphic transformation of interpenetrated prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting. Adv. Energy Mater. 9, 1802983 (2019). https://doi.org/10.1002/aenm.201802983