Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability
Corresponding Author: Shuquan Liang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 171
Abstract
Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe2/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework, producing much smaller MoSe2 nanodots. The obtained MoSe2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g−1) and excellent rate capability. Moreover, the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g−1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials.
Highlights:
1 MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics.
2 MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework.
3 The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k
- D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8
- A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao, J.Z. Ou, Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
- L. Lin, W. Lei, S. Zhang, Y. Liu, G.G. Wallace, J. Chen, Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 19, 408–423 (2019). https://doi.org/10.1016/j.ensm.2019.02.023
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
- J. Lee, C. Kim, K. Choi, J. Seo, Y. Choi et al., In-situ coalesced vacancies on MoSe2 mimicking noble metal: unprecedented tafel reaction in hydrogen evolution. Nano Energy 63, 103846 (2019). https://doi.org/10.1016/j.nanoen.2019.06.042
- J. Xiao, Y. Zhang, H. Chen, N. Xu, S. Deng, Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Lett. 10, 60 (2018). https://doi.org/10.1007/s40820-018-0212-6
- H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1−x)Se2x homojunctions for self-powered visible–near-infrared phototransistors. Nano-Micro Lett. 12, 26 (2020). https://doi.org/10.1007/s40820-019-0361-2
- S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang et al., Boosting sodium storage of Fe1−xS/MoS2 composite via heterointerface engineering. Nano-Micro Lett. 11, 80 (2019). https://doi.org/10.1007/s40820-019-0311-z
- A. Eftelthari, Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 8, 1–17 (2017). https://doi.org/10.1016/j.apmt.2017.01.006
- X.L. Hu, W. Zhang, X.X. Liu, Y.N. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015). https://doi.org/10.1039/c4cs00350k
- H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13, 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
- F.E. Niu, J. Yang, N.N. Wang, D.P. Zhang, W.L. Fan, J. Yang, Y.T. Qian, MoSe2-covered n, p-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27, 1700522 (2017). https://doi.org/10.1002/adfm.201700522
- T. Xiang, S. Tao, W.Y. Xu, Q. Fang, C.Q. Wu et al., Stable 1t-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode. ACS Nano 11, 6483–6491 (2017). https://doi.org/10.1021/acsnano.7b03329
- J. Zheng, J. Lu, K. Amine, F. Pan, Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy 33, 497–507 (2017). https://doi.org/10.1016/j.nanoen.2017.02.011
- Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed. 57, 626–646 (2018). https://doi.org/10.1002/anie.201706426
- W.C. Zhang, Y.J. Liu, Z.P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
- W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
- K. Wang, Y. Wang, Y. Zhang, F. Liu, J. Shi et al., Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composite for high-performance lithium-ion batteries. Nanoscale 12, 12623–12631 (2020). https://doi.org/10.1039/d0nr01528h
- W.C. Zhang, W.K. Pang, V. Sencadas, Z.P. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2, 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
- W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, X. Li, Porous membranes in secondary battery technologies. Chem. Soc. Rev. 46, 2199–2236 (2017). https://doi.org/10.1039/c6cs00823b
- K.I. Jang, K. Li, H.U. Chung, S. Xu, H.N. Jung et al., Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017). https://doi.org/10.1038/ncomms15894
- Z. Wu, J. Wang, R. Liu, K. Xia, C. Xuan et al., Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy 32, 511–519 (2017). https://doi.org/10.1016/j.nanoen.2017.01.014
- S. Zhu, J.J. Li, X.Y. Deng, C.N. He, E.Z. Liu et al., Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv. Funct. Mater. 27, 1605017 (2017). https://doi.org/10.1002/adfm.201605017
- T. Meng, L.R. Zheng, J.W. Qin, D. Zhao, M.H. Cao, A three-dimensional hierarchically porous Mo2C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage. J. Mater. Chem. A 5, 20228–20238 (2017). https://doi.org/10.1039/c7ta05946a
- R.G. Mariano, K. McKelvey, H.S. White, M.W. Kanan, Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1191 (2017). https://doi.org/10.1126/science.aao3691
- G.Z. Fang, Q.C. Wang, J. Zhou, Y.P. Lei, Z.X. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13, 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- X. Zhao, W. Cai, Y. Yang, X.D. Song, Z. Neale et al., MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
- P. Ge, H.S. Hou, C.E. Banks, C.W. Foster, S.J. Li et al., Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater. 12, 310–323 (2018). https://doi.org/10.1016/j.ensm.2018.02.012
- Z. Kou, T. Wang, Q. Gu, M. Xiong, L. Zheng et al., Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 9, 1803768 (2019). https://doi.org/10.1002/aenm.201803768
- X. Chen, L.-P. Lv, W. Sun, Y. Hu, X. Tao, Y. Wang, Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance. J. Mater. Chem. A 6, 13705–13716 (2018). https://doi.org/10.1039/c8ta03176b
- D. Vikraman, S. Hussain, K. Karuppasamy, A. Feroze, A. Kathalingam et al., Engineering the novel MoSe2–Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B 264, 118531 (2020). https://doi.org/10.1016/j.apcatb.2019.118531
- J. Chen, A. Pan, Y. Wang, X. Cao, W. Zhang et al., Hierarchical mesoporous MoSe2@CoSe/n-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 21, 97–106 (2018). https://doi.org/10.1016/j.ensm.2018.10.019
- Y. Yu, G.H. Nam, Q. He, X.J. Wu, K. Zhang et al., High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6
- Q. Su, X. Cao, T. Yu, X. Kong, Y. Wang et al., Binding MoSe2 with dual protection carbon for high-performance sodium storage. J. Mater. Chem. A 7, 22871–22878 (2019). https://doi.org/10.1039/c9ta06870h
- Y.J. Yang, D.M. Tang, C. Zhang, Y.H. Zhang, Q.F. Liang et al., “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 10, 979–986 (2017). https://doi.org/10.1039/c7ee00329c
- Z. Shi, K. Nie, Z.-J. Shao, B. Gao, H. Lin et al., Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ. Sci. 10, 1262–1271 (2017). https://doi.org/10.1039/c7ee00388a
- J.M. Ge, L. Fan, J. Wang, Q.F. Zhang, Z.M. Liu et al., MoSe2/n-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 8, 1801477 (2018). https://doi.org/10.1002/aenm.201801477
- M. Deng, J. Qi, X. Li, Y. Xiao, L. Yang et al., MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries. Electrochim. Acta 277, 205–210 (2018). https://doi.org/10.1016/j.electacta.2018.04.185
- S.P. Zhang, G. Wang, J. Jin, L.L. Zhang, Z.Y. Wen, J.H. Yang, Robust and conductive red MoSe2 for stable and fast lithium storage. ACS Nano 12, 4010–4018 (2018). https://doi.org/10.1021/acsnano.8b01703
- Y. Liu, M. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced li-ion storage properties. J. Mater. Chem. A 3, 11857–11862 (2015). https://doi.org/10.1039/c5ta02100f
- M. Yousaf, Y. Wang, Y. Chen, Z. Wang, W. Aftab et al., Tunable free-standing core-shell CNT@MoSe2 anode for lithium storage. ACS Appl. Mater. Interfaces 10, 14622–14631 (2018). https://doi.org/10.1021/acsami.7b19739
- Q. Su, X. Cao, X. Kong, Y. Wang, C. Peng et al., Carbon-encapsulated MoSe2/C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storage performances. Electrochim. Acta 292, 339–346 (2018). https://doi.org/10.1016/j.electacta.2018.09.154
- Z.G. Luo, J. Zhou, L.R. Wang, G.Z. Fang, A.Q. Pan, S.Q. Liang, Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J. Mater. Chem. A 4, 15302–15308 (2016). https://doi.org/10.1039/c6ta04390a
- J.Y. Wang, C.Q. Peng, L.L. Zhang, Y.S. Fu, H. Li et al., Construction of n-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries. Electrochim. Acta 256, 19–27 (2017). https://doi.org/10.1016/j.electacta.2017.09.129
- C. Zheng, C. Chen, L. Chen, M. Wei, A CMK-5-encapsulated MoSe2 composite for rechargeable lithium-ion batteries with improved electrochemical performance. J. Mater. Chem. A 5, 19632–19638 (2017). https://doi.org/10.1039/c7ta06286a
- H. Kim, Q.H. Nguyen, I. Kim, J. Hur, Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries. Appl. Surf. Sci. 481, 1196–1205 (2019). https://doi.org/10.1016/j.apsusc.2019.03.165
- D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- G. Zhu, T. Chen, L. Wang, L. Ma, Y. Hu et al., High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@n-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 14, 246–252 (2018). https://doi.org/10.1016/j.ensm.2018.04.009
- A. Djire, J.B. Siegel, O. Ajenifujah, L. He, L.T. Thompson, Pseudocapacitive storage via micropores in high-surface area molybdenum nitrides. Nano Energy 51, 122–127 (2018). https://doi.org/10.1016/j.nanoen.2018.06.045
References
X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k
D. Rhodes, S.H. Chae, R. Ribeiro-Palau, J. Hone, Disorder in van der waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019). https://doi.org/10.1038/s41563-019-0366-8
A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao, J.Z. Ou, Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12, 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
L. Lin, W. Lei, S. Zhang, Y. Liu, G.G. Wallace, J. Chen, Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 19, 408–423 (2019). https://doi.org/10.1016/j.ensm.2019.02.023
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, W. Chen, Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem. Soc. Rev. 47, 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
J. Lee, C. Kim, K. Choi, J. Seo, Y. Choi et al., In-situ coalesced vacancies on MoSe2 mimicking noble metal: unprecedented tafel reaction in hydrogen evolution. Nano Energy 63, 103846 (2019). https://doi.org/10.1016/j.nanoen.2019.06.042
J. Xiao, Y. Zhang, H. Chen, N. Xu, S. Deng, Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Lett. 10, 60 (2018). https://doi.org/10.1007/s40820-018-0212-6
H. Xu, J. Zhu, G. Zou, W. Liu, X. Li et al., Spatially bandgap-graded MoS2(1−x)Se2x homojunctions for self-powered visible–near-infrared phototransistors. Nano-Micro Lett. 12, 26 (2020). https://doi.org/10.1007/s40820-019-0361-2
S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang et al., Boosting sodium storage of Fe1−xS/MoS2 composite via heterointerface engineering. Nano-Micro Lett. 11, 80 (2019). https://doi.org/10.1007/s40820-019-0311-z
A. Eftelthari, Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 8, 1–17 (2017). https://doi.org/10.1016/j.apmt.2017.01.006
X.L. Hu, W. Zhang, X.X. Liu, Y.N. Mei, Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015). https://doi.org/10.1039/c4cs00350k
H. Huang, J. Cui, G. Liu, R. Bi, L. Zhang, Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 13, 3448–3456 (2019). https://doi.org/10.1021/acsnano.8b09548
F.E. Niu, J. Yang, N.N. Wang, D.P. Zhang, W.L. Fan, J. Yang, Y.T. Qian, MoSe2-covered n, p-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 27, 1700522 (2017). https://doi.org/10.1002/adfm.201700522
T. Xiang, S. Tao, W.Y. Xu, Q. Fang, C.Q. Wu et al., Stable 1t-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode. ACS Nano 11, 6483–6491 (2017). https://doi.org/10.1021/acsnano.7b03329
J. Zheng, J. Lu, K. Amine, F. Pan, Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy 33, 497–507 (2017). https://doi.org/10.1016/j.nanoen.2017.02.011
Q. Yun, Q. Lu, X. Zhang, C. Tan, H. Zhang, Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion. Angew. Chem. Int. Ed. 57, 626–646 (2018). https://doi.org/10.1002/anie.201706426
W.C. Zhang, Y.J. Liu, Z.P. Guo, Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5, eaav7412 (2019). https://doi.org/10.1126/sciadv.aav7412
W. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139, 3316–3319 (2017). https://doi.org/10.1021/jacs.6b12185
K. Wang, Y. Wang, Y. Zhang, F. Liu, J. Shi et al., Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composite for high-performance lithium-ion batteries. Nanoscale 12, 12623–12631 (2020). https://doi.org/10.1039/d0nr01528h
W.C. Zhang, W.K. Pang, V. Sencadas, Z.P. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2, 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, X. Li, Porous membranes in secondary battery technologies. Chem. Soc. Rev. 46, 2199–2236 (2017). https://doi.org/10.1039/c6cs00823b
K.I. Jang, K. Li, H.U. Chung, S. Xu, H.N. Jung et al., Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017). https://doi.org/10.1038/ncomms15894
Z. Wu, J. Wang, R. Liu, K. Xia, C. Xuan et al., Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy 32, 511–519 (2017). https://doi.org/10.1016/j.nanoen.2017.01.014
S. Zhu, J.J. Li, X.Y. Deng, C.N. He, E.Z. Liu et al., Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv. Funct. Mater. 27, 1605017 (2017). https://doi.org/10.1002/adfm.201605017
T. Meng, L.R. Zheng, J.W. Qin, D. Zhao, M.H. Cao, A three-dimensional hierarchically porous Mo2C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage. J. Mater. Chem. A 5, 20228–20238 (2017). https://doi.org/10.1039/c7ta05946a
R.G. Mariano, K. McKelvey, H.S. White, M.W. Kanan, Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1191 (2017). https://doi.org/10.1126/science.aao3691
G.Z. Fang, Q.C. Wang, J. Zhou, Y.P. Lei, Z.X. Chen et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13, 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
X. Zhao, W. Cai, Y. Yang, X.D. Song, Z. Neale et al., MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
P. Ge, H.S. Hou, C.E. Banks, C.W. Foster, S.J. Li et al., Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Storage Mater. 12, 310–323 (2018). https://doi.org/10.1016/j.ensm.2018.02.012
Z. Kou, T. Wang, Q. Gu, M. Xiong, L. Zheng et al., Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation. Adv. Energy Mater. 9, 1803768 (2019). https://doi.org/10.1002/aenm.201803768
X. Chen, L.-P. Lv, W. Sun, Y. Hu, X. Tao, Y. Wang, Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance. J. Mater. Chem. A 6, 13705–13716 (2018). https://doi.org/10.1039/c8ta03176b
D. Vikraman, S. Hussain, K. Karuppasamy, A. Feroze, A. Kathalingam et al., Engineering the novel MoSe2–Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B 264, 118531 (2020). https://doi.org/10.1016/j.apcatb.2019.118531
J. Chen, A. Pan, Y. Wang, X. Cao, W. Zhang et al., Hierarchical mesoporous MoSe2@CoSe/n-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 21, 97–106 (2018). https://doi.org/10.1016/j.ensm.2018.10.019
Y. Yu, G.H. Nam, Q. He, X.J. Wu, K. Zhang et al., High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018). https://doi.org/10.1038/s41557-018-0035-6
Q. Su, X. Cao, T. Yu, X. Kong, Y. Wang et al., Binding MoSe2 with dual protection carbon for high-performance sodium storage. J. Mater. Chem. A 7, 22871–22878 (2019). https://doi.org/10.1039/c9ta06870h
Y.J. Yang, D.M. Tang, C. Zhang, Y.H. Zhang, Q.F. Liang et al., “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 10, 979–986 (2017). https://doi.org/10.1039/c7ee00329c
Z. Shi, K. Nie, Z.-J. Shao, B. Gao, H. Lin et al., Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ. Sci. 10, 1262–1271 (2017). https://doi.org/10.1039/c7ee00388a
J.M. Ge, L. Fan, J. Wang, Q.F. Zhang, Z.M. Liu et al., MoSe2/n-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 8, 1801477 (2018). https://doi.org/10.1002/aenm.201801477
M. Deng, J. Qi, X. Li, Y. Xiao, L. Yang et al., MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries. Electrochim. Acta 277, 205–210 (2018). https://doi.org/10.1016/j.electacta.2018.04.185
S.P. Zhang, G. Wang, J. Jin, L.L. Zhang, Z.Y. Wen, J.H. Yang, Robust and conductive red MoSe2 for stable and fast lithium storage. ACS Nano 12, 4010–4018 (2018). https://doi.org/10.1021/acsnano.8b01703
Y. Liu, M. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced li-ion storage properties. J. Mater. Chem. A 3, 11857–11862 (2015). https://doi.org/10.1039/c5ta02100f
M. Yousaf, Y. Wang, Y. Chen, Z. Wang, W. Aftab et al., Tunable free-standing core-shell CNT@MoSe2 anode for lithium storage. ACS Appl. Mater. Interfaces 10, 14622–14631 (2018). https://doi.org/10.1021/acsami.7b19739
Q. Su, X. Cao, X. Kong, Y. Wang, C. Peng et al., Carbon-encapsulated MoSe2/C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storage performances. Electrochim. Acta 292, 339–346 (2018). https://doi.org/10.1016/j.electacta.2018.09.154
Z.G. Luo, J. Zhou, L.R. Wang, G.Z. Fang, A.Q. Pan, S.Q. Liang, Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J. Mater. Chem. A 4, 15302–15308 (2016). https://doi.org/10.1039/c6ta04390a
J.Y. Wang, C.Q. Peng, L.L. Zhang, Y.S. Fu, H. Li et al., Construction of n-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries. Electrochim. Acta 256, 19–27 (2017). https://doi.org/10.1016/j.electacta.2017.09.129
C. Zheng, C. Chen, L. Chen, M. Wei, A CMK-5-encapsulated MoSe2 composite for rechargeable lithium-ion batteries with improved electrochemical performance. J. Mater. Chem. A 5, 19632–19638 (2017). https://doi.org/10.1039/c7ta06286a
H. Kim, Q.H. Nguyen, I. Kim, J. Hur, Scalable synthesis of high-performance molybdenum diselenide-graphite nanocomposite anodes for lithium-ion batteries. Appl. Surf. Sci. 481, 1196–1205 (2019). https://doi.org/10.1016/j.apsusc.2019.03.165
D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
G. Zhu, T. Chen, L. Wang, L. Ma, Y. Hu et al., High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@n-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 14, 246–252 (2018). https://doi.org/10.1016/j.ensm.2018.04.009
A. Djire, J.B. Siegel, O. Ajenifujah, L. He, L.T. Thompson, Pseudocapacitive storage via micropores in high-surface area molybdenum nitrides. Nano Energy 51, 122–127 (2018). https://doi.org/10.1016/j.nanoen.2018.06.045