Facet-Controlled LiMn2O4/C as Deionization Electrode with Enhanced Stability and High Desalination Performance
Corresponding Author: Wenchao Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 176
Abstract
Battery materials as emerging capacitive deionization electrodes for desalination have better salt removal capacities than traditional carbon-based materials. LiMn2O4, a widely used cathode material, is difficult to utilize as a deionization electrode due to its structural instability upon cycling and Mn dissolution in aqueous-based electrolytes. Herein, a facile and low-cost ball-milling routine was proposed to prepare a LiMn2O4 material with highly exposed (111) facets. The prepared electrode exhibited relatively low dissolution of Mn during cycling, which shows its long cycle stability. In the hybrid capacitive deionization system, the LiMn2O4/C electrode delivered a high desalination capacity of 117.3 mg g−1 without obvious capacity decay at a voltage of 1.0 V with a 20 mM initial salt concentration. In addition, the exposed (111) facets significantly alleviated Mn ion dissolution, which also enhanced the structural steadiness.
Highlights:
1 First report of a lithium-ion battery cathode as a deionization electrode for desalination.
2 A novel approach to suppress manganese dissolution by exposing the (111) facet is proposed.
3 Excellent desalination performance by the LiMn2O4/C cathode. The material achieves an ultrahigh desalination capacity of 117.3 mg g−1 at 1.0 V and a longer cycle life (200 cycles without capacity decay) with minor manganese dissolution during the cycling test in 10 mM aqueous LiCl solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Liang, W. Zhan, G. Qi, S. Lin, Q. Nan et al., High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J. Mater. Chem. A 3(9), 5140–5147 (2015). https://doi.org/10.1039/C4TA06573E
- M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
- N.A.M. Barakat, K.A. Khalil, A.G. El-Deen, H.Y. Kim, Development of Cd-doped Co nanops encapsulated in graphite shell as novel electrode material for the capacitive deionization technology. Nano-Micro Lett. 5(4), 303–313 (2013). https://doi.org/10.1007/bf03353762
- G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares et al., Membrane-based seawater desalination: present and future prospects. Desalination 401, 16–21 (2017). https://doi.org/10.1016/j.desal.2016.10.002
- P. Pazouki, R.A. Stewart, E. Bertone, F. Helfer, N. Ghaffour, Life cycle cost of dilution desalination in off-grid locations: a study of water reuse integrated with seawater desalination technology. Desalination 491, 114584 (2020). https://doi.org/10.1016/j.desal.2020.114584
- M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019). https://doi.org/10.1016/j.desal.2019.02.008
- J. Kim, Y. Yi, D.H. Peck, S.H. Yoon, D.H. Jung et al., Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environ. Sci. Nano 6(3), 916–924 (2019). https://doi.org/10.1039/C8EN01181H
- D. Lu, W. Cai, Y. Wang, Optimization of the voltage window for long-term capacitive deionization stability. Desalination 424, 53–61 (2017). https://doi.org/10.1016/j.desal.2017.09.026
- T.N. Baroud, E.P. Giannelis, High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons. Carbon 139, 614–625 (2018). https://doi.org/10.1016/j.carbon.2018.05.053
- Y. Li, I. Hussain, J.W. Qi, C. Liu, J.S. Li et al., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Sep. Purif. Technol. 165, 190–198 (2016). https://doi.org/10.1016/j.seppur.2016.04.007
- Y.B. Zhao, A. Gong, Y. Liu, K.X. Li, Facile synthesis and enhanced desalination performance of a novel layered Na4Mn14O27 made from earth-abundant element in capacitive deionization. Sep. Purif. Technol. 258, 118057 (2021). https://doi.org/10.1016/j.seppur.2020.118057
- H.B. Li, Z.Y. Leong, W.H. Shi, J. Zhang, T.P. Chen et al., Hydrothermally synthesized graphene and Fe3O4 nanocomposites for high performance capacitive deionization. RSC Adv. 6(15), 11967–11972 (2016). https://doi.org/10.1039/c5ra23151e
- J.L. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19(2), 823–828 (2019). https://doi.org/10.1021/acs.nanolett.8b04006
- S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C. Smith, Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369–378 (2017). https://doi.org/10.1016/j.electacta.2017.09.137
- W.C. Zhang, J. Lu, Z.P. Guo, Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 50, 400–417 (2021). https://doi.org/10.1016/j.mattod.2021.03.015
- Z.S. Yue, Y.L. Ma, J.W. Zhang, H. Li, Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@rGO parallel toNa1.1V3O7.9@rGO. J. Mater. Chem. A 7(28), 16892–16901 (2019). https://doi.org/10.1039/c9ta03570b
- F.M. Chen, Y.X. Huang, L. Guo, L.F. Sun, Y. Wang et al., Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10(10), 2081–2089 (2017). https://doi.org/10.1039/c7ee00855d
- X. Tang, W.C. Zhang, L.Y. Cao, Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met. 41(3), 726–729 (2022). https://doi.org/10.1007/s12598-021-01843-9
- W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
- Y.X. Huang, F.M. Chen, L. Guo, H.Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5(34), 18157–18165 (2017). https://doi.org/10.1039/c7ta03725b
- W.Y. Zhao, M. Ding, L. Guo, H.Y. Yang, Dual-ion electrochemical deionization system with binder-free aerogel electrodes. Small 15(9), 1805505 (2019). https://doi.org/10.1002/smll.201805505
- W. He, F. Ye, J. Lin, Q. Wang, Q. Xie et al., Boosting the electrochemical performance of Li- and Mn-rich cathodes by a three-in-one strategy. Nano-Micro Lett. 13, 205 (2021). https://doi.org/10.1007/s40820-021-00725-0
- Y. Li, G. Ma, H. Shao, P. Xiao, J. Lu et al., Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Lett. 13, 158 (2021). https://doi.org/10.1007/s40820-021-00684-6
- J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2022). https://doi.org/10.1007/s40820-021-00758-5
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- J. Zhu, G. Xiao, X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
- F. Zhang, W. Zhang, D. Wexler, Z. Guo, Recent progress and future advances on aqueous monovalent-ion batteries towards safe and high-power energy storage. Adv. Mater. 34(24), 2107965 (2022). https://doi.org/10.1002/adma.202107965
- N. Nakayama, T. Nozawa, Y. Iriyama, T. Abe, Z. Ogumi et al., Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution interface. J. Power. Sources 174(2), 695–700 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.113
- B.K. Lesel, J.B. Cook, Y. Yang, T.C. Lin, S.H. Tolbert, Using nanoscale domain size to control charge storage kinetics in pseudocapacitive nanoporous LiMn2O4 powders. ACS Energy Lett. 2(10), 2293–2298 (2017). https://doi.org/10.1021/acsenergylett.7b00634
- Y. Ha, S.P. Harvey, G. Teeter, A.M. Colclasure, S.E. Trask et al., Long-term cyclability of Li4Ti5O12/LiMn2O4 cells using carbonate-based electrolytes for behind-the-meter storage applications. Energy Storage Mater. 38, 581–589 (2021). https://doi.org/10.1016/j.ensm.2021.03.036
- A. Banerjee, B. Ziv, Y. Shilina, S. Luski, D. Aurbach et al., Acid-scavenging separators: a novel route for improving Li-ion batteries’ durability. ACS Energy Lett. 2(10), 2388–2393 (2017). https://doi.org/10.1021/acsenergylett.7b00763
- J.S. Zeng, M.S. Li, X.F. Li, C. Chen, D.B. Xiong et al., A novel coating onto LiMn2O4 cathode with increased lithium ion battery performance. Appl. Surf. Sci. 317, 884–891 (2014). https://doi.org/10.1016/j.apsusc.2014.08.034
- K.J. Kim, J.H. Lee, T.Y. Koh, M.H. Kim, Improved cyclic stability by octahedral Co 3+ substitution in spinel lithium manganese oxide thin-film cathode for rechargeable microbattery. Electrochimi.Acta 200, 84–89 (2016). https://doi.org/10.1016/j.electacta.2016.03.086
- W.K. Kim, D.W. Han, W.H. Ryu, S.J. Lim, H.S. Kwon, Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance. Electrochim. Acta 71, 17–21 (2012). https://doi.org/10.1016/j.electacta.2012.03.090
- A. Iturrondobeitia, A. Goñi, V. Palomares, I.G. Muro, L. Lezama et al., Effect of doping LiMn2O4 spinel with a tetravalent species such as Si (IV) versus with a trivalent species such as Ga (III). Electrochemical, magnetic and ESR study. J. Power Sour. 216, 482–488 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.031
- M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura et al., Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J. Am. Chem. Soc. 132(43), 15268–15276 (2010). https://doi.org/10.1021/ja105389t
- Q. Li, J. Zhang, C. Gong, J. Guo, L. Yu et al., Spinel LiMn2O4 cathode materials for lithium storage: the regulation of exposed facets and surface coating. Ceram Int. 45(10), 13198–13202 (2019). https://doi.org/10.1016/j.ceramint.2019.04.002
- Y. Xiao, X.D. Zhang, Y.F. Zhu, P.F. Wang, Y.X. Yin et al., Suppressing manganese dissolution via exposing stable 111 facets for high-performance lithium-ion oxide cathode. Adv. Sci. 6(13), 1801908 (2019). https://doi.org/10.1002/advs.201801908
- H. Manjunatha, K. Mahesh, G. Suresh, T. Venkatesha, The study of lithium ion de-insertion/insertion in LiMn2O4 and determination of kinetic parameters in aqueous Li2SO4 solution using electrochemical impedance spectroscopy. Electrochim. Acta 56(3), 1439–1446 (2011). https://doi.org/10.1016/j.electacta.2010.08.107
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- Y. Chen, L. Ben, B. Chen, W. Zhao, X. Huang, Impact of high valence state cation Ti/Ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials: a systematic density functional theory investigation. Adv. Mater. Interfaces 5(12), 1800077 (2018). https://doi.org/10.1002/admi.201800077
- Y. Chen, Y. Sun, X. Huang, Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: the role of oxygen vacancies and cation doping. Comput. Mater. Sci. 115, 109–116 (2016). https://doi.org/10.1016/j.commatsci.2016.01.005
- S. Kim, M. Aykol, C. Wolverton, Surface phase diagram and stability of (001) and (111) LiMn2O4 spinel oxides. Phys. Rev. B 92(11), 115411 (2015). https://doi.org/10.1103/PhysRevB.92.115411
- K. Momma, F. Izumi, Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallog. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970
- H. Zhang, Y. Gong, J. Li, K. Du, Y. Cao et al., Selecting substituent elements for LiMnPO4 cathode materials combined with density functional theory (DFT) calculations and experiments. J. Alloy Compd. 793, 360–368 (2019). https://doi.org/10.1016/j.jallcom.2019.04.191
- Y. You, M. Yan, H. Chen, Interactions of carbon–nitrogen and carbon–nitrogen–vacancy in α-Fe from first-principles calculations. Comp. Mater. Sci. 67, 222–228 (2013). https://doi.org/10.1016/j.commatsci.2012.08.045
- D. Liu, W. Lei, S. Qin, Y. Chen, Large-scale production of h-In2O3/carbon nanocomposites with enhanced lithium storage properties. Electrochim. Acta 135, 128–132 (2014). https://doi.org/10.1016/j.electacta.2014.04.185
- S. Wang, Q. Feng, J. Sun, F. Gao, W. Fan et al., Nanocrystalline cellulose improves the biocompatibility and reduces the wear debris of ultrahigh molecular weight polyethylene via weak binding. ACS Nano 10(1), 298–306 (2016). https://doi.org/10.1021/acsnano.5b04393
- B. Zhuman, S.F. Saepurahman, R.H. Anis, Obtaining high crystalline ball milled H-Y zeolite ps with carbon nanostructures as a damping material. Microp. Mesop. Mat. 273, 19–25 (2019). https://doi.org/10.1016/j.micromeso.2018.06.041
- R.S. Nicholson, I. Shain, Theory of stationary electrode polarography. single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal.Chem. 36(4), 706–723 (1964). https://doi.org/10.1021/ac60210a007
- C.J. Tang, Y.N. Liu, C. Xu, J.X. Zhu, X.J. Wei et al., Ultrafine nickel-nanop-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv. Funct. Mater. 28(3), 1704561 (2018). https://doi.org/10.1002/adfm.201704561
- X.L. Wu, Y.G. Guo, J. Su, J.W. Xiong, Y.L. Zhang et al., Carbon-nanotube-decorated nano-LiFePO4 @C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 3(9), 1155–1160 (2013). https://doi.org/10.1002/aenm.201300159
- J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7(11), 3683–3689 (2014). https://doi.org/10.1039/C4EE02378A
- S. Kim, J. Lee, C. Kim, J. Yoon, Na2FeP2O7 as a novel material for hybrid capacitive deionization. Electrochim. Acta 203, 265–271 (2016). https://doi.org/10.1016/j.electacta.2016.04.056
- J. Ma, L. Wang, F. Yu, X.H. Dai, Mesoporous amorphous FePO4 nanosphere@graphene as a faradic electrode in capacitive deionization for high-capacity and fast removal of NaCl from water. Chem. Eng. J. 370, 938–943 (2019). https://doi.org/10.1016/j.cej.2019.03.243
- F. Xing, T. Li, J.Y. Li, H.R. Zhu, N. Wang et al., Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy 31, 590–595 (2017). https://doi.org/10.1016/j.nanoen.2016.12.012
- Y.Y. Zhang, K. Yang, H.B. Yu, W.J. Shan, Z.N. Lou et al., Boosting deionization capability by effectively improving sodium-ion storage capacity based on robust interfacial electronic interaction within 3D Na4Ti9O20/N-doped porous carbon heterostructures. J. Mater. Chem. A 9(43), 24374–24386 (2021). https://doi.org/10.1039/d1ta06369c
- Y.Q. Zhang, L. Ji, Y. Zheng, H.W. Liu, X.T. Xu, Nanopatterned metal-organic framework electrodes with improved capacitive deionization properties for highly efficient water desalination. Sep. Purif. Technol. 234, 116124 (2020). https://doi.org/10.1016/j.seppur.2019.116124
References
B. Liang, W. Zhan, G. Qi, S. Lin, Q. Nan et al., High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J. Mater. Chem. A 3(9), 5140–5147 (2015). https://doi.org/10.1039/C4TA06573E
M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488
N.A.M. Barakat, K.A. Khalil, A.G. El-Deen, H.Y. Kim, Development of Cd-doped Co nanops encapsulated in graphite shell as novel electrode material for the capacitive deionization technology. Nano-Micro Lett. 5(4), 303–313 (2013). https://doi.org/10.1007/bf03353762
G. Amy, N. Ghaffour, Z. Li, L. Francis, R.V. Linares et al., Membrane-based seawater desalination: present and future prospects. Desalination 401, 16–21 (2017). https://doi.org/10.1016/j.desal.2016.10.002
P. Pazouki, R.A. Stewart, E. Bertone, F. Helfer, N. Ghaffour, Life cycle cost of dilution desalination in off-grid locations: a study of water reuse integrated with seawater desalination technology. Desalination 491, 114584 (2020). https://doi.org/10.1016/j.desal.2020.114584
M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, N. Hilal, Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019). https://doi.org/10.1016/j.desal.2019.02.008
J. Kim, Y. Yi, D.H. Peck, S.H. Yoon, D.H. Jung et al., Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environ. Sci. Nano 6(3), 916–924 (2019). https://doi.org/10.1039/C8EN01181H
D. Lu, W. Cai, Y. Wang, Optimization of the voltage window for long-term capacitive deionization stability. Desalination 424, 53–61 (2017). https://doi.org/10.1016/j.desal.2017.09.026
T.N. Baroud, E.P. Giannelis, High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons. Carbon 139, 614–625 (2018). https://doi.org/10.1016/j.carbon.2018.05.053
Y. Li, I. Hussain, J.W. Qi, C. Liu, J.S. Li et al., N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization. Sep. Purif. Technol. 165, 190–198 (2016). https://doi.org/10.1016/j.seppur.2016.04.007
Y.B. Zhao, A. Gong, Y. Liu, K.X. Li, Facile synthesis and enhanced desalination performance of a novel layered Na4Mn14O27 made from earth-abundant element in capacitive deionization. Sep. Purif. Technol. 258, 118057 (2021). https://doi.org/10.1016/j.seppur.2020.118057
H.B. Li, Z.Y. Leong, W.H. Shi, J. Zhang, T.P. Chen et al., Hydrothermally synthesized graphene and Fe3O4 nanocomposites for high performance capacitive deionization. RSC Adv. 6(15), 11967–11972 (2016). https://doi.org/10.1039/c5ra23151e
J.L. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19(2), 823–828 (2019). https://doi.org/10.1021/acs.nanolett.8b04006
S. Porada, A. Shrivastava, P. Bukowska, P.M. Biesheuvel, K.C. Smith, Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369–378 (2017). https://doi.org/10.1016/j.electacta.2017.09.137
W.C. Zhang, J. Lu, Z.P. Guo, Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 50, 400–417 (2021). https://doi.org/10.1016/j.mattod.2021.03.015
Z.S. Yue, Y.L. Ma, J.W. Zhang, H. Li, Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@rGO parallel toNa1.1V3O7.9@rGO. J. Mater. Chem. A 7(28), 16892–16901 (2019). https://doi.org/10.1039/c9ta03570b
F.M. Chen, Y.X. Huang, L. Guo, L.F. Sun, Y. Wang et al., Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10(10), 2081–2089 (2017). https://doi.org/10.1039/c7ee00855d
X. Tang, W.C. Zhang, L.Y. Cao, Multifunctional high-fluorine-content molecule with high dipole moment as electrolyte additive for high performance lithium metal batteries. Rare Met. 41(3), 726–729 (2022). https://doi.org/10.1007/s12598-021-01843-9
W. Bao, X. Tang, X. Guo, S. Choi, C. Wang et al., Porous cryo-dried MXene for efficient capacitive deionization. Joule 2(4), 778–787 (2018). https://doi.org/10.1016/j.joule.2018.02.018
Y.X. Huang, F.M. Chen, L. Guo, H.Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5(34), 18157–18165 (2017). https://doi.org/10.1039/c7ta03725b
W.Y. Zhao, M. Ding, L. Guo, H.Y. Yang, Dual-ion electrochemical deionization system with binder-free aerogel electrodes. Small 15(9), 1805505 (2019). https://doi.org/10.1002/smll.201805505
W. He, F. Ye, J. Lin, Q. Wang, Q. Xie et al., Boosting the electrochemical performance of Li- and Mn-rich cathodes by a three-in-one strategy. Nano-Micro Lett. 13, 205 (2021). https://doi.org/10.1007/s40820-021-00725-0
Y. Li, G. Ma, H. Shao, P. Xiao, J. Lu et al., Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Lett. 13, 158 (2021). https://doi.org/10.1007/s40820-021-00684-6
J. Ren, Z. Wang, P. Xu, C. Wang, F. Gao et al., Porous Co2VO4 nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nano-Micro Lett. 14, 5 (2022). https://doi.org/10.1007/s40820-021-00758-5
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
J. Zhu, G. Xiao, X. Zuo, Two-dimensional black phosphorus: an emerging anode material for lithium-ion batteries. Nano-Micro Lett. 12, 120 (2020). https://doi.org/10.1007/s40820-020-00453-x
F. Zhang, W. Zhang, D. Wexler, Z. Guo, Recent progress and future advances on aqueous monovalent-ion batteries towards safe and high-power energy storage. Adv. Mater. 34(24), 2107965 (2022). https://doi.org/10.1002/adma.202107965
N. Nakayama, T. Nozawa, Y. Iriyama, T. Abe, Z. Ogumi et al., Interfacial lithium-ion transfer at the LiMn2O4 thin film electrode/aqueous solution interface. J. Power. Sources 174(2), 695–700 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.113
B.K. Lesel, J.B. Cook, Y. Yang, T.C. Lin, S.H. Tolbert, Using nanoscale domain size to control charge storage kinetics in pseudocapacitive nanoporous LiMn2O4 powders. ACS Energy Lett. 2(10), 2293–2298 (2017). https://doi.org/10.1021/acsenergylett.7b00634
Y. Ha, S.P. Harvey, G. Teeter, A.M. Colclasure, S.E. Trask et al., Long-term cyclability of Li4Ti5O12/LiMn2O4 cells using carbonate-based electrolytes for behind-the-meter storage applications. Energy Storage Mater. 38, 581–589 (2021). https://doi.org/10.1016/j.ensm.2021.03.036
A. Banerjee, B. Ziv, Y. Shilina, S. Luski, D. Aurbach et al., Acid-scavenging separators: a novel route for improving Li-ion batteries’ durability. ACS Energy Lett. 2(10), 2388–2393 (2017). https://doi.org/10.1021/acsenergylett.7b00763
J.S. Zeng, M.S. Li, X.F. Li, C. Chen, D.B. Xiong et al., A novel coating onto LiMn2O4 cathode with increased lithium ion battery performance. Appl. Surf. Sci. 317, 884–891 (2014). https://doi.org/10.1016/j.apsusc.2014.08.034
K.J. Kim, J.H. Lee, T.Y. Koh, M.H. Kim, Improved cyclic stability by octahedral Co 3+ substitution in spinel lithium manganese oxide thin-film cathode for rechargeable microbattery. Electrochimi.Acta 200, 84–89 (2016). https://doi.org/10.1016/j.electacta.2016.03.086
W.K. Kim, D.W. Han, W.H. Ryu, S.J. Lim, H.S. Kwon, Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance. Electrochim. Acta 71, 17–21 (2012). https://doi.org/10.1016/j.electacta.2012.03.090
A. Iturrondobeitia, A. Goñi, V. Palomares, I.G. Muro, L. Lezama et al., Effect of doping LiMn2O4 spinel with a tetravalent species such as Si (IV) versus with a trivalent species such as Ga (III). Electrochemical, magnetic and ESR study. J. Power Sour. 216, 482–488 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.031
M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura et al., Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. J. Am. Chem. Soc. 132(43), 15268–15276 (2010). https://doi.org/10.1021/ja105389t
Q. Li, J. Zhang, C. Gong, J. Guo, L. Yu et al., Spinel LiMn2O4 cathode materials for lithium storage: the regulation of exposed facets and surface coating. Ceram Int. 45(10), 13198–13202 (2019). https://doi.org/10.1016/j.ceramint.2019.04.002
Y. Xiao, X.D. Zhang, Y.F. Zhu, P.F. Wang, Y.X. Yin et al., Suppressing manganese dissolution via exposing stable 111 facets for high-performance lithium-ion oxide cathode. Adv. Sci. 6(13), 1801908 (2019). https://doi.org/10.1002/advs.201801908
H. Manjunatha, K. Mahesh, G. Suresh, T. Venkatesha, The study of lithium ion de-insertion/insertion in LiMn2O4 and determination of kinetic parameters in aqueous Li2SO4 solution using electrochemical impedance spectroscopy. Electrochim. Acta 56(3), 1439–1446 (2011). https://doi.org/10.1016/j.electacta.2010.08.107
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
Y. Chen, L. Ben, B. Chen, W. Zhao, X. Huang, Impact of high valence state cation Ti/Ta surface doping on the stabilization of spinel LiNi0.5Mn1.5O4 cathode materials: a systematic density functional theory investigation. Adv. Mater. Interfaces 5(12), 1800077 (2018). https://doi.org/10.1002/admi.201800077
Y. Chen, Y. Sun, X. Huang, Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: the role of oxygen vacancies and cation doping. Comput. Mater. Sci. 115, 109–116 (2016). https://doi.org/10.1016/j.commatsci.2016.01.005
S. Kim, M. Aykol, C. Wolverton, Surface phase diagram and stability of (001) and (111) LiMn2O4 spinel oxides. Phys. Rev. B 92(11), 115411 (2015). https://doi.org/10.1103/PhysRevB.92.115411
K. Momma, F. Izumi, Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallog. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970
H. Zhang, Y. Gong, J. Li, K. Du, Y. Cao et al., Selecting substituent elements for LiMnPO4 cathode materials combined with density functional theory (DFT) calculations and experiments. J. Alloy Compd. 793, 360–368 (2019). https://doi.org/10.1016/j.jallcom.2019.04.191
Y. You, M. Yan, H. Chen, Interactions of carbon–nitrogen and carbon–nitrogen–vacancy in α-Fe from first-principles calculations. Comp. Mater. Sci. 67, 222–228 (2013). https://doi.org/10.1016/j.commatsci.2012.08.045
D. Liu, W. Lei, S. Qin, Y. Chen, Large-scale production of h-In2O3/carbon nanocomposites with enhanced lithium storage properties. Electrochim. Acta 135, 128–132 (2014). https://doi.org/10.1016/j.electacta.2014.04.185
S. Wang, Q. Feng, J. Sun, F. Gao, W. Fan et al., Nanocrystalline cellulose improves the biocompatibility and reduces the wear debris of ultrahigh molecular weight polyethylene via weak binding. ACS Nano 10(1), 298–306 (2016). https://doi.org/10.1021/acsnano.5b04393
B. Zhuman, S.F. Saepurahman, R.H. Anis, Obtaining high crystalline ball milled H-Y zeolite ps with carbon nanostructures as a damping material. Microp. Mesop. Mat. 273, 19–25 (2019). https://doi.org/10.1016/j.micromeso.2018.06.041
R.S. Nicholson, I. Shain, Theory of stationary electrode polarography. single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal.Chem. 36(4), 706–723 (1964). https://doi.org/10.1021/ac60210a007
C.J. Tang, Y.N. Liu, C. Xu, J.X. Zhu, X.J. Wei et al., Ultrafine nickel-nanop-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv. Funct. Mater. 28(3), 1704561 (2018). https://doi.org/10.1002/adfm.201704561
X.L. Wu, Y.G. Guo, J. Su, J.W. Xiong, Y.L. Zhang et al., Carbon-nanotube-decorated nano-LiFePO4 @C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 3(9), 1155–1160 (2013). https://doi.org/10.1002/aenm.201300159
J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7(11), 3683–3689 (2014). https://doi.org/10.1039/C4EE02378A
S. Kim, J. Lee, C. Kim, J. Yoon, Na2FeP2O7 as a novel material for hybrid capacitive deionization. Electrochim. Acta 203, 265–271 (2016). https://doi.org/10.1016/j.electacta.2016.04.056
J. Ma, L. Wang, F. Yu, X.H. Dai, Mesoporous amorphous FePO4 nanosphere@graphene as a faradic electrode in capacitive deionization for high-capacity and fast removal of NaCl from water. Chem. Eng. J. 370, 938–943 (2019). https://doi.org/10.1016/j.cej.2019.03.243
F. Xing, T. Li, J.Y. Li, H.R. Zhu, N. Wang et al., Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy 31, 590–595 (2017). https://doi.org/10.1016/j.nanoen.2016.12.012
Y.Y. Zhang, K. Yang, H.B. Yu, W.J. Shan, Z.N. Lou et al., Boosting deionization capability by effectively improving sodium-ion storage capacity based on robust interfacial electronic interaction within 3D Na4Ti9O20/N-doped porous carbon heterostructures. J. Mater. Chem. A 9(43), 24374–24386 (2021). https://doi.org/10.1039/d1ta06369c
Y.Q. Zhang, L. Ji, Y. Zheng, H.W. Liu, X.T. Xu, Nanopatterned metal-organic framework electrodes with improved capacitive deionization properties for highly efficient water desalination. Sep. Purif. Technol. 234, 116124 (2020). https://doi.org/10.1016/j.seppur.2019.116124